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•  Introduction to wake fields/potentials 

•  Instability mechanism

•  Instability in Linacs 

• Instability in Circular Accelerators





F = q Ezẑ + Ex − cBy( ) x̂ + Ey + cBx( ) ŷ"# $%≡ F// +F⊥

This force depends on the longitudinal and transverse position of the two 
particles. It is useful to distinguish two effects on the test charge : 

1) a longitudinal force which changes its energy, 

2) a transverse force which deflects its trajectory. 

Wake Fields and Wake Potentials
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︎2) The impulse approximation: although the test charge sees a force coming from the 
electromagnetic field all along the structure, what it cares is the impulse

as the charge completes the traversal through the discontinuity at its fixed velocity v.

Two approximations

L

z
︎At high energies, the particle beam is rigid and two 
approximations apply: ︎︎︎︎︎ 

1) The rigid beam approximation, which says that the 
beam  traverses  the  discontinuity  of  the  vacuum 
chamber  rigidly  and  the  electromagnetic  field  is  a 
perturbation  that  does  not  affect  the  motion  of  the 
beam during the traversal of the discontinuity. This 
implies that the distance ‘z’ between the two charges 
does not change.

Δp = Fdt
−∞

∞

∫



If we consider a device of length L, we can perform the integral of the 
force acting on the test charge along the longitudinal path and get:

U(r, r0, z) = F//
0

L

∫ ds ≅U(z)

M r, r0, z( ) = F⊥
0

L

∫ ds ≅ r0M z( )

the Energy Gain (J):

These quantities are both function of the distance z between the two 
particles.  The  transverse  deflecting  kick  depends  also  on  r0,  the 
transverse position of the source charge. 

Note that the integration is performed over a given path of the trajectory.

These quantities, normalised to the charges, are called wake fields

the Transverse Deflecting Kick (N·m):
(dipolar)
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w// z( ) = −
U z( )
q2

w⊥ z( ) =
M z( )
q2

Longitudinal wake field 
(Volt/Coulomb)

Transverse dipole wake field    
(Volt/Coulomb/meter)

The minus sign in the longitudinal wake field means that the test 
charge loses energy when the wake is positive.

Positive  transverse  wake  means  that  the  transverse  force  is 
defocusing.

The  wake  fields  are  the  important  quantities  to  study  the  beam 
dynamics.



Coupling Impedance

The wake fields are generally useful to study the beam dynamics in the time 
domain (for example instabilities in a LINAC). If we take the equation of 
motion in the frequency domain (a trick generally used to study instabilities 
in circular accelerators), we need the Fourier transforms of the wake fields. 
Since these quantities have ohms units they are called coupling impedances:

           Longitudinal impedance (Ω)

Z // ω( ) = 1
c

w// z( )e
iωz
c dz

−∞

∞

∫

Transverse  dipole impedance (Ω/m)

Z⊥ ω( ) = − i
c
w⊥ z( )e

iωz
c dz

−∞

∞

∫
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It is also useful to define the loss factor as the normalised energy lost by 
the source charge q

k = −U(z = 0)
q2

=
??
w// z = 0( )

Although in general the loss factor is given by the longitudinal wake at z=0,  
for charges travelling with the speed of light, the longitudinal wake field is 
discontinuous at z=0

The exact relationship between k and w(z→0) is given by the  beam loading 
theorem:

k = w// (z→ 0)
2
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β<1

Causality  requires  that  the 
longitudinal  wake  field  of  a  charge 
travelling  with  the  speed  of  light  is 
discontinuous in the origin.
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UA = qA
2 k =

q2

4
k

UB = qB
2k + qAqBw// z( )

=
q2

4
k + q

2

4
w// z( )

UA +UB =
q2

2
k + q

2

4
w// z( )

z→ 0    UA +UB = q
2k

q2

2
k + q

2

4
w// 0( ) = q2k
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w// 0( )
4

=
k
2

k =
w// 0( )
2

q/2q/2

q
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w//

k
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Demonstration of 
the beam loading 
theorem



z! z’!

λ(z)" dz’!

Wake potential and energy loss of a bunched distribution 

When we have a bunch with longitudinal density dq/dz=λ(z), we may want to get the 
amount of energy lost or gained by a single charge e in the beam.

To this end let us evaluate the effect on 
the charge e in a posizion z due to a slice 
of  the  bunch  in  a  position  z’ so  thin 
(width dz’) that it can be considered as a 
point charge:

dU(z) = −edq(z ')w// z '− z( ) = −ew// z '− z( )λ(z ')dz '

w// z '− z( )

e

We now use  the  superposition  principle  to  obtain  the  energy  lost  or 
gained by the charge e due to the entire distribution. 



z! z’!

λ(z)" dz’!

Wake potential and energy loss of a bunched distribution 

U(z) = −e w// z '− z( )λ(z ')dz '
−∞

∞

∫ =

= −e w// z '− z( )λ(z ')dz '
z

∞

∫

The energy lost allows to define the longitudinal wake potential of a distribution
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W // (z) = −
U(z)
qe

=
1
q

w// z'−z( )λ(z')dz'
−∞

∞

∫
The total energy lost by the bunch is computed summing up the losses of all the particles:

Ubunch =
1
e

U z( )λ(z)dz
−∞

∞

∫ = −q W// z( )λ(z)dz
−∞

∞

∫

q = λ(z)dz
−∞

∞

∫NB: we have



Some comments on the wake potential

•  Observe  that  if  we  know the  wake  field,  we  can  obtain  the  wake  potential  of  any 
distribution, but if  we know the wake potential,  we are limited to a particular beam 
distribution.

•  In a LINAC with particles moving at the speed of light, the longitudinal distribution 
does not change, and the wake potential can be used to evaluate the energy variation of 
particles inside the bunch (energy spread). In this situation, the knowledge of the wake 
potential can be sufficient to study the beam dynamics.

•  In a circular  accelerator  the longitudinal  position of  a  charge depends on its  energy 
through the slippage factor,  and this energy is modified by the wake potential.  As a 
consequence the wake potential changes the longitudinal distribution which, on its turn, 
changes the wake potential. In this case we have to study the beam dynamics in a self 
consistent way, and the knowledge of the wake potential is not sufficient.
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W // (z) = −
U(z)
qe

=
1
q

w// z'−z( )λ(z')dz'
−∞

∞

∫



The study of the em fields requires to solve the Maxwell’s equations in a 
given structure taking the beam current as source of fields. This is a quite 
complicated task for which it has been necessary to develop dedicated 
computer codes, which solve the e.m. problem in the frequency or in the 
time domain. There are several useful codes for the em design of accelerator 
devices, and new ones are developed. Examples of codes: CST STUDIO 
SUITE, GDFIDL, ACE3P, ABCI, …

The wake potentials given by numerical codes depend on the particular 
charge distribution of the beam. It is therefore desirable to know what is the 
effect produced by a single charge, i.e. find the Green function (wake 
field), in order to reconstruct the fields produced by any charge distribution. 

Numerical Analysis

Theoretical Analysis

However, the result of the codes is a wake potential and not a wake field …



Example of longitudinal wake field and coupling impedance:  
space charge 

Even if in the ultra-relativistic limit with γ ⟶ ∞, we have seen that there is 
no space charge effect, we can still define a wake field by considering a 
moderately relativistic beam with γ>>1 but not infinite. It turns out that the 
space charge forces can fit into the definition of wake field, and when that 
is done, we find that the wake depends on beam properties such as the 
transverse  beam  radius  a  and  the  beam  energy  γ.  Let  us  consider  a 
relativistic  beam  with  cylindrical  symmetry  and  uniform  transverse 
distribution. We have already obtained the longitudinal force acting on a 
charge of the beam travelling inside a cylindrical pipe of radius b:

F// (r, z) =
−q

4πε0γ
2 1− r

2

a2 + 2 ln b
a

⎛

⎝
⎜

⎞

⎠
⎟
∂
∂z
λ(z) 



Example of longitudinal wake field and coupling impedance:  
space charge 

Since the space charge forces move together with the beam, they are 
constant along the accelerator if the beam pipe remains constant. We can 
therefore define the longitudinal wake field per unit length of the pipe 
(V/Cm). To get the longitudinal wake field of a piece of pipe, we just 
multiply by the pipe length.  Assuming r→0 (particle  on axis),  and a 
charge line density given by                      , we obtainλ(z) = q0δ(z)

dw// (z)
ds

=
1

4πε0γ
2 1+ 2 ln b

a
⎛

⎝
⎜

⎞

⎠
⎟
d  
dz
δ(z)

∂  Z // ω( )
∂  s

=
1
v

∂  w// z( )
∂  s

e
iωz
v dz

−∞

∞

∫ =
1+ 2 ln b a( )
v4πε0γ

2 e
iωz
v d
dz
δ(z)

⎛

⎝
⎜

⎞

⎠
⎟dz

−∞

∞

∫ =
iω  Z0

4πcβ 2γ 2 1+ 2 ln b
a

⎛

⎝
⎜

⎞

⎠
⎟

w// z( ) = −
1
qq0

F//
0

L

∫ ds



Example of longitudinal wake field and coupling impedance:  
finite conductivity of a circular pipe wall (resistive wall) 

w// z( ) =
Lc
4πb

Z0
πσ c

1
z 3/2

L

b

Z // ω( ) = 1− isgn ω( )"# $%
L
2πb

Z0 ω
2cσ c

Hp:  high  conductivity 
such that  the skin depth 
is much smaller than the 
wall thickness and

with
 

cχ / b <<ω << cχ −1/3 / b

χ =
1

Z0σ cb

χ1/3b << z << b / χ

Example: aluminum σc=3.5x107 [Ωm]-1, b=5 cm: 

9 <<ω << 5.2 1012  [rad/s] 5.7 10−5 << z << 3.3 107  [m]



Example of longitudinal wake field and coupling impedance:  
finite conductivity of a circular pipe wall (resistive wall) 

Impedance comparison 
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Wake potential comparison 



Example of wake potential and longitudinal coupling impedance for an 
entire machine: DAΦNE accumulator 

o

Z
n

Z
ωω

ωω )()( |||| =
DAΦNE accumulator wake potential of 
 a 2.5 mm Gaussian bunch. 



Short range wake field/potential acts over the bunch length

•  Vanishes after a distance 
of few bunch lengths

•  Influences the single 
bunch beam dynamics

•  Poor frequency resolution 
of Fourier transform of 
coupling impedance => 
broad band impedance

DAΦNE wake potential of 
 a 2.5 mm Gaussian bunch. 



Re[Z]
Im[Z]

Long range wake field/potential acts on many 
bunches/multi-turn

•  Field oscillates over long distances
•  Produced by high Q resonant modes 
•  Described by only 3 parameters: Q, ωr and Rs
•  High peak impedance 



Longitudinal wake field of a resonant mode

When  a  charge  crosses  a  resonant  structure,  it  excites  resonant  modes 
(fundamental and HOMs). 

Each mode can be treated as an electric RLC circuit loaded by an impulsive 
current. Just after the charge passage, the capacitor is charged with a voltage 
Vo=qo /C and the electric field is Eso= Vo/lo. 

The time evolution of the electric field is governed by the same differential 
equation of the voltage

011
=++ V

LC
V

RC
V !!!

I

B
-

+
+
+

+
+
+

-
-
-

-
-
-

Ib t( ) = q0δ(t)

Equivalent circuit
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The  passage  of  the  impulsive  current  charges  only  the  capacitor,  which 
changes its potential by an amount V0. This potential will oscillate and decay 
producing a current flow in the resistor and inductance. 

For t>0 the potential satisfies the following equations and initial conditions:

V + 1
RC
V + 1

LC
V = 0

V (t = 0+ ) = q0
C
≡V0

V (t = 0+ ) = q
C
= −

I(0+ )
C

= −
V0
RC

V (t) =V0e
−γ  t cos(ωnt)−

γ
ωn

sin(ωnt)
"

#
$

%

&
'

ωn
2 =ωr

2 −γ 2

γ =
1

2RC

putting z = -ct (z is negative behind the 
source charge),

w// (z) =
V(z)
q0

= w0e
γ  z/c cos(ωnz / c)+ γ

ωn

sin(ωnz / c)
!

"
#

$

%
&H −z( )
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ω r =
1
LC
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w0 =
1
C

" 

# 
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% 

& 
' 
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Coupling impedances of a resonant mode

Rs = R =
wo

2γ
  shunt impedance: 

€ 

Q =
ω r
2γ

 quality factor:

Transverse wakefield and impedance of a resonant mode:

Z⊥ ω( ) = ω
ω

R⊥

1+ iQr
ωr

ω
−
ω
ωr

#

$
%

&

'
(

Longitudinal Impedance:
Z|| ω( ) = Rs

1+ iQ ωr

ω
−
ω
ωr

"

#
$

%

&
'

The parameters     ,      and      , that can be evaluated by computer codes, can be 
related to the parameters RLC of the parallel circuit 

€ 

Rs

€ 

Q

€ 

ω r

w⊥(z) = R⊥ωr

Q
eΓ  z/c sin(ωz / c)
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Broad Band Resonator Model DAΦNE Accumulator Impedance

Some remarks on the longitudinal impedance of a resonant mode 

Z|| ω( ) = Rs

1+ iQ ωr

ω
−
ω
ωr

"

#
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&
'

This impedance can be also used as a 
simplified impedance model of a whole 
machine for the short range wake fields 
assuming Q ~ 1 (it is called Broad Band 
Impedance Model) 

Z||
n

f[GHz]



Wake fields effects in LINACS



U(z) = −e w// (z '− z)
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λ(z)=q/l0

Z

Example: Energy lost by a finite uniform beam due to a resonant mode  

Wake potential?
Energy spread (Umax-Umin)?

w// (z) = woe
γ  z/c cos(ωnz / c)+ γ

ωn

sin(ωnz / c)
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%
&H −z( ) ≈ wo cos(ωrz / c)H −z( )



Ubunch =
1
e

U
−∞

+∞

∫ (z)λ(z)dz ≈ −q2w0
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Energy loss 



Consider  an  harmonic  oscillator  with  natural 
frequency  ω,  with  an  external  excitation  at 
frequency Ω:

€ 

˙ ̇ x +ω 2x = Acos(Ωt)

General solution:

€ 

x(t) = x free(t) + xdriven (t)

 cos(Ωt)⇒ eiΩt  

x free(t) = ˜ x m
f eiωt

xdriven (t) = ˜ x m
d eiΩt

Instability: driven oscillator

substitution in the diff. equation:

€ 

(ω 2 −Ω2) ˜ x m
d eiΩt = AeiΩt

xdriven (t) =
A

(ω 2 −Ω2)
eiΩt



The general solution has to satisfy the initial conditions at t=0. In our case 
we assume that the oscillator is at rest for t=0: 

€ 

x free(t = 0) = −xdriven (t = 0)

˜ x m
f = −

A
ω 2 −Ω2

thus we get:

€ 

x(t) =
A

ω 2 −Ω2 eiΩt − eiωt[ ]
taking only the real part:

[ ])cos()cos()( 22 ttAtx ω
ω

−Ω
Ω−

=

NB: if the initial conditions 
are different, we just need to 
add  to  to  this  solution  a 
sinusoidal term  

x(t) = X0 cos ωt +θ0( )+ A
ω 2 −Ω2 cos(Ωt)− cos(ωt)[ ]



This expression is suitable for deriving the response of the oscillator 
driven at resonance or at frequency very close:

€ 

ω =Ω+δ,    δ →0
ω = (ω +Ω) /2; ω =ω +δ /2, Ω =ω −δ /2

ωΩ ω

δ/2 δ/2

 

x

 

x
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limδ→0 x(t) =
At
2ω 

sin(ω t)

x(t) = A
2ωδ

 { cos(ωt)cos(δt / 2)+ sin(ωt)sin(δt / 2)[ ]+

                 - cos(ωt)cos(δt / 2)− sin(ωt)sin(δt / 2)[ ] }

x(t) = A
ωδ

 sin δt
2
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#
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&
'sin(ωt) ≡ At

2ω
sin(ωt)

sin δt
2

"

#
$

%

&
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δt
2
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t

amplitude 
modulation

ω 2 −Ω2 = ω −Ω( ) ω +Ω( ) = δ2ω



 Single Bunch Beam Break Up in Linacs

A  beam  injected  off-centre  in  a  LINAC,  because  of  the  focusing 
quadrupoles,  executes  betatron  oscillations.  The  displacement  produces  a 
transverse  wake  field  in  all  the  devices  crossed  during  the  flight,  which 
deflects the trailing charges. 



In order to understand the effect, we consider a simple model with only 
two charges q1=Ne/2 (source charge = half bunch) and q2=e (test charge = 
single charge).

q1=Ne/2q2=e

λw

the source charge executes free betatron oscillations:

y1(s) = ŷ1 cos
ωy

c
s

!

"
#

$

%
&;    

ωy

c
=

2π
λβ

=
Qy

ρx

s

z



This force drives the motion of the test charge:

y2
'' +

ωy

c
!

"
#

$

%
&

2

y2 =
1

β 2Eo

F⊥ z, y1( ) =
Ne2w⊥(z)
2β 2EoLw

ŷ1 cos
ωy

c
s

!

"
#

$

%
&

This is the typical equation of an harmonic oscillator driven at the resonant 
frequency. The solution is given by the superposition of the “free” oscillation 
and a  “driven” oscillation,  which,  being driven at  the  resonant  frequency, 
grows linearly with s.

the  test  charge,  at  a  distance  z  behind,  over  a  length  Lw  experiences  a 
deflecting force proportional to the displacement y1, and dependent on the 
distance z:

F⊥ (z, y1) =
Ne2

2Lw
w⊥(z)y1(s)

€ 

e

€ 

Ne /2
w⊥ z( ) =

M z( )
q2

betatron equation of motion with coherent force

r0M z( ) = F⊥ ds = F⊥ r0, z( )
0

Lw

∫ Lw



At the end of the LINAC of length LL, the oscillation amplitude is grown by

y2 LL( )− ŷ2

ŷ2
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Δŷ2

ŷ2
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Balakin-Novokhatsky-Smirnov Damping

The BBU instability can be quite harmful and hard to take under control 
even at high energy, with a strong focusing, and after a careful injection and 
steering. 

A simple  method to  cure  it  has  been proposed observing that  the  strong 
oscillation  amplitude  of  the  bunch tail  is  due  to  the  “resonant”  driving 
force. 

If the tail and the head of the bunch oscillate with different frequencies, 
this effect can be significantly removed. 

Let us assume that the tail oscillates with a frequency ωy+Δωy, the equation 
of motion becomes:
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the solution of which is

y2 (s) = ŷ1 cos
ωy +Δωy
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by a suitable choice of Δωy, it is possible to fully depress the oscillations of 
the tail. 

y2 (s) = ŷ1 cos
ωy

c
s

!

"
#

$

%
&= y1 s( )

€ 

Δω y =
c2Ne2w⊥(z)
4ω yEoLw

The extra focusing at the tail can be obtained by:

•  Using an RFQ, where head and tail see a different focusing strength.

•  Creating a correlated energy distribution along the bunch which, because 
of the chromaticity, induces a spread in the betatron frequencies. An energy 
spread  correlated  with  the  longitudinal  position  is  attainable  with  the 
external accelerating voltage, or with the longitudinal wake fields.

c2Ne2w⊥(z)
4ωyΔωyEoLw

=1



Instabilities in Circular Accelerators



Longitudinal effects on beam dynamics

•  Robinson instability (RF fundamental mode)
•  Coupled bunch instability (HOMs)

•    Potential well distortion è deformation of the longitudinal 
distribution 
•    Longitudinal emittance growth, microwave instability 

Short range wake fields: 

Long range wake fields: 



Robinson instability of the RF fundamental mode 
Let us consider the real part of the RF 
fundamental mode, and a bunch with 
revolution period T0. The bunch 
spectrum has lines every ω0 (we 
suppose the bunch as a point charge), 
and its lost energy due to the mode is 
proportional to the real part of the 
impedance at nω0. If the bunch, during 
the synchrotron oscillations, has an 
increasing energy, and we are above 
transition, its revolution period 
increases and the frequency decreases.  
If (nω0 > ωr), as in the figure, the resistance found by the beam is higher, 
producing a higer energy loss, which reduces the energy increase giving a 
stabilizing effect.  

Re[Z(ω)]

ωωr nω0



Robinson instability of the RF fundamental mode 

Longitudinal equations of motion of the bunch centre of mass, for constant 
energy in a circular machine, ignoring radiation damping 

Combining the two equations, for small oscillation amplitudes, we obtain 
a second order linear differential equation  

with 

dφ
dt

= −
hη
R0p0

ΔE d ΔE( )
dt

=
qVrf
T0

sinφ − sinφs( )

d 2Δφ
dt2

+ωs
2Δφ = 0 ωs

2 =
qVrf hηc

2 cosφs
2πR0

2E0
η cosφs > 0

Δφ = Δφmax cos ωst +θ0( )Solution 

and 



Robinson instability of the RF fundamental mode 
By including also the wake field of 
the fundamental resonant mode 
(beam loading effect) the equation 
of motion becomes 

αr =
eNpηhω0

ωs E0 / q( )T02
Re ΔZ[ ] Re ΔZ[ ] = Re Z nω0 +ωs( )− Z nω0 −ωs( )⎡⎣ ⎤⎦

Δφ = Δφmax exp −
1
2
αrt

⎡

⎣⎢
⎤

⎦⎥
cos ωst +θ0[ ]

Re[Z(ω)]

ωωr nω0

d 2Δφ
dt2

+αR
dΔφ
dt

+ωs
2Δφ = 0 nω0+ωsnω0-ωs

damping/exciting term 
due to the resonant mode

Solution 



LANDAU DAMPING

•  There  is  a  natural  stabilising  effect  against  the  collective  instabilities 
called “Landau Damping”. The basic mechanism relies on the fact that if 
the  particles  in  a  beam  have  a  spread  in  their  natural  frequencies 
(synchrotron or betatron), their motion can’t be coherent for a long time. 

•  The mechanism is in general triggered when an infinite set of identical 
systems oscillates  at  different  frequencies,  spread over  some range  of 
values. Under these conditions, if  any periodic force has its frequency 
within the considered range, the oscillation amplitude, averaged over all 
the systems, instead of growing as one should expect, remains constant. 

•  Even if a periodic force pumps energy into the system, this energy is not 
converted  into  an  increase  of  the  average  oscillation  amplitude:  the 
number of particles in resonance with the external force decreases with 
time,  so  that  the  net  contribution to  the  average oscillation amplitude 
remains constant. 



Relationship between transverse and longitudinal forces:

The transverse gradient of the longitudinal force is equal to the 
longitudinal gradient of the transverse force

 

 “Panofsky-Wenzel theorem”.

  

€ 

∇⊥F// =
∂
∂ z

F⊥

∇⊥w// =
∂
∂ z

w⊥

Appendix
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