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Introduction: The ™A

energy problem

The constraints:

. Increase of world population and therefore energy needs: 7.3 billions in
2015 to 8.9 billions by 2050, remaining stable beyond (UN study), coupled
with a today inequality in energy access (inverse champagne glass)

. Change in energy mix requirement: stronger reliance on electricity for an
Increasing urban population

. Necessity to have “sustainable” energy “Development that meets the
needs of the present without compromising the ability of future
generations to meet their own needs” ( Brundtland report)

Environment aspects: global warming
Safety: accidents should not impose population evacuation

Legacy towards next generations: depletion of fossil fuels; waste
repository on a “human” (not geological) time scale

43-01-206 JUAS



. . -(Pﬂ- SWISS PLASMA
Electricity ssswsit | CENTER

consumption/ capita
World bank data

(http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC/cou ntries/all?display=
graph)
World 3064 kWh/capita

EU: 6144 kW/h/ capita; Germany: 7270
kWh/capita ; Switzerland: 7343 kWh/capita

China: 3810 kWh/capita; India: 744 kWh/capita

Vietnam: 1273 kWh/capita, Haiti: 50
kWh/capita—> = 0.007 of Germany



“He : Energy
released
in Fusion

Binding energy per nucleon

in fission

Energy released
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“Easiest” to achieve reaction:

D + T2 He (35Mmev) + neutron
(14.1 MeV)

Other reactions

D + D = He3 (0.82 Mev) + neutron
(2.45 MeV

D+ D —=> T @omev)+ H (3.0MeVv)
Atomicnumbery + He3—> He? (3.76 Mev) +p (14.7MeV)

18-01-206
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*“Fusion will bring a disruption in the way we view
JUAS | energy” ( Newsletter of WEC, Daegu 2013) 6
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Fusion cross section
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Lawson criterion (1)
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Lawson criterion (2)

Q definition= Fusion power/ External Heating
power

But the fusion reactions provide energetic He ions
(3.5 MeV) which can thermalize withthe Dand T
ions (10-20 keV): He ions is a source of heating

Q~—2 infinity (ignition) if External Heating power is
null: all needed heating is provided by He ions

For a reactor, ignition is not required Q = 30-40



The challenge of ™™

fusion

Density n* Temperature T*Energy confinement time 1, > 5%
10 m=3keV s

The challenge:

1.To create a plasma with n about 102°m=3and T about

108K, i.e. 10 keV
2.To confine its energy during t; of a few seconds

There are many time scale: Particle confinement
time t,, Plasma duration, Energy confinement time

1201-206 JUAS
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“disruptive” energy

Material masses after 100 vears
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Waste disposal
Material masses after 100 years
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B recycle material (complex process)
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* Economics studies confirm the possibility for

Market penetration
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fusion to penetrate the market
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10°K , about 10 eV

* Binding energy e-ion: about 10 eV

e At fusion temperature, the state of matter is
plasma, i.e. a “gas” formed by electrons and ions,
globally neutral and dominated by “collective”
effect

* Debye shielding: a charge is surrounded by a cloud
of opposite charges which “shield” its Coulombian
potential V.. Beyond a few Debye lengths Ay, V. is
no longer felt. Ay = (g,kT/n,e2)Y/2
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Confinement

* Due to the Debye screening, electrostatic
confinement is not possible: electric field is
shielded after a few Debye length

* Two possibilities:

€ No confinement=> Inertial confinement and
realisation of the triple product through very high
density n ( very short T, and 7, )

€ By magnetic field 2 Magnetic confinement
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(1)

* Through the Lorentz force F,,,.., =a(vxB)

* Bis generated either or both current by external
coils or by the plasma it self

VxB=mj
/= Force density in fluid description

=r, (Zxﬁ)
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(2)

* Simple toroidal magnetic field (closed field lines)
created by a a wire is not sufficient : particles
“drift” across magnetic field due to curvature and
spatial variation (1/r) of B: the drift direction
(vertical) depends on the charge, leading to charge
separation and hence a vertical electric field E.
This E combined with the B leads to a global drift
of both charge species according to (E x B),
leading to loss of confinement
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* C Tokamak Poloidal Field Coils ic
fi
C tself
IP

Toroidal Field Coil
Plasma Current Plasma

Magnetic Field Line
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Tokamak field lines and °
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Confinement modes

1
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Fig.1 A typical LM driven H-mode discharge with Ip=0.6MA, BY =1 557,
PLHWinj =1MW. The total absorption power prior to the L-H transition Is

about 1.5 times the empirical L-H transition threshold power scaling.
HB9~1.5 or HIPB0S8 y2~0.9.
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Divertor: Where particle
and energy from the
Closed magnetiolasma are removed.

rf .
SHHACSS T Divertor plate: W
Open A high heat flux material
o magnetic
& surfaces

&

Scrape-off layer

Strike points X-point

Divertor plates Private plasma
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DIVERTOR

Heat load up
to 20 MW m

Divertor:

* 54 Divertor cassettes

« High heat flux components capable of 10MWm-2 - 0 ”
in stationary operation and 20MWm?-2 transiently W — “reflector plates

18-01-206 JUAS 28
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Stellarator

* 3D magnetic confinement created exclusively by
external magnetic coils. No plasma current: no
disruption

W7 X stellarator

18-01-206 JUAS 30



EEEEEEEEEEEEEEEEE

Heating (1)

* |n the case of a tokamak where we have a plasma
current |, what is the heating by this current?

 What is the resistivity of a plasma? In the keV
regime, it is like Cu, but it decreases as T-3/2.

* Ohmic heating, taking into account
phenomenological loss rate, cannot bring a
tokamak plasma to the 10-20 keV regime. The
temperature will be about 4 keV ( Freiberg)
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Heating (2)

» Heating by absorption RF waves or by
Injection of fast neutral particles, which
thermalize with the plasma particles

RF waves at ion cyclotron
frequency( about 50 MHz) or
_efectron cyclotron frequency (

~ -~

Highly
energetic
atoms

ff»
. g . .
Defiection accelerardnjection of fas t
neutralised Neutraliser | .
8201-206 ions Upe mewdral partciles (1
MeV)

-
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Current drive (1)

* What is current drive? The toroidal plasma I, is an
essential component of a tokamak

circuit
4" magnétique
1 du transformateur

|, is induced as

D the current in a
Tt transformer. So it
cannot be
/ ° °
sustained in

steady state
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Current drive (2)
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FIG. 1. TCV discharge 20881 of record length (4.3 s), sustained by 0.9 MW ECCD.
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Physics issues (1)

* A magnetically confined plasma contains free
energy which can be released as instabilities

 Example: Consider a tokamak as a levitated ringin
a magnetic field topology. Eanrshaw theorem
indicates that the equilibrium is not stable. One
degree of freedom is unstable: in a tokamak it is
called the Vertical Displacement Event VDE,
leading , if uncontrolled to disruption
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Physics issues (2)

Another example: The confinement of the 3.5
MeV He ions produced by the fusion reactions

These energetic ions may be lost by interaction
with waves ( Alfven waves) excited in the plasma,
before thermalizing with the D and T ions.

Heat removal in divertor
.. And many more
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Material science issues

* A very exciting field to deliver materials which

v Have the necessary thermo-mechanical
properties under irradiation

v’ Are compatible with the operation of magnetically
confined plasma

v Fulfil the promises of waste disposal

v’ But how to test the material under 14 MeV
neutrons?
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14 MeV effects

Neutrons can cause mechanical defects ( Frenkel
pairs: creation of an instertitial and vacancy)

But 14 MeV can also cause production of He and H
*Fe(n,a)>3Cr (incident n threshold at 2.9 MeV)
Fe(n, p)°°Mn (incident n threshold at 0.9 MeV
He and H can cause swelling and embrittlement



Early (Fusion) Neutron Source

* Develop the engineering design of the IFMIF-DONES (DEMO Oriented Neutron
Source) facility.

IFMIF-DONES preliminary conceptual design

2x125 mA 1x 125 mA
Beam current . )
(Li target) (Li target)
Beam energy 40 MeV 40 MeV
Neutron
. 1018 n/s 5x10Y n/s
production
40 dpa/fpy 20 dpa/fpy
. @>60cm3 @>60 cm?
Typical
Damage Rate ¥ ¥ o
20 dpa/fpy 10 dpa/fpy IFMIF-DONES Plant Configuration
@>400cm? @>400 cm? A
;; BF Pavear System :"m | s
E 1 1 l_ ump Tast Call
| e R L g
Jml"mq n:::: usnr Ll:-.n. . q":,_:;r Lithium Systems
This will be the starting point of our project Uithiurn, Systemes Ancliiaries
The design will be updated and further developed!!! g e N Ry
Y el [ Tartisry [T
00
fl.':l:llpur.":.'l'-;ﬂ:r."tlr:l' I Heat Removal System
.o EYEREM S

............................................... T
Site, Buildings & Plant Systems -

Plamt Systems [1 and N

=> Courtesy: A. lbarra and WPENS Team

Remobe Handling
Central Control Systems and Integrated Instrumentation

R. Wenninger | ICFRM 2015 |Aachen (Germany)| 11/10/2015| Page 40
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ITER objectives (1)

* ITER objectives:

1.Produce P ¢ ., = 500 (360) MW, of during 400
(3000) s with an external additional heating Py,ing
50 MW (Power gain Q =P ¢,gon /Pheating = 10)

2. Study physics of a “burning” plasma, i.e. when the
energetic 3.5 MeV He nuclei from fusion reactions
are confined and provide a dominant heating power
(100 MW compared to the 50 MW of external
heating)

44.01-206 JUAS
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ITER objectives (1)

3. Integrate in a single device the different
technologies (e.g. superconductivity SC, heating
methods and all associated power electronics) and
the physics constraints

4.Prove the safety aspects of a fusion reactor: ITER is
the first fusion reactor to be licenced as a nuclear
reactor

4201-206 JUAS
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SC Central solenoid

1 (CS)
Generates I

SC Poloidal
field (PF) coils

'ts for Heating &
rrent Drive and

iggnostics
Plasma
Current I :15 MA
SC Toroidal Major radius R= 6.2
field (TF) coils m
B=53T Plasma radius a =
2m
R/a= 3.1
Fusion power: 500
MW
e e Pulse : 400s
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ITER safety -

o Temperature of the in-vessel components. VV,
thermal shield and TF coils
300
——— ————————————
200 -f
IT EE;‘ 100 ==X,
g 0
0 B 10 16 20 25
m .’f__._.-—l-_
= 00 //
=200
300
Time, days
— BL el BV = W AV
— NV out ThSh1 out Thshl1in —TF
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Superconductors

* Coils to create the magnetic configuration of ITER
are superconducting (either Nb,Sn or NbTi)

NB;Sn condcutors

for CS ( left) and
TF (right) coils

JUAS 46
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Toroidal field coils ™%

(1ITED)

Radial plate mock-up at CNIM
| (Forged segments jointed by EB welding)

‘ — F’ rr_ \Y,

Radial plate welding mock -up at SIMIC

Powder hipped segments joined by narrow gap
TIG welding)
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Some features of ITER

* |TER will include Test Blanket Modules (TBMs),
which are mock-ups of Breeding Blanket for a
reactor

v
o

EU ACLL and HCPB TBM

18-01-206 JUAS 48
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Liquid Breeders Designs Solid Breeders Designs
Lithium-Lead concepts He-Cooled Ceramic Breeder concepts
= Helium-Cooled design (EU) = proposal to install a specific-design TBM
= Dual-Coolant (He+LiPb) design (US, India) (China, EU, India)
= Dual-Functional design, which is initially a = proposal to contribute with a specific-
HCLL evolving later to DCLL (China) design sub-module in other Parties TBM
— (Korea, Japan, RF, USA)
Molten Lithium concepts
_ _ Water-Cooled Ceramic Breeder concept
= Self-Cooled design (SCLi) (RF)
= He-Cooled design type (HCLi) (Korea) = specific-design TBM (Japan)
Chacs Aret poes Purge Pipes
TBMs ITER T
tests s, Transporter B
need a el PhE M
whole Bquatorial
TBM Test frea P
system @
R
Meas_urea.nd T
S
EQUATORIAL PORT
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components (ITER)

Plasma facing

« CFC divertor targets (~50m?):

— high thermal conductivity and good
thermal shock resistance (doesn’t melt)

— but combines chemically with hydrogen

(ie tritium)

« Be first wall (~700m?):
— good thermal conductivity
— low-Z; — low core radiation
— melting during VDEs

« W-clad divertor elements (~100m?):
— high melting point and sputtering

resistance

— but might still melt during thermal

transients
— will eventually replace CFC

18-01-206
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Drive In ITER

ITER will have 3 methods to heat and perform
non-inductive current:

Electron cyclotron wave at 170 GHz and 20 MW
power deposited to plasma

lon cyclotron wave in the frequency range of 55
MW and 20MW at plasma

Neutral beam injection at 1 MeV and about 30 A
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Reactor
Conditions
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guestion (courtesy of 10)

* Electrical power consumption to answer the
guestion: Steady state:120 MW continuous power
consumption, 180 MVA connected loads (mainly
motors), During plasma pulse: 500 MW peak pulse
consumption, 2.2 GVA connected power
converters

18-01-206 JUAS 53
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fusion

* The roadmap is NOT a single machine but rather a
programme:

1. Build and exploit ITER

2. A programme on material based on an Early
Neutron Source /IFMIF

3. Preparation of DEMO to be operational by 2050
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From Chinese Road
map:

¥ DEMO: 2030

| FPP: 2050

The Roadmap

J

0022 DEMO

Preconceptual
design
500 MW

Present

experiments +
JET 15 MW,
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dedicated n source?

* The fusion reactions produces neutron with a well
defined energy of 14 MeV and hence to test
material one needs a high flux and fluence source
close to this energy ( Cf. Dr. J. Knaster talk P9)

" Transmutation; Frenkel pair formation; He and H
embrittlement (°°Fe(n,a)>3Cr (incident n threshold at 2.9

MeV) and *°Fe(n, p)°°Mn (incident n threshold at 0.9 MeV)
" |nteraction of the 14 MeV with material
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Inertial fusion

 The plasma is NOT confined. Its expansion rate is
given by the ion acoustic speed ¢, = (kyT/ lon
mass)?->

Densit oupur E 1
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The prospect of inertial fusion energy derives from

scientific advancements in different arenas

Indirect Drive Laser Fusion: Fast Ignition/Shock Ignition
Central Hot Spot Ignition

Laser-induced generation Relativistic energy-depositio
of relativistic particles in ultradense plasmas

Compression of DT
fuel to hundreds g/cc

Transport of relativistic
particles in plasmas s
Ignition and

burn propagation
Alpha and burn physics |
Hydrodynamics

Relativistic particle transport Fast ignition is a |
Relativistic laser-plasma interaction multidisciplinary problem

Direct Drive Laser Fusion: Heavy lon Fusion
Central Hot Spot Ignition

Capsule

18-01-206 JUAS
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(a) Indirect drive (b) Direct drive (c) Fast Ignition
Compression
laser beams

Ablator, low-density
foam or solid

Capsule with
ablator and fuel

3

Solid or
liquid fuel

00u
Ignitor

Gas at vapour laser

pressure of
solid or
liquid fuel

Hohlraum

Laser or
ion beams

Figure 1. Illustration of ICF target concepts (a) indirect drive, (b) direct drive and (c) fast ignition.

Nucl. Fusion 49 (2009) 104022 (9pp) doi:10.1088/0029-5515/49/10/104022

Ignition on the National Ignition Facility:
a path towards inertial fusion energy

Edward 1. Moses
18-01-206 JUAS 60
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The National Ignition Facility (NIF) provides the
rtunity for ignition physics research at full scale

o o

Hohlraum
(laser target)

Laser
Beams
(enter
through
laser
entrance
hole
(LEH)

Ablator heats up

Ti;1e (ns)

» conservation of momentum: ~ 4
ablated shell expands outward, - -
rest of shell (frozen DT) is > -4

forced inward

Rocket effect Ignition Burn wave
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On NIF we use a hohlraum driven
implosion to generate the pR & T needed for ignition

OV/2-1 Lindl

High Z
hohiraum '\ Cryogenic
T
« ~1MJ laser energy Bo.gy:,;c
'y
* ~3 milllion degree X-ray bath
* ~100 million atmosphere pr—
ablative rocket drive
« Accelerates shell to ~350 km/s
~2 mm
Compresses & heats ~10 mm
core, PdV
v Low Z
/' ablator
(CH or Be)
DT
Thot ,M~10 keV
PRotai~2 glem?

PR}t spot~0-3 glcm?

— 2
p~1000 g/cm 0 ~ 100 glem?

1s-dumioki Mima  13th IAEA-FEC 20105 Daejeon, Korea, Oct.16,2010 ‘
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B(/IN | SWISS PLASMA
~ NIF Iaser ampllflers

One of two laser bays &
- looking toward the

L - -

4 NIF recently delivered 1.3 MJ of
3w light to the target chamber in

an ignition pulse meeting ignition
power balance requirements

\\\

. :
‘ — .;-’ -
& =B »4).‘_41

2010.9.28. Integrate cryogenlc a

target shot with all set of -
diagnostics

. | o SR w
Kunioki Mima [ 13th IAEA-FEC 201@2 I)ae]enn Kﬂrea, Oct. 16 010
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“NIF'Fusion Target

Matter

Temperature >108K
Radiation

Temperature >3.5x10°K
Densities >103 g/cm3

s Pressures >1011 atm =



18-01-206

SWISS PLASMA
CENTER

(W

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

u,‘,'5AL|u,25 wall lined

3-
’; with 0.5 micron Au
T &
2% 1.3 mg/cc He gasfill \
T 35 micron thick l
; CH lip liner — | |
EE- 3 ; Graded-doped P L
— Be capsule |
= <‘/ i 0.5 micron thick :
: plastic window " |
0- | : TP TIOWY FAT T P, |
0 1 2 3 4 5
Z (mm)

Figure 2. Diagram of 1/4 of the 300eV hohlraum. Capsule radius
is 1 mm, hohlraum half length is 4.6 mm and hohlraum radius is
2.55 mm. Inner cone beams enter at angles of 23.5° and 30° from
axis with laser spots of 590 x 824 um? (semi minor and major axes
of ellipse). Outer cone beams come in at 44.5% and 50° with spots of
343 x 593 pm? (semi minor and major axes of ellipse).

Mucl. Fusiom 49 (2008, 104 (Bpp) choiz TOLTOEEAMNZD-55 1 50400 00 104004

Summary of inertial fusion sessions

Kazuo A, Tanaka

Graduate School of Engineering/Institute of Laser Engineering, Osaka University, Suita,
Osaka 565-0871, Japan JUAS 66
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Inside qof the NIF ehamber: NIF is taking adyantage of decades
of ICF research to field a sophisticated array of diagnostics -
30+ systems currently collecting more than 300 channels of

Optical, X-ray, and ind Nuclger data = e "3

Kimioki Mima

'3
" Optics Inspection Camers

o — —

Streaked X-ray Detector - \ P

with pinhole snout "

-

-

Target Positioner

- _
Static X-ray
Imager

Near Backscatter
Imager Scatter
Plate

13th TIAEA-FEC 2010; Daejeon, Korea, Oct.16,2010
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Conclusion

“The fusion challenge is much bigger

22" World Energy Congress, than Apollo ... It’s like a mission to Mars
Daegu 2013 or jumping from the Wright brothers
Capturing the Moments airplane to the jet engine.” It is generally

agreed that the middle of this century is
a realistic timeline for commercial scale
fusion energy, though some it can
happen faster.

- Nebojsa Nakicenovic, Deputv Director
& Deputy CEO of IIASA
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Thank you for your attention
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