Joint University Accelerator School

Examination of Transverse Beam Dynamics

JUAS 2014

 6^{th} February 2014

1 Exercise:

TLEP is a high luminosity circular e^+e^- collider to study the Higgs boson and physics at the electroweak scale. The TLEP project is conceived as a ring with a circumference 80 km long. Let us assume that the optics of this machine is made of identical FODO cells, each cell with the following structure:

Assuming for the calculations the thin lens approximation, and considering the following parameters:

Parameter	Value
Beam energy	$120 {\rm GeV}$
Total FODO cell length	$50 \mathrm{m}$
Quadrupole gradient G	$10 \mathrm{T/m}$
Quadrupole length	$1.5 \mathrm{m}$
Dipole length	$21.3 \mathrm{m}$

answer the following questions:

- 1. Calculate: (1) for each dipole the bending angle and the necessary magnetic field; (2) the value of the focal length of each quadrupole
- 2. Is this lattice stable?
- 3. What are the vertical and horizontal tunes for this machine?
- 4. Compute the maximum and the minimum value for the betatron functions, and the maximum and minimum value of the dispersion
- 5. Calculate the natural chromaticities for this machine

2 Exercise:

Let us now assume that in TLEP there is an Interaction Point (IP) with $\beta_x^* = 0.5$ m and $\beta_y^* = 0.1$ cm. The peak luminosity available by a e^+e^- collider can be written as:

$$L = \frac{N_{\rm b} N_{e^-} N_{e^+} f_{\rm rev}}{4\pi \sigma_x^* \sigma_y^*} \ [\rm{cm}^{-2} \rm{s}^{-1}]$$

where $N_{\rm b} = 80$ is the number of bunches per beam (we assume the same number of bunches for both the e^- and the e^+ beams), $N_{e^-} = N_{e^+} = 5 \times 10^{11}$ is the number of particles per bunch (we assume the same number for both e^- and e^+ bunches), and $f_{\rm rev}$ is the revolution frequency. The horizontal and vertical normalised beam emittances are respectively: $\epsilon_{x,N} = 2.2$ mm and $\epsilon_{y,N} = 4.7 \ \mu$ m.

- 1. Compute the revolution frequency f_{rev} , knowing that the circumference is 80 km and that the beam moves nearly at the speed of light
- 2. Calculate the beam transverse beam sizes σ_x^* and σ_y^* at the IP, and the luminosity L for two different beam energies: 45 GeV and 120 GeV
- 3. What is the value of the betatron function at position s = 0.5 m from the IP?

3 Exercise:

Given a dispersion suppressor based on the missing-magnet scheme, followed by a straight section with the same focusing properties, reduce the horizontal chromaticity of the system using two sextupoles.

- 1. Sketch the lattice with the horizontal beta functions and the dispersion.
- 2. Where do the two sextupoles have to be located? Why?
- 3. What are the requested sextupoles strength? (work in thin-lens approximation)

4 Exercise:

Orbit control: given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at L_{cell} distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at $(x_i, x'_i) = (0, 0)$, an arbitrary offset at the end of the cell while preserving its angle, $(x_f, x'_f) = (x_{\text{arbitrary}}, 0)$.