Everything you always wanted to know about fusion reactors, but were afraid to ask

Minh Quang Tran Swiss Plasma Center Ecole Polytechnique Fédérale de Lausanne-Switzerland

- **Everything You Always Wanted to Know About Sex * But Were Afraid to Ask [\(1972](http://www.imdb.com/year/1972/?ref_=tt_ov_inf))**
- **Director: Woody Allen**

Plan

- Introduction: The energy issue
- The Physics basis: reactions and fuels
- Why fusion is considered as a "disruptive energy"?
- Some (not all) issues
- ITER
- Technology Road map towards a fusion reactor
- Inertial confinement
- Q&A: Everything you always wanted to know about fusion reactors, **but dare to ask**

Introduction: The energy problem

- The constraints:
- 1. Increase of world population and therefore energy needs: 7.3 billions in 2015 to 8.9 billions by 2050, remaining stable beyond (UN study), coupled with a today inequality in energy access (inverse champagne glass)
- 2. Change in energy mix requirement: stronger reliance on electricity for an increasing urban population
- 3. Necessity to have "sustainable" energy "*Development that meets the needs of the present without compromising the ability of future generations to meet their own needs" (Brundtland report)*
- o Environment aspects: global warming
- o Safety: accidents should not impose population evacuation
- o Legacy towards next generations: depletion of fossil fuels; waste repository on a "human" (not geological) time scale

Electricity consumption/ capita

• World bank data

(http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC/countries/all?display= graph)

- World 3064 kWh/capita
- EU: 6144 kW/h/ capita; Germany: 7270 kWh/capita ; Switzerland: 7343 kWh/capita
- China: 3810 kWh/capita; India: 744 kWh/capita
- Vietnam: 1273 kWh/capita, Haiti: 50 kWh/capita \rightarrow = 0.007 of Germany

Fusion reactions

Fusion cross section

 $1 \text{ keV} \rightarrow T = 10$ millions degrees through the relation $k_{B}T = E$

Lawson criterion (1)

NISS PLASMA

CENTER

ÉCOLE POLYTECHNIQUE
Fédérale de Lausanne

Derivation of Lawson criterion

$$
P_{fusion} = n_p n_r \langle \sigma v \rangle \epsilon_{fusion}
$$
\n
$$
= \frac{n}{4} \langle \sigma v \rangle \epsilon_{fusion}
$$
\n
$$
= \frac{n}{4} \langle \sigma v \rangle \epsilon_{fusion}
$$
\n
$$
= \frac{n}{4} \langle \sigma v \rangle \epsilon_{fusion}
$$
\n
$$
= \frac{3}{\pi k_g T} V
$$
\n
$$
P_{L} = \frac{W}{\sigma_E} = P_{Hedry}
$$
\n
$$
= \frac{3}{\pi k_g T} V
$$

Derivation of Lawson criterion

Lawson criteria

\n
$$
P_{ext. healthy} = \left[\frac{3\pi T k_0}{\alpha_E} - \frac{4}{4} n^2 \cos \theta \right] V
$$
\n
$$
n \alpha_E > \frac{12}{\langle \sigma v \rangle} \frac{k_0 T}{\epsilon_g}
$$
\n
$$
n \alpha_E > \frac{12}{\langle \sigma v \rangle} \frac{k_0 T}{\epsilon_g}
$$
\n
$$
m \alpha_E > \frac{12}{\langle \sigma v \rangle} \frac{k_0 T}{\epsilon_g}
$$
\n
$$
m \alpha_E = \frac{12}{\sqrt{12}} \frac{k_0 T}{\sqrt{12}} \frac{12}{\sqrt{12}} \frac{k_0 T}{\sqrt{12}} \frac{k_0 V}{\sqrt{12}} = \frac{k_0 V}{\sqrt{12}}
$$

Lawson criterion (2)

- Q definition= Fusion power/ External Heating power
- But the fusion reactions provide energetic He ions (3.5 MeV) which can thermalize with the D and T ions (10-20 keV): He ions is a source of heating
- $Q \rightarrow$ infinity (ignition) if External Heating power is null: all needed heating is provided by He ions
- For a reactor, ignition is not required $Q = 30-40$

The challenge of fusion

- Density n^* Temperature T^{*}Energy confinement time $\tau_F > 5^*$ 10^{21} m⁻³keV s
- The challenge:
- 1. To create a plasma with n about 10^{20} m⁻³ and T about 10⁸K, i.e. 10 keV
- 2. To confine its energy during τ_F of a few seconds
- There are many time scale: Particle confinement
- time $\tau_{\sf p}$, Plasma duration, Energy confinement time

SWISS PLASMA

CENTER

ÉCOLE POLYTECHNIQUE
Fédérale de Lausanne

Fuel issues

Fusion : a "disruptive" energy

-
-

Market penetration

• Economics studies confirm the possibility for fusion to penetrate the market

State of matter at T> 10^5 K, about 10 eV

- Binding energy e-ion: about 10 eV
- At fusion temperature, the state of matter is plasma, i.e. a "gas" formed by electrons and ions , globally neutral and dominated by "collective" effect
- Debye shielding: a charge is surrounded by a cloud of opposite charges which "shield" its Coulombian potential V_c. Beyond a few Debye lengths $\lambda_{\rm D}$, V_c is no longer felt. $\lambda_{\sf D} = (\varepsilon_0 {\sf k}_{\sf B} {\sf T} / {\sf n}_0 {\sf e}^2)^{1/2}$

Confinement

- Due to the Debye screening, electrostatic confinement is not possible: electric field is shielded after a few Debye length
- Two possibilities:
- No confinement **Inertial confinement** and realisation of the triple product through very high density n (very short $\tau_{\text{\tiny E}}$ and $\tau_{\text{\tiny P}}$)
- \rightarrow By magnetic field \rightarrow Magnetic confinement

Magnetic confinement (1)

- Through the Lorentz force $F_{\text{lorentz}} = q(\underline{v} \times \underline{B})$
- B is generated either or both current by external coils or by the plasma it self

 $\underline{\nabla} \times \underline{B} = m_o \underline{j}$ f = Force density in fluid description $=\int_{el}$ $(j \times B)$

Magnetic confinement (2)

• Simple toroidal magnetic field (closed field lines) created by a a wire is not sufficient : particles "drift" across magnetic field due to curvature and spatial variation $(1/r)$ of \underline{B} : the drift direction (vertical) depends on the charge, leading to charge separation and hence a vertical electric field E. This E combined with the B leads to a global drift of both charge species according to (E x B), leading to loss of confinement

T3 (USSR)

1968: 1 keV confirmed by a team of scientists from UKAEA (cold war). It opens the era of tokamak

Confinement modes

$H \rightarrow L$ mode transition

H89-1.5 or HIPB98,y2~0.9.

Divertor

Divertor (ITER)

Heat load up to 20 MW m-2

Divertor:

- 54 Divertor cassettes
- High heat flux components capable of 10MWm⁻² in stationary operation and 20MWm⁻² transiently

Divertor (ITER)

• 3D magnetic confinement created exclusively by external magnetic coils. No plasma current: no disruption

W7 X stellarator

Heating (1)

- In the case of a tokamak where we have a plasma current I_{p} , what is the heating by this current?
- What is the resistivity of a plasma? In the keV regime, it is like Cu, but it decreases as T^{-3/2}.
- Ohmic heating, taking into account phenomenological loss rate, cannot bring a tokamak plasma to the 10-20 keV regime. The temperature will be about 4 keV (Freiberg)

• Heating by absorption RF waves or by injection of fast neutral particles, which thermalize with the plasma particles

3201-206

Current drive (1)

• What is current drive? The toroidal plasma I_p is an essential component of a tokamak

 I_p is induced as the current in a transformer. So it cannot be sustained in steady state

Current drive (2)

 $18-01-2$

Physics issues (1)

- A magnetically confined plasma contains free energy which can be released as instabilities
- Example: Consider a tokamak as a levitated ringin a magnetic field topology. Eanrshaw theorem indicates that the equilibrium is not stable. One degree of freedom is unstable: in a tokamak it is called the Vertical Displacement Event VDE, leading , if uncontrolled to disruption

Physics issues (2)

- Another example: The confinement of the 3.5 MeV He ions produced by the fusion reactions
- These energetic ions may be lost by interaction with waves (Alfven waves) excited in the plasma, before thermalizing with the D and T ions.
- Heat removal in divertor
- And many more

Material science issues

-
- A very exciting field to deliver materials which
- \checkmark Have the necessary thermo-mechanical properties under irradiation
- \checkmark Are compatible with the operation of magnetically confined plasma
- \checkmark Fulfil the promises of waste disposal
- \checkmark But how to test the material under 14 MeV neutrons?

SWISS PLASMA

INIQUE
Isanne

CEN

14 MeV effects

- Neutrons can cause mechanical defects (Frenkel pairs: creation of an instertitial and vacancy)
- But 14 MeV can also cause production of He and H
- ⁵⁶Fe(n,α) ⁵³Cr (incident n threshold at **2.9 MeV**)
- ⁵⁶Fe(n, p)⁵⁶Mn (incident n threshold at 0.9 MeV
- He and H can cause swelling and embrittlement

• Develop the engineering design of the IFMIF-DONES (DEMO Oriented Neutron Source) facility.

R. Wenninger | ICFRM 2015 |Aachen (Germany)| 11/10/2015| **Page 40**

IFMIF

ITER objectives (1)

- **ITER objectives:**
- 1. Produce P $_{\text{fusion}}$ = 500 (360) MW $_{\text{th}}$ of during 400 (3000) s with an external additional heating $P_{heating}$ 50 MW (Power gain $Q = P_{fusion} / P_{heating} = 10$)
- 2.Study physics of a "burning" plasma, i.e. when the energetic 3.5 MeV He nuclei from fusion reactions are confined and provide a dominant heating power (100 MW compared to the 50 MW of external heating)

ITER objectives (1)

- 3. Integrate in a single device the different technologies (e.g. superconductivity SC, heating methods and all associated power electronics) and the physics constraints
- 4.Prove the safety aspects of a fusion reactor: ITER is the first fusion reactor to be licenced as a nuclear reactor

Extrapolation for ITER

18-01-206 JUAS

The ITER tokamak

SWISS PLASMA CENTER ÉCOLE POLYTECHNIQUE
Fédérale de Lausanne

ITER safety

• Coils to create the magnetic configuration of ITER are superconducting (either Nb₃Sn or NbTi)

NB₃Sn condcutors for CS (left) and TF (right) coils

Toroidal field coils

Radial plate welding mock-up at SIMIC Powder hipped segments joined by narrow gap TIG welding)

Some features of ITER

• ITER will include Test Blanket Modules (TBMs), which are mock-ups of Breeding Blanket for a reactor

TBM

Liquid Breeders Designs Solid Breeders Designs

SWISS PLASMA CENTER ÉCOLE POLYTECHNIQUE
Fédérale de Lausanne

Lithium-Lead concepts

- Helium-Cooled design (*EU)*
- Dual-Coolant (He+LiPb) design (*US, India)*
- Dual-Functional design, which is initially a HCLL evolving later to DCLL (*China)*

Molten Lithium concepts

- Self-Cooled design (SCLi) (*RF)*
- He-Cooled design type (HCLi) (*Korea)*

He-Cooled Ceramic Breeder concepts

- proposal to install a specific-design TBM (*China, EU, India)*
- proposal to contribute with a specificdesign sub-module in other Parties TBM (*Korea, Japan, RF, USA)*

Water-Cooled Ceramic Breeder concept

specific-design TBM (*Japan)*

Plasma facing components (ITER)

• **CFC divertor targets (~50m 2):**

- − high thermal conductivity and good thermal shock resistance (doesn 't melt)
- − but combines chemically with hydrogen (ie tritium)

• **Be first wall (~700m 2):**

- − good thermal conductivity
- $-$ low-Z_i low core radiation
- − melting during VDEs

• **W -clad divertor elements (~100m 2):**

- − high melting point and sputtering resistance
- but might still melt during thermal transients
- − will eventually replace CFC

Heating and Current Drive in ITER

- ITER will have 3 methods to heat and perform non-inductive current:
- Electron cyclotron wave at 170 GHz and 20 MW power deposited to plasma
- Ion cyclotron wave in the frequency range of 55 MW and 20MW at plasma
- Neutral beam injection at 1 MeV and about 30 A

Where are we?

Another way to ask the question (courtesy of IO)

• Electrical power consumption to answer the question: Steady state:120 MW continuous power consumption, 180 MVA connected loads (mainly motors), During plasma pulse: 500 MW peak pulse consumption, 2.2 GVA connected power converters

The roadmap towards fusion

- The roadmap is NOT a single machine but rather a programme:
- 1. Build and exploit ITER
- 2. A programme on material based on an Early Neutron Source /IFMIF
- 3. Preparation of DEMO to be operational by 2050

Why do we need a dedicated n source?

- The fusion reactions produces neutron with a well defined energy of 14 MeV and hence to test material one needs a high flux and fluence source close to this energy (Cf. Dr. J. Knaster talk P9)
- Transmutation; Frenkel pair formation; He and H embrittlement $(56Fe(n,\alpha)$ ⁵³Cr (incident n threshold at 2.9 MeV) and $56Fe(n, p)$ ⁵⁶Mn (incident n threshold at 0.9 MeV)
- **Interaction of the 14 MeV with material**

Inertial fusion

• The plasma is NOT confined. Its expansion rate is given by the ion acoustic speed $c_s = (k_B T / 10n)$ $mass)^{0.5}$

EM wave interaction with plasma

SWISS PLASMA

CENTER

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

The prospect of inertial fusion energy derives from scientific advancements in different arenas

How ICF could be achieved

Figure 1. Illustration of ICF target concepts (*a*) indirect drive, (*b*) direct drive and (*c*) fast ignition.

Nucl. Fusion 49 (2009) 104022 (9pp)

doi:10.1088/0029-5515/49/10/104022

Ignition on the National Ignition Facility: a path towards inertial fusion energy

Edward I. Moses 18-01-206 **September 18-18-206** 50 JUAS 60

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94450 USA

The National Ignition Facility (NIF) provides the opportunity for ignition physics research at full scale

On NIF we use a hohiraum driven implosion to generate the ρ R & T needed for ignition

NIF Laser System

30

- 192 Beams
- Frequency
tripled Nd glass

8000

- 1.8 MJ - Energy 500 TW - Power
- Wavelength 351 nm

TEPH SWISS PLASMA

NIF laser amplifiers

One of two laser bays - looking toward the switchyard and target chamber

> NIF recently delivered 1.3 MJ of 3⁰ light to the target chamber in an ignition pulse meeting ignition power balance requirements

2010.9.28. Integrate cryogenic target shot with all set of diagnostics

Kunioki Mima | 13th IAEA-FEC 2010; Daejeon, Korea, Oct.16,2010 | 164

NIF Fusion Target

Matter $>10^8 K$ **Temperature Radiation** $>3.5 \times 10^6$ K **Temperature** $>10^3$ g/cm³ **Densities** $18-01-206$ $10A$ S $10A$ S $10A$ S 10 10 10 10 11 10 11 10 11 10

The hohlraum

Figure 2. Diagram of $1/4$ of the 300 eV hohlraum. Capsule radius is 1 mm, hohlraum half length is 4.6 mm and hohlraum radius is 2.55 mm. Inner cone beams enter at angles of 23.5° and 30° from axis with laser spots of 590 \times 824 μ m² (semi minor and major axes of ellipse). Outer cone beams come in at 44.5° and 50° with spots of $343 \times 593 \mu m^2$ (semi minor and major axes of ellipse).

Nucl. Fusion 49 (2009) 104004 (8pp)

doi:10.1088/0029-5515/49/10/104004

Summary of inertial fusion sessions

Kazuo A. Tanaka

18-01-206 Osaka 565-0871, Japan 66

E-mail: katanaka@eei.eng.osaka-u.ac.jp

Target Chamber Interior

18-0Kunioki Mima $13th$ $14E$ A-FEC $2010s$; Daejeon, Korea, Oct.16,2010 68

Conclusion

22nd World Energy Congress, **Daegu 2013**

Capturing the Moments

20 November 2013

"The fusion challenge is much bigger than Apollo … It's like a mission to Mars or jumping from the Wright brothers airplane to the jet engine." It is generally agreed that the middle of this century is a realistic timeline for commercial scale fusion energy, though some it can happen faster.

- Nebojsa Nakicenovic, Deputy Director

& Deputy CEO of IIASA

Thank you for your attention