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Be ware of my plagiarism

• Everything You Always Wanted to Know About 
Sex * But Were Afraid to Ask (1972)

• Director: Woody Allen 
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• Introduction: The energy issue

• The Physics basis: reactions and fuels

• Why fusion is considered as a “disruptive energy”?

• Some  (not all)  issues
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• Technology Road map towards a fusion reactor

• Inertial confinement

• Q&A: Everything you always wanted to know about fusion reactors, 
but dare to ask
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Introduction: The 

energy problem
• The constraints:

1. Increase of world population and therefore energy needs: 7.3 billions in 

2015 to 8.9 billions by 2050, remaining stable beyond  (UN study), coupled 

with a today inequality in energy access (inverse champagne glass)

2. Change in energy mix requirement: stronger reliance on electricity for an 

increasing urban population 

3. Necessity to have “sustainable” energy “Development that meets the 

needs of the present without compromising the ability of future 

generations to meet their own needs” ( Brundtland report)

o Environment aspects: global warming

o Safety: accidents should not impose population evacuation

o Legacy towards next generations: depletion of fossil fuels; waste 

repository on a “human” (not geological) time scale
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Electricity 
consumption/ capita

• World bank data 
(http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC/countries/all?display=

graph)

• World 3064 kWh/capita

• EU: 6144 kW/h/ capita; Germany: 7270 
kWh/capita ; Switzerland: 7343 kWh/capita

• China: 3810 kWh/capita; India: 744 kWh/capita

• Vietnam: 1273 kWh/capita, Haiti: 50 
kWh/capita = 0.007 of Germany
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Fusion reactions

6

• Fusion reactions:
“Easiest” to achieve reaction:

D + T He ( 3.5 MeV) + neutron 
(14.1 MeV)

Other reactions

D + D  He3 ( 0.82 MeV) + neutron 
(2.45 MeV

D + D  T (1.0MeV) + H ( 3.0MeV)

D + He3
 He4 (3.76 MeV) +p (14.7MeV)

Energy release E = Dm * c2

2-3 
n

Fission 

products

U

*“Fusion will bring a disruption in the way we view
energy” ( Newsletter of WEC, Daegu 2013)18-01-206 JUAS



Fusion cross section

7

1 keV  T = 10 
millions degrees 
through the 
relation 
kBT = E
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Lawson criterion (1)

• Fusion power release  > Power loss

• Ions have a Maxwellian distribution f(E) 
characterized by a temperature T

• Calculation of the fusion reactivity <sv> , which is 
average over the distribution function

• Triple product  Density n* Temperature T*Energy 
confinement time tE >  5* 1021 m-3keV s
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Derivation of Lawson 
criterion
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Derivation of Lawson 
criterion
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Lawson criterion (2)

• Q definition= Fusion power/ External Heating 
power

• But the fusion reactions provide energetic He ions 
(3.5 MeV) which can thermalize with the D and T  
ions (10-20 keV): He ions is a source of heating

• Q infinity (ignition) if External Heating power is 
null: all needed heating is provided by He ions

• For a reactor, ignition is not required Q = 30-40

18-01-206 JUAS 11



The challenge of 

fusion

12

Density n* Temperature T*Energy confinement time tE >  5* 

1021 m-3keV s

The challenge:

1.To create a plasma with n  about 10 20 m-3 and T  about 

108K, i.e. 10 keV

2.To confine its energy during tE of a few seconds

There are many time scale: Particle confinement

time tP, Plasma duration, Energy confinement time 
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Fuel issues

• D: abundant as natural isotope of H ( 1/7000)

• T: Short life ( 12.3 years) radioactive ( b decay at 
about 5.7 keV)

• Needs to “ breed” tritium using the neutron from 
the fusion reaction D+ T  n + He

6Li + n T + 4He + 4.8 MeV (exothermic)
7Li + n T + 3He + n – 2.5 MeV (endothermic)

• Importance for the “Breeding Blanket” in a reactor
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Fusion : a 

“disruptive” energy

• Why a “disruptive” energy?

Li  is abundant in the crust and in the sea water 

( WEC 2013)

2) No chain reactions; no severe accidents: fuel 

inside the reactor sufficient only for a few 

minutes (no “Tchernobyl” type accident); 

3) Environmental friendly
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Fusion : a 

“disruptive” energy 

4. Development of low activation materials ( Cf. 

Talk by A Moeslang  and A. Kimura) no 

need of geological repository

5. This contributes as well to the safety aspect 

by reducing the “after heat
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Waste disposal

• Need of having reduced activation material

• What can we achieve with RAM?
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Market penetration

• Economics studies confirm the possibility for 

fusion to penetrate the market
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State of matter at T> 
105K , about 10 eV

• Binding energy e-ion: about 10 eV

• At fusion temperature, the state of matter is 
plasma, i.e. a “gas” formed by electrons and ions , 
globally neutral and dominated by “collective”
effect

• Debye shielding: a charge is surrounded by a cloud 
of opposite charges which “shield” its Coulombian 
potential Vc. Beyond a few Debye lengths lD, Vc is 
no longer felt. lD = (e0kBT/n0e2)1/2
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Confinement

• Due to the Debye screening, electrostatic 
confinement is not possible: electric field is 
shielded after a few Debye length

• Two possibilities: 

No confinement Inertial confinement  and 
realisation of the triple product through very high 
density n ( very short tE and tP )

By magnetic field Magnetic confinement
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Magnetic confinement 
(1)

• Through the Lorentz force Florentz = q(v x B )

• B is generated either or both current by external 
coils or by the plasma it self
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Ñ´B = mo j

f  = Force density in fluid description

    =rel  j ´B( )



Magnetic confinement 
(2)

• Simple toroidal magnetic field (closed field lines) 
created by a a wire is not sufficient : particles 
“drift” across magnetic field due to curvature and 
spatial variation (1/r) of B: the drift direction 
(vertical) depends on the charge, leading to charge 
separation and hence a vertical electric field E. 
This E combined with the B leads to a global drift 
of both charge species  according to (E x B), 
leading to loss of confinement
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Tokamak

• Confinement is provided by a toroidal magnetic 
field BT provided by external toroidal coils( TF 
coils) and by a current carried by the plasma itself 
IP.
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Tokamak field lines and 
aspect ratio
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T3 (USSR) 
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1968: 1 keV confirmed by 
a team of scientists from 
UKAEA ( cold war). It 
opens the era of tokamak



Confinement modes
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H mode: High 
energy 
confinement mode



H L mode transition
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Divertor
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Divertor: Where particle 
and energy from the 
plasma are removed.
Divertor plate: W 
A high heat flux material



Divertor:

• 54 Divertor cassettes

• High heat flux components capable of 10MWm-2

in stationary operation and 20MWm-2 transiently

C
F

C

W – “reflector plates”

DIVERTOR

Divertor (ITER) 

Heat load up 
to 20 MW m-2
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Divertor:

• 54 Divertor cassettes

• High heat flux components capable of 10MWm-2

in stationary operation and 20MWm-2 transiently

C
F

C

W – “reflector plates”

Divertor (ITER) 
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Stellarator

• 3D magnetic confinement created exclusively by 
external magnetic coils. No plasma current: no 
disruption
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W7 X stellarator



Heating (1)

• In the case of a tokamak where we have a plasma 
current IP, what is the heating  by this current?

• What is the resistivity of a plasma?  In the keV 
regime, it is like Cu, but it decreases as T-3/2.

• Ohmic heating , taking into account 
phenomenological loss rate, cannot bring a 
tokamak plasma to the 10-20 keV regime. The 
temperature will be about 4 keV ( Freiberg)
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Heating (2) 

• Heating by absorption RF waves or by 

injection of fast neutral particles, which 

thermalize with the plasma particles 

32

 

RF waves at ion cyclotron 

frequency( about 50 MHz) or 

electron cyclotron frequency ( 

about 150-200 GHz)

Injection of fas t 

neutral partciles (1 

MeV)
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Current drive (1)

• What is current drive? The toroidal plasma IP is an 
essential component of a tokamak
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IP is induced as 
the current in a 
transformer. So it 
cannot be 
sustained in 
steady state



Current drive (2)

• Non inductive current drive can be achieved by 
injection of particle momentum ( neutral beam) or 
by preferentially injecting EM waves   using 
Doppler shifted resonance e.g.  For electron 
cyclotron wave: w = Wce +/- k//v// or by 
manipulating the pressure 

• Example of full non inductive current drive  in a 
medium size tokamak
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Physics issues (1)

• A magnetically confined plasma  contains free 
energy which can be released as instabilities

• Example: Consider  a tokamak as a levitated ringin 
a magnetic field topology. Eanrshaw theorem 
indicates that the equilibrium is not stable. One 
degree of freedom is unstable: in a tokamak it is 
called the Vertical Displacement Event VDE, 
leading , if uncontrolled to disruption 
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Physics issues (2)

• Another example: The confinement of the 3.5 
MeV He ions produced by the fusion reactions

• These energetic ions may be lost by interaction 
with waves ( Alfven waves) excited  in the plasma, 
before thermalizing with the D and T ions.

• Heat removal in divertor

• …. And many more
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Material science issues

• A very exciting field to deliver materials which

 Have the necessary  thermo-mechanical 
properties under irradiation

Are compatible with the operation of magnetically 
confined plasma

Fulfil the promises of  waste disposal

But how to test the material under 14 MeV 
neutrons?
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14 MeV effects

• Neutrons can cause mechanical defects ( Frenkel 
pairs: creation of an instertitial and vacancy)

• But 14 MeV can also cause production of He and H

• 56Fe(n,α)53Cr (incident n threshold at 2.9 MeV)

• 56Fe(n, p)56Mn (incident n threshold at 0.9 MeV

• He and H can cause swelling  and embrittlement
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R. Wenninger | ICFRM 2015 |Aachen (Germany)| 11/10/2015| Page 40

Early (Fusion) Neutron Source

• Develop the engineering design of the IFMIF-DONES (DEMO Oriented Neutron 
Source) facility.

This will be the starting point of our project
The design will be updated and further developed!!!

IFMIF-DONES preliminary conceptual design

IFMIF-DONES Plant Configuration

=> Courtesy:  A. Ibarra and WPENS Team

IFMIF IFMIF-DONES

Beam current
2 x 125 mA

(Li target)

1 x 125 mA

(Li target)

Beam energy 40 MeV 40 MeV

Neutron 

production
1018 n/s 5 x 1017 n/s

Typical 

Damage Rate

40 dpa/fpy 

@>60cm³

+

20 dpa/fpy 

@>400cm³

20 dpa/fpy 

@>60 cm³

+

10 dpa/fpy        

@>400 cm³



ITER objectives (1)

• ITER objectives:

1.Produce P fusion = 500 (360) MWth of during 400 

(3000) s  with an external additional heating Pheating

50 MW (Power gain Q =P fusion /Pheating = 10)

2.Study physics of a “burning” plasma, i.e. when the 

energetic 3.5 MeV He nuclei from fusion reactions 

are confined and provide a dominant heating power 

(100 MW compared to the 50 MW of external 

heating)
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ITER objectives (1)

3. Integrate in a single device the different 

technologies (e.g. superconductivity SC, heating 

methods and all associated power electronics) and 

the physics constraints

4.Prove the safety aspects of a fusion reactor: ITER is 

the first fusion reactor to be licenced as a nuclear 

reactor 
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Extrapolation for 

ITER

43



The ITER tokamak
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Plasma

Current IP :15 MA

Major radius R= 6.2 

m

Plasma radius a = 

2m

R/a= 3.1

Fusion power: 500 

MW

Pulse : 400s

SC Poloidal 

field (PF) coils

SC Toroidal 

field (TF) coils

BT= 5.3 T

SC Central solenoid 

(CS)

Generates IP

Ports for Heating & 

Current Drive and 

DiagnosticsR
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ITER safety

• After the Fukishima accident, ITER also went 
through the so called “stress test” as any other 
nuclear reactor

ITER was licenced as “réacteur nucléaire de base”
according to the French  nuclear legislation 
in2012, becoming the first fusion reactor to be 
licenced
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Superconductors

• Coils to create the magnetic configuration of ITER 
are superconducting (either Nb3Sn or NbTi) 
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NB3Sn condcutors 
for CS ( left) and 
TF  (right) coils



Toroidal field coils 

(ITER)
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Some features of ITER

• ITER will include Test Blanket Modules (TBMs), 
which are mock-ups of Breeding Blanket for a 
reactor
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EU HCLL and HCPB TBM



TBM

18-01-206 JUAS

He-Cooled Ceramic Breeder concepts

 proposal to install a specific-design TBM

(China, EU, India)

 proposal to contribute with a specific-

design sub-module in other Parties TBM

(Korea, Japan, RF, USA)

Lithium-Lead concepts

 Helium-Cooled design (EU)

 Dual-Coolant (He+LiPb) design (US, India)

 Dual-Functional design, which is initially a

HCLL evolving later to DCLL (China)

Water-Cooled Ceramic Breeder concept

 specific-design TBM (Japan)

Molten Lithium concepts

 Self-Cooled design (SCLi) (RF)

 He-Cooled design type (HCLi) (Korea)

Solid Breeders DesignsLiquid Breeders Designs

TBM

TBMs 

tests 

need a 

whole 

TBM 

system

T

B

M

P

O

R

T

S
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Plasma facing 
components (ITER)

• CFC divertor targets (~50m2):

− high thermal conductivity and good 

thermal shock resistance (doesn’t melt)

− but combines chemically with hydrogen 

(ie tritium)

• Be first wall (~700m2):

− good thermal conductivity

− low-Zi – low core radiation

− melting during VDEs

• W-clad divertor elements (~100m2):

− high melting point and sputtering 

resistance

− but might still melt during thermal 

transients

− will eventually replace CFC
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Heating and Current 
Drive in ITER

• ITER will have 3 methods to heat and perform 
non-inductive current:

• Electron cyclotron wave at 170 GHz and 20 MW 
power deposited to plasma

• Ion cyclotron wave in the frequency range of 55 
MW and 20MW at plasma

• Neutral beam injection at 1 MeV and about 30 A
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Where are we?

• How far are we from the goal, regarding nTtE?
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Another way to ask the  
question (courtesy of IO)

• Electrical power consumption to answer the
question: Steady state:120 MW continuous power
consumption, 180 MVA connected loads (mainly
motors), During plasma pulse: 500 MW peak pulse
consumption, 2.2 GVA connected power
converters
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The roadmap towards 
fusion

• The roadmap is NOT a single machine but rather a 
programme:

1. Build and exploit ITER

2. A programme on material based on an Early 
Neutron Source /IFMIF

3. Preparation of DEMO to be operational by 2050
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The Roadmap

Present 

experiments +
JET 15 MWth

ITER
In construction

500 MWth

DEMO
Preconceptual

design

500 MWe

Fusion

Power Plant
1.5 GWe

Man

From Chinese Road 

map:

DEMO: 2030

FPP: 2050 

Man

JET

ENS/IFM
IF
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Why do we need a 
dedicated n source?

• The fusion reactions produces neutron with a well 
defined energy of 14 MeV and hence to test 
material one needs a high flux and fluence source  
close to this energy ( Cf. Dr. J. Knaster talk P9)

 Transmutation; Frenkel pair formation; He and H 
embrittlement (56Fe(n,α)53Cr (incident n threshold at 2.9 

MeV) and 56Fe(n, p)56Mn (incident n threshold at 0.9 MeV)

 Interaction of the 14 MeV with material
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Inertial fusion

• The plasma is NOT confined. Its expansion rate is 
given by the ion acoustic speed cs = (kBT/ Ion 
mass)0.5
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EM wave interaction 
with plasma
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zoneInteraction zone
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The prospect of inertial fusion energy derives from 

scientific advancements in different arenas 

Fast Ignition/Shock Ignition 

 

Indirect Drive Laser Fusion: 

Central Hot Spot Ignition 

Direct Drive Laser Fusion: 

Central Hot Spot Ignition 

Heavy Ion Fusion 
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How ICF could be 
achieved
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The National Ignition Facility (NIF) provides the 

opportunity for ignition physics research at full scale 

° 
° ° 

° 

Laser 
Beams 
(enter 

through 
laser 

entrance 
hole 
(LEH) 

Hohlraum  
(laser target) 

 Coupling: laser energy couples to   
                 hohlraum and converts to x-rays 

  Drive:  x-rays bathe capsule, 
    heating it up -- it expands 

•   conservation of momentum:  
   ablated shell expands outward,  
   rest of shell (frozen DT) is  

   forced inward 

  Fusion initiates in a central hot spot  
  and a burn front propagates outward 

DT
Fuel Tr  

(eV) 

Symmetry: radiation compresses capsule      
                    and it implodes 

Time (ns) 
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NIF laser amplifiers

6418-01-206 JUAS



6518-01-206 JUAS



The hohlraum
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Conclusion

69

“The fusion challenge is much bigger
than Apollo … It’s like a mission to Mars
or jumping from the Wright brothers
airplane to the jet engine.” It is generally
agreed that the middle of this century is
a realistic timeline for commercial scale
fusion energy, though some it can
happen faster.
- Nebojsa Nakicenovic, Deputy Director
& Deputy CEO of IIASA
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Thank you for your attention


