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Contents of the 1st lecture
n  Accelerator performance parameters and non-linear effects
n  Linear and non-linear oscillators

q  Integral and frequency of motion
q  The pendulum
q  Damped harmonic oscillator

n  Phase space dynamics
q  Fixed point analysis

n  Non-autonomous systems
q  Driven (damped) harmonic oscillator, resonance conditions

n  Linear equations with periodic coefficients – Hill’s equations
q  Floquet solutions and normalized coordinates

n  Perturbation theory 
q  Non-linear oscillator
q  Perturbation  by periodic function – single dipole perturbation
q  Application to single multipole – resonance conditions
q  Examples: single quadrupole, sextupole, octupole perturbation
q  General multi-pole perturbation– example: linear coupling
q  Resonance conditions and working point choice

n  Summary
n  Appendix I: Multipole expansion
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n  Colliders
¨   Luminosity (i.e. rate of particle production)

n  Νb bunch population
n  kb number of bunches
n  γ relativistic reduced energy
n  εn normalized emittance
n  β* “betatron” amplitude function at collision point

n  High intensity accelerators
¨   Average beam power

n    mean current intensity
n  Ε energy
n  fN repetition rate
n  Ν number of particles/pulse

n  Synchrotron light sources (low emittance 
rings)
¨   Brightness (photon density in phase space)

n  Νp number of photons 
n  εx,,y transverse emittances

Accelerator performance parameters 

n  Non-linear effects limit performance of particle accelerators 
but impact also design cost
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Non-linear effects in colliders 

n  At injection
q  Non-linear magnets 

(sextupoles, octupoles)
q  Magnet imperfections and 

misalignments
q  Power supply ripple
q  Ground motion (for e+/e-)
q  Electron (Ion) cloud

n  At collision
q   Insertion Quadrupoles
q   Magnets in experimental 

areas (solenoids, dipoles)
q   Beam-beam effect (head on 

and long range)

n  Limitations affecting 
(integrated) luminosity
q  Particle losses causing

n Reduced lifetime
n Radio-activation (super-

conducting magnet quench)
n Reduced machine availability

q  Emittance blow-up
q  Reduced number of bunches 

(either due to electron cloud or 
long-range beam-beam)

q  Increased crossing angle
q  Reduced intensity

n  Cost issues
q  Number of magnet correctors 

and families (power 
convertors)

q  Magnetic field and alignment 
tolerances
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Non-linear effects in high-intensity accelerators 

n  Non-linear magnets 
(sextupoles, octupoles)

n  Magnet imperfections 
and misalignments

n  Injection chicane
n  Magnet fringe fields
n  Space-charge effect

n  Limitations affecting beam 
power
q  Particle losses causing

n Reduced intensity
n Radio-activation (hands-on 

maintenance)
n Reduced machine 

availability
q  Emittance blow-up which 

can lead to particle loss
n  Cost issues

q  Number of magnet correctors 
and families (power 
convertors)

q  Magnetic field and alignment 
tolerances

q  Design of the collimation 
system
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Non-linear effects in low emittance rings 

n  Chromaticity sextupoles 
n  Magnet imperfections and 

misalignments
n  Insertion devices (wigglers, 

undulators)
n  Injection elements
n  Ground motion
n  Magnet fringe fields
n  Space-charge effect (in the 

vertical plane for damping 
rings)

n  Electron cloud (Ion) effects

n  Limitations affecting beam 
brightness
q  Reduced injection efficiency
q  Particle losses causing

n Reduced lifetime
n Reduced machine 

availability
q  Emittance blow-up which 

can lead to particle loss
n  Cost issues

q  Number of magnet correctors 
and families (power 
convertors)

q  Magnetic field and alignment 
tolerances



N
on

-li
ne

ar
 e

ffe
ct

s, 
JU

A
S,

 F
eb

ru
ar

y 
20

16

9

Contents of the 1st lecture
n  Accelerator performance parameters and non-linear effects
n  Linear and non-linear oscillators

q  Integral and frequency of motion
q  The pendulum
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q  Non-linear oscillator
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q  Application to single multipole – resonance conditions
q  Examples: single quadrupole, sextupole, octupole perturbation
q  General multi-pole perturbation– example: linear coupling
q  Resonance conditions and working point choice

n  Summary
n  Appendix I: Multipole expansion
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Reminder: Harmonic oscillator
n  Described by the differential equation:

n  The solution obtained by the substitution

and the solutions of the characteristic polynomial are 
      which yields the general solution 

 
n  The amplitude and phase depend on the initial conditions

n  Note that a negative sign in the differential equation 
provides a solution described by an hyperbolic sine function

n  Note also that  for no restoring force , the motion is 
unbounded

d2u(t)

dt2
+ !2

0u(t) = 0

�± = ±i!0

u(t) = e�t

u(t) = cei!0t
+ c⇤e�i!0t

= C1 cos(!0t) + C2 sin(!0t) = A sin(!0t+ �)

A =

�
du
dt (0)

2 + !2
0u(0)

2
�1/2

!0
, tan(�) =

du
dt (0)

!0u(0)

!0 = 0
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Integral of motion
n Rewrite the differential equation of the harmonic 

oscillator as a pair of coupled 1st order equations
 which can be combined to 

  provide

or 

    with      an integral of motion
identified as the mechanical energy of the system

n Solving the previous equation for       , the system 
can be reduced to a first order equation

du(t)

dt
= pu(t)

dpu(t)

dt
= �!2

0u(t)

dpu
dt

pu + !2
0u

du

dt
=

1

2

d

dt

�
p2u + !2

0u
2
�
= 0

1

2

�
p2u + !2

0u
2
�
= I1 I1

pu

du

dt
=

q
2I1 � !2

0u
2
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Integration by quadrature 
n The last equation can be be solved as an explicit 

integral or “quadrature”

      , yielding 

or the well-known solution 
n Note: Although the previous route may seem 

complicated, it becomes more natural when non-
linear terms appear, where a substitution of the type 

   is not applicable
n The ability to integrate a differential equation is not 

just a nice mathematical feature, but deeply 
characterizes the dynamical behavior of the system 
described by the equation

Z
dt =

Z
dup

2I1 � !2
0u

2

u(t) =

p
2I1
!0

sin(!0t+ !0I2)

u(t) = e�t

t+ I2 =
1

!0
arcsin

✓
u!0p
2I1

◆
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Frequency of motion
n  The period of the harmonic oscillator is calculated through 

the previous integral after integration between two extrema 
(when the velocity   vanishes), i.e.                     :

n  The frequency (or the period) of linear systems is 
independent of the integral of motion (energy)

n  Note that this is not true for non-linear systems, e.g. for an 
oscillator with a non-linear restoring force

n  The integral of motion is          and the 
integration yields

n  This means that the period (frequency) depends on the 
integral of motion (energy) i.e. the maximum “amplitude”

du

dt
=

q
2I1 � !2

0u
2

x

ext

= ±
p
2I

1

!

0

T = 2

Z p
2I1
!0

�
p

2I1
!0

dup
2I1 � !2

0u
2
=

2⇡

!0

I1 =
1

2
p2u +

1

4
k u4

d2u

dt2
+ k u(t)3 = 0

T = 2

Z (4I1/k)
1/4

�(4I1/k)1/4

duq
2I1 � 1

2k u4
=

r
1

2⇡
�2(

1

4
) (I1 k)�1/4
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The pendulum
n An important non-linear equation which can be 

integrated is the one of the pendulum, for a string of 
length L and gravitational constant g

n For small displacements it reduces to an harmonic 

oscillator with frequency
n The integral of motion (scaled energy) is
     

     
   and the quadrature is written as         
   assuming that for 

d2�

dt2
+

g

L
sin� = 0

!0 =

r
g

L

1

2

✓
d�

dt

◆2

� g

L
cos� = I1 = E0

t =

Z
d�p

2(I1 +
g
L cos�)t = 0 , � = 0
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Solution for the pendulum
n Using the substitutions    with

,  the integral is 

    and can be solved using 

Jacobi elliptic functions:
n For recovering the period, the integration is 

performed between the two extrema, i.e.               and 
      , corresponding to            and          

       , for which

i.e. the complete elliptic integral multiplied by four 
times the period of the harmonic oscillator

cos� = 1� 2k2 sin2 ✓
k =

p
1/2(1 + I1L/g)

t =

s
L

g

Z ✓

0

d✓p
1� k2 sin2 ✓

�(t) = 2 arcsin


k sn

✓
t

r
g

L
, k

◆�

� = arccos(�I1L/g)
� = 0

✓ = 0
✓ = ⇡/2

T = 4

s
L

g

Z ⇡/2

0

d✓p
1� k2 sin2 ✓

= 4

s
L

g
F(⇡/2, k)
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Damped harmonic oscillator I
n Damped harmonic oscillator:

q           is the ratio between the stored and lost energy per 
cycle with the damping ratio 

q       is the eigen-frequency of the harmonic oscillator
n   General solution can be found by the same ansatz 

     leading to an auxiliary  2nd order equation                         
with solutions 

Q =
1

2⇣
⇣

!0

�2 +
!0

Q
�+ !2

0 = 0

�± = � !0

2Q
(�1±

p
1� 4Q2) = �!0⇣(�1±

r
1� 1

⇣2
)

u(t) = e�t
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Damped harmonic oscillator II
n Three cases can be distinguished 

q Overdamping (    real, i.e.             or          ): The system 
exponentially decays to equilibrium (slower for larger damping 
ratio values) 

q Critical damping (ζ = 1): The system returns to equilibrium as 
quickly as possible without oscillating. 

q Underdamping (   complex, i.e.         or    ): The system 
oscillates with the amplitude gradually decreasing to zero, with a 
slightly different frequency than the harmonic one:

� ⇣ > 1 Q < 1/2

� ⇣ < 1 Q > 1/2

!d = !0

p
1� ⇣2

n  Note that there is no 
integral of motion, in 
that case, as the energy 
is not conserved 
(dissipative system)

u
(t
)/
u
(0
)
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Contents of the 1st lecture
n  Accelerator performance parameters and non-linear effects
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q  Integral and frequency of motion
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n  Phase space dynamics
q  Fixed point analysis
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q  Floquet solutions and normalized coordinates

n  Perturbation theory 
q  Non-linear oscillator
q  Perturbation  by periodic function – single dipole perturbation
q  Application to single multipole – resonance conditions
q  Examples: single quadrupole, sextupole, octupole perturbation
q  General multi-pole perturbation– example: linear coupling
q  Resonance conditions and working point choice

n  Summary
n  Appendix I: Multipole expansion
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Phase space dynamics
n  Valuable description when 

examining trajectories in phase 
space 

n  Existence of integral of motion 
imposes geometrical 
constraints on phase flow

n  For the harmonic oscillator 
(left), phase space curves are 
ellipses around the equilibrium 
point parameterized by the 
integral of motion (energy)

n  By simply changing the sign of 
the potential in the harmonic 
oscillator (right), the phase 
trajectories become hyperbolas, 
symmetric around the 
equilibrium point where two 
straight lines cross, moving 
towards and away from it

(u,
du

dt
)

n  For the damped harmonic oscillator 
(above), the phase space trajectories 
are spiraling towards equilibrium 
with a rate depending on the 
damping coefficient
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Non-linear oscillators

n  Conservative non-linear oscillators have quadrature                                
with potential being a general (polynomial) function of positions

n   The equations of motion are

n  Equilibrium points are associated with extrema of the potential
n  Considering three non-linear oscillators

q  Quartic potential (left): two minima and one maximum
q  Cubic potential (center): one minimum and one maximum
q  Pendulum (right): periodic minima and maxima

I1 = E =
1

2
p2u + V (u)

I1 =
1

2
p2u � 1

2
u2 +

1

4
u4 I1 =

1

2
p2u � 1

2
u2 +

1

3
u3

d2u

dt2
+

dV (u)

du
= 0

I1 =

1

2

✓
d�

dt

◆2

� g

L
cos�
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Fixed point analysis
n  Consider a general second order system 

n  Equilibrium or “fixed” points                                            are 
determinant for topology of trajectories at their vicinity

n  The linearized equations of motion at their vicinity are

n  Fixed point nature is revealed by eigenvalues of         , i.e. 
solutions of the characteristic polynomial  

du

dt
= f1(u, pu)

dpu
dt

= f2(u, pu)

f1(u0, pu0) = f2(u0, pu0) = 0

d

dt


�u
�pu

�
= MJ


�u
�pu

�
=

2

64

@f1(u0, pu0)

@u

@f1(u0, pu0)

@pu
@f2(u0, pu0)

@u

@f2(u0, pu0)

@pu

3

75

�u
�pu

�

Jacobian matrix
MJ

det |MJ � �I| = 0
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Fixed point for conservative systems
n  For conservative systems of two dimensions the second order 

characteristic polynomial has too solutions:
q  Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 
particles evolving clockwise or anti-clockwise

q  Two real eigenvalues with opposite sign, corresponding to hyperbolic 
(or saddle) fixed points. Flow described by two lines (or manifolds), 
incoming (stable) and outcoming (unstable)

elliptic  hyperbolic 
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Pendulum fixed point analysis
n The “fixed” points for a pendulum can be found at 

n The Jacobian matrix is 

n The eigenvalues are
n Two cases can be distinguished: 

q                        , for which            
corresponding to elliptic fixed points 

q     , for which            
corresponding to hyperbolic fixed points

q  The separatrix are the stable and unstable              
manifolds passing through the hyperbolic            
points, separating bounded librations and    
unbounded rotations


0 1

� g
L cos�n 0

�

�1,2 = ±i

r
g

L
cos�n

elliptic 

hyperbolic 

�1,2 = ±i

r
g

L

�1,2 = ±
r

g

L

(�n,
d�n

dt
) = (±n⇡, 0) , n = 0, 1, 2 . . .

�n = 2n⇡

�n = (2n+ 1)⇡
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Non-autonomous systems
n  Consider a linear system with explicit dependence in time

n  Time now is an independent variable and can be 
considered as an extra dimension leading to a completely 
new type of behavior

n  Consider two independent solutions of the homogeneous 
equation        and

n  The general solution is a  sum of the homogeneous 
solutions      and a particular solution, 

     ,  where the coefficients are 
computed as        

    with the Wronskian of the system 

d2u

dt2
+ !2

0u = F (t)

u1(t)

W (t) = u1(t)
du2(t)

dt
� u2(t)

du1(t)

dt

u2(t)

uh(t) = c1u1(t) + c2u2(t)
up(t) = c3u1(t) + c4u2(t)

c3 =

Z
u2(t)F (t)

W (t)
dt , c4 =

Z
u1(t)F (t)

W (t)
dt
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Driven harmonic oscillator
n  Consider periodic force pumping energy into the system

n  General solution is a combination of the homogeneous and 
a particular solution found as

n  Obviously a resonance condition appears when driving 
frequency hits the oscillator eigen-frequency. In the limit of  

the solution  becomes

n  The 2nd secular term implies unbounded growth of 
amplitude at resonance

u(t) = u0(t) sin(!0t+ �0) +
F

m(!2
0 � !2

)

cos(!t)

! ! !0

u(t) = u0
0(t) sin(!0t+ �0

0) +
F

2m!0
t sin(!)
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Damped oscillator with periodic driving
n  Consider periodic force pumping energy into the system

n  The solution of the homogeneous system is

n  The particular solution is

n  The homogeneous solution vanishes for        ,  leaving 
only the particular one, for which there is an amplitude 
maximum for but no divergence

n  In that case the energy pumped into the system 
compensate the friction, a steady state representing a limit 
cycle  

uh(t) = u0(t)e
�!0⇣t sin(!0

p
1� ⇣2 t+ �0)

up(t) =
F cos(!t+ �0

0)

m !2
0

q
(1� !2

!2
0
)

2
+ 4⇣2 !2

!2
0

t ! 1

!0 = !
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Phase space for non-autonomous systems
n  Plotting the evolution of the driven oscillator in

   provides trajectories that intersect each 
other (top)

n  The phase space has time as an extra 3rd 
dimension

n  By rescaling the time to become          and 
considering every integer interval of the new 
time variable, the phase space looks like the one 
of the harmonic oscillator (middle) 

n  This is the simplest version of a (Poincaré) 
surface of section, which is useful for studying 
geometrically phase space of multi-dimensional 
systems

n  The fixed point in the surface of section is now a 
periodic orbit (bottom) defined by

n  In that case, one can show the existence of two 
integrals of motion, but when a non-linearity is 
introduced, the system becomes non-integrable

(u,
du

dt
)

⌧ = !t

u(t) =
F cos(!t)

m(!2
0 � !2

)
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q  Non-linear oscillator
q  Perturbation  by periodic function – single dipole perturbation
q  Application to single multipole – resonance conditions
q  Examples: single quadrupole, sextupole, octupole perturbation
q  General multi-pole perturbation– example: linear coupling
q  Resonance conditions and working point choice

n  Summary
n  Appendix I: Multipole expansion
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Linear equation with periodic coefficients 
n  A very important class of equations especially             

for beam dynamics (but also solid state physics)  
are linear equations with periodic coefficients

with   a periodic function of time

n  These are called Hill’s equations and can be thought as 
equations of harmonic oscillator with time dependent 
(periodic) frequency

n  There are two solutions that can be written as          
with periodic but also                           
with     a constant which implies that     is 
periodic

n  The solutions are derived based on Floquet theory

George Hill 

d2u

dt2
+K(t)u = 0

K(t) = K(t+ T )

u(t) = <
n

w(t)ei (t)
o

ei (t+T )� (t) = ei�

� d 

dt
(t+ T ) =

d 

dt
(t)

w(t) = w(t+ T )
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Amplitude, phase and invariant 
n  Differentiating the solutions twice and substituting  to Hill’s 

equation, the following two equations are obtained

n  The 2nd one can be integrated to give  , i.e. the 
relation between the “phase” and the amplitude

n  Substituting this to the 1st equation, the amplitude equation 
is derived (or the beta function in accelerator jargon)

n  By evaluating the quadratic sum of the solution and its 
derivative an invariant can be constructed, with the form

d 

dt
=

1

w2

d2w

dt2
� w(

d 

dt
)2 +K(t)w = 0

2
dw

dt

d 

dt
+ w

d2 

dt2
= 0

d2w

dt2
+K(t)w � 1

w3
= 0

I(u,
du

dt
, t) =

"
u2

w2
+

✓
w
du

dt
� dw

dt
u

◆2
#
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Normalized coordinates
n  Recall the Floquet solutions            

for betatron  motion
n  Introduce new variables

n  In matrix form

n  Hill’s equation becomes 

n  System becomes harmonic oscillator with frequency 

    or

n  Floquet transformation transforms       
phase space in circles

U2 + U 02 = ✏

p
✏

1

⌫2�3/2
(
d2U
d�2

+ ⌫2U) = 0
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Perturbation of Hill’s equations
n  Hill’s equations in normalized coordinates  with harmonic 

perturbation, using and 

where the F is the Lorentz force from perturbing fields
q  Linear magnet imperfections: deviation from the design dipole and 

quadrupole fields due to powering and alignment errors
q  Time varying fields: feedback systems (damper) and wake fields 

due to collective effects (wall currents)
q  Non-linear magnets: sextupole magnets for chromaticity correction 

and octupole magnets for Landau damping
q  Beam-beam interactions: strongly non-linear field
q  Space charge effects: very important for high intensity beams 
q  non-linear magnetic field imperfections: particularly difficult to 

control for super conducting magnets where the field quality is 
entirely determined by the coil winding accuracy

U = U
x

or U
y

d2U
d�2

+ ⌫2U 0 = ⌫2�3/2F (U
x

(�
x

),U
y

(�
y

))

� = �
x

or �
y
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Contents of the 1st lecture
n  Accelerator performance parameters and non-linear effects
n  Linear and non-linear oscillators

q  Integral and frequency of motion
q  The pendulum
q  Damped harmonic oscillator

n  Phase space dynamics
q  Fixed point analysis

n  Non-autonomous systems
q  Driven (damped) harmonic oscillator, resonance conditions

n  Linear equations with periodic coefficients – Hill’s equations
q  Floquet solutions and normalized coordinates

n  Perturbation theory 
q  Non-linear oscillator
q  Perturbation  by periodic function – single dipole perturbation
q  Application to single multipole – resonance conditions
q  Examples: single quadrupole, sextupole, octupole perturbation
q  General multi-pole perturbation– example: linear coupling
q  Resonance conditions and working point choice

n  Summary
n  Appendix I: Multipole expansion
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n  Completely integrable systems are exceptional
n  For understanding dynamics of general non-linear 
systems composed of a part whose solution        is 
known and a part parameterized by a small 
constant    , perturbation theory is employed
n  The general idea is to expand the solution in a 
power series
and compute recursively the corrections  
hoping that a few terms will be sufficient to find an 
accurate representation of the general solution
n  This may not be true for all times, i.e. facing series 
convergence problems
n  In addition, any series expansion breaks in the 
vicinity of a resonance

Perturbation theory

✏

u(t) = u0(t) + ✏u1(t) + ✏2u2(t) + . . .

u0(t)

u1(t), u2(t), . . .
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n  Consider a non-linear harmonic oscillator, 
n  This is just the pendulum expanded to 3rd order in 
n  Note that     is a dimensionless measure of smallness, which 
may represent a scaling factor of    (e.g.            without loss of 
generality) 
n  Expanding and separating 
the equations with equal power in   :
q  Order 0:

q  Order 1: 

n  The 2nd equation has a particular solution with two terms. A 
well behaved one   and
the first part of which grows linearly with time (secular term)
n  But this cannot be true, the pendulum does not present such 
behavior. What did it go wrong?

Perturbation of non-linear oscillator 

✏

u(t) = u0(t) + ✏u1(t) + ✏2u2(t) + . . .
✏

d2u0

dt2
+ !2

0u0(t) = 0 ) u0(t) = A cos(!0t)

d2u

dt2
+ !2

0u� 1

6
✏!2

0u
3 = 0

d2u1

dt2
+ !2

0u1 =

!2
0u

3
0

6

=

!2
0A

3

6

cos

3
(!0t) =

!2
0A

3

24

(cos(3!0t) + 3 cos(!0t))

u

u ✏ = 1

u1a(t) = � A3

192

cos(3!t) u1b(t) =
A3

64

(!0t cos(!t) + 2 cos(!0t))

d2u0

dt2
+ !2

0u0 = 0
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n  It was already shown that the pendulum has an 
amplitude dependent frequency, so the frequency has to 
be developed as well (Poincaré-Linstead method):

n Assume that the solution is a periodic function of                
which becomes the new independent variable. The 
equation at zero order gives the solution                        
and at leading perturbation order becomes

n The last term has to be zero, if not it gives secular terms, 
thus    which reveals the decrease of the 
frequency with the oscillation amplitude

n Finally, the solution                            is the 
leading order correction due to the non-linear term 

Perturbation of non-linear oscillator 

! = !0 + ✏!1 + ✏2!2 + . . .
⌧ = !t

!0
d2u1

d⌧2
+!0u1 = �2!1

d2u0

d⌧2
+

!0

6

u3
0 =

!0A3

24

cos(3⌧)+

✓
!0A3

8

+ 2A!1

◆
cos(⌧)

u0(⌧) = A cos(⌧)

!1 = �A2!0

16

u1(t) =
A3

192

(cos(!0t)� cos(3!0t))
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Perturbation by periodic function
n  In beam dynamics, perturbing fields are periodic functions
n  The problem to solve is a generalization of the driven 

harmonic oscillator,

    with a general periodic function         , with frequency 

n  The right side can be Fourier analyzed:

n  The homogeneous solution is
n  The particular solution can be found by considering that           

has the same form as         : 

n  By substituting we find the following relation for the 
Fourier coefficients of the particular solution

n  There is a resonance condition for infinite number of 
frequencies satisfying 

g(t) !

d2u

dt2
+ !2

0u(t) = g(t)

g(t) =
m=+1X

m=�1
ameim!t

uh(t) = u0(t) sin(!0t+ �0)

u(t)

g(t) up(t) =
m=+1X

m=�1
upmeim!t

!2
0 = m2!2

upm =
am

!2
0 �m2!2
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Perturbation by single dipole
n  Hill’s equations in normalized coordinates with 
single dipole perturbation:

n  The dipole perturbation is periodic, so it can be 
expanded in a Fourier series

n  Note, as before that a periodic kick introduces 
infinite number of integer driving frequencies
n  The resonance condition occurs when 
i.e. integer tunes should be avoided (remember orbit 
distortion due to single dipole kick)

b1(�) =
1X

m=�1
b1meim�

⌫0 = m

d2U
d�2

+ ⌫20U = ⌫20�
3/2b1(�) = b1(�)
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Example: single quadrupole perturbation
n  Consider single quadrupole kick in one normalized plane:

n  The quadrupole perturbation can be expanded in a Fourier 
series

n  Following the perturbation approach, the 1st order equation 
becomes     with

n  For        , the resonance conditions are
i.e. integer and half-integer tunes should be avoided
n  For          ,  the condition       
corresponds to a non-vanishing average value       , which can 
be absorbed in the left-hand side providing a tune-shift: 

or

d2U
d�2

+ ⌫20U = ⌫20�
2b2(�)U = b2(�)U

b2(�) =
1X

m=�1
b2meim�

m+ ⌫0 = ⌫0 ! m = 0

m� ⌫0 = ⌫0 ! ⌫0 =
m

2

b20

q = �1

q = 1

�⌫ ⇡ � b20
2⌫0

= �⌫0�2b20
2

⌫2 = ⌫20 � b20

W 0 = 0
d2U1

d�2
+ ⌫20U1 =

1X

q=�1

1X

m=�1
W qb2mei(m+q⌫0)�
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Perturbation by single multi-pole
n  For a generalized multi-pole perturbation, Hill’s equation is:

n  As before, the multipole coefficient                                 
can be expanded in Fourier series
n  Following the perturbation steps, the zero-order solution is 
given by the homogeneous equation
n  Then the position can be expressed as 

    with 
n  The first order solution is written as

bn(�) =
1X

m=�1
bnmeim�

d2U
d�2

+ ⌫20U = ⌫20�
n
2 +1bn(�)Un�1 = bn(�)Un�1

U ⇡ U0 = W1e
i⌫0� +W�1e

�i⌫0�

Un�1
0 =

n�1X

k=0

✓
n� 1

k

◆
Wn�1�k

1 W k
�1e

i(n�1�2k)⌫0� =
n�1X

q=�n+1

W qe
iq⌫0�

Wn�2 = Wn�4 = Wn�6 = · · · = W�n+2 = 0

W q

d2U1

d�2
+ ⌫20U1 = bn(�)Un�1

0 =
n�1X

q=�n+1

m=1X

m=�1
bnmW qe

i(m+q⌫0)�

q = �n+ 1,�n+ 3, . . . , n� 1
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Resonances for single multi-pole
n  Following the discussion on the periodic perturbation, the 
solution can be found by setting the leading order solution to 
be periodic with the same frequency as the right hand side

n  Equating terms of equal exponential powers, the  Fourier 
amplitudes are found to satisfy the relationship

n  This provides the resonance condition                        

or          which means that there are resonant 

frequencies for  an “infinite” number of rationals

U1 =
n�1X

q=�n+1

m=1X

m=�1
U1mqe

i(m+q⌫0)�

U1mq =
bnmW q

⌫20 � (m+ q⌫0)2

m± |q|⌫0 = ⌫0
⌫0 =

m

1± |q|
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Tune-shift for single multi-pole
n  Note that for even multi-poles and             or              , there 
is a Fourier coefficient         , which is independent of        and 
represents the average value of the periodic perturbation
n  The perturbing term in the r.h.s. is

which can be obtained for        (it is indeed an integer 
only for even multi-poles)
n  Following the approach of the perturbed non-linear 
harmonic oscillator, this term will be secular unless a 
perturbation in the frequency is considered, thereby resulting 
to a tune-shift equal to 

         with

n  This tune-shift is amplitude dependent for        

q = 1 m = 0

bn0W 1e
i⌫0� = ⌫20�

n
2 +1bn0

✓
n� 1
n
2 � 1

◆
Wn�1

1 W
n
2 �1
�1 ei⌫0�

k =
n

2
� 1

bn0 �

fW 2 = W1W�1�⌫ = �⌫0�
n
2 +1bn0
2

✓
n� 1
n
2 � 1

◆
fWn�2

n > 2
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Single Sextupole Perturbation
n  Consider a localized sextupole perturbation in the 
horizontal plane

n  After replacing the perturbation by its Fourier transform 
and inserting the unperturbed solution to the right hand side

with 

n  Resonance conditions:
n  Note that there is not a tune-spread associated. This is only 
true for small perturbations (first order perturbation 
treatment)
n  Although perturbation treatment can provide 
approximations for evolution of motion, there is no exact 
solution

d2U
d�2

+ ⌫20U = ⌫20�
5
2 b3(�)U2 = b3(�)U2

⌫0 = m for q = 0, 2

3⌫0 = m for q = �23rd integer
 integer

d2U1

d�2
+ ⌫20U1 =

2X

q=�2

1X

m=�1
W qb3mei(m+q⌫0)�

W�1 = W 1 = 0
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n  Equations of motion including any multi-pole error term, in 
both planes 
 
 
n  Expanding perturbation coefficient in Fourier series and 
inserting the solution of the unperturbed system on the rhs  
gives the following series: 

n  The equation of motion becomes

n  In principle, same perturbation steps can be followed for 
getting an approximate solution in both planes

General multi-pole perturbation

d2U
x

d�2
x

+ ⌫20xUx

= b
n,r

(�
x

)Un�1
x

Ur�1
y

b
nr

(�
x

) =
1X

m=�1
b
nrm

eim�

x

d2U
x

d�2
x

+ ⌫20xUx

=
X

m,q

x

,q

y

b
nrm

W x

q

x

W y

q

y

ei(m+q

x

⌫0x+q

y

⌫0y)�x

Un�1
x

⇡ Un�1
0x =

n�1X

q

x

=�n+1

W
q

x

eiqx⌫0�x

Ur�1
y ⇡ Ur�1

0y =
r�1X

q
y

=�r+1

W q
y

eiqy⌫0y�x
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n  For a localized skew quadrupole we have

 
n  Expanding perturbation coefficient in Fourier series and 
inserting the solution of the unperturbed system gives the 
following equation:

    
        with 

n  The coupling resonance are found for 

Example: Linear Coupling

d2U
x

d�2
x

+ ⌫20xUx

= b1,2(�x

)U
y

d2U
x

d�2
x

+ ⌫20xUx

=
1X

m=�1

q

y

=1X

q

y

=�1

b12mW y

q

y

ei(m+q

y

⌫0y)�x

W y
0 = 0

qy = ±1
Linear sum resonance Linear difference resonance
m = ⌫0x + ⌫0y m = ⌫0x � ⌫0y
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n  The general resonance conditions is 
or          , with order 
n  The same condition can be obtained in the vertical plane  
n  For all the polynomial field terms of a       -pole, the main 
excited resonances satisfy the condition                          but there 
are also sub-resonances for which  
n  For  normal (erect) multi-poles, the main resonances are 

              whereas for skew multi-poles

General resonance conditions
m+ q

x

⌫0x + q
y

⌫0y = ⌫0x
m+ q0

x

⌫0x + q
y

⌫0y = 0 |q
x

|+ |q
y

|+ 1

n  If perturbation is large, all 
resonances can be potentially excited 
n  The resonance conditions form lines 
in the frequency space and fill it up as 
the order grows (the rational numbers 
form a dense set inside the real 
numbers)

q0
x

+ q
y

= n
q0
x

+ q
y

< n

(q0
x

, q
y

) = (n, 0), (n� 2,±2), . . .

(q0
x

, q
y

) = (n� 1,±1), (n� 3,±3), . . .

2n
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n  If lattice is made out of   identical cells, and the 
perturbation follows the same periodicity, resulting in 
a reduction of the resonance conditions to the ones 
satisfying
n  These are called      
systematic resonances
n  Practically, any (linear)       
lattice perturbation breaks         
super-periodicity and any       
random resonance can be      
excited 
n Careful choice of the          
working point is necessary

Systematic and random resonances
N

q
x

⌫0x + q
y

⌫0y = jN
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Contents of the 1st lecture
n  Accelerator performance parameters and non-linear effects
n  Linear and non-linear oscillators

q  Integral and frequency of motion
q  The pendulum
q  Damped harmonic oscillator

n  Phase space dynamics
q  Fixed point analysis

n  Non-autonomous systems
q  Driven (damped) harmonic oscillator, resonance conditions

n  Linear equations with periodic coefficients – Hill’s equations
q  Floquet solutions and normalized coordinates

n  Perturbation theory 
q  Non-linear oscillator
q  Perturbation  by periodic function – single dipole perturbation
q  Application to single multipole – resonance conditions
q  Examples: single quadrupole, sextupole, octupole perturbation
q  General multi-pole perturbation– example: linear coupling
q  Resonance conditions and working point choice

n  Summary
n  Appendix I: Multipole expansion
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Summary
n Accelerator performance depends heavily on the 

understanding and control of non-linear effects
n The ability to integrate differential equations has a 

deep impact to the dynamics of the system
n Phase space is the natural space to study this 

dynamics
n Perturbation theory helps integrate iteratively 

differential equations and reveals appearance of 
resonances

n Periodic perturbations drive infinite number of 
resonances

n There is an amplitude dependent tune-shift at 1st 
order for even multi-poles

n Periodicity of the lattice very important for reducing 
number of lines excited at first order



N
on

-li
ne

ar
 e

ffe
ct

s, 
JU

A
S,

 F
eb

ru
ar

y 
20

16

51

Magnetic multipole expansion
n  From Gauss law of magnetostatics, a vector potential exist 

n  Assuming transverse 2D field, vector potential has only one 
component As. The Ampere’s law in vacuum (inside the 
beam pipe) 

n  Using the previous equations, the relations between field 
components and potentials are

i.e. Riemann conditions of an analytic function

Exists complex potential of with  
power series expansion convergent in a circle 
with radius (distance from iron yoke)

x 

y 
iron 

rc z = x+ iy

|z| = rc
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Multipole expansion II
n  From the complex potential we can derive the fields

n  Setting

n  Define normalized coefficients 
     

on a reference radius r0, 10-4 of the main field to get

n  Note: is the US conventionn� = n� 1


