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EQUATION OF MOTION

Charged  particles  in  a  transport  channel  or  in  a  circular/linear  accelerator  are 
accelerated, guided and confined by external electromagnetic fields. The motion of 
a single charge is governed by the Lorentz force through the equation:

Where m0 is the rest mass, γ is the relativistic factor and v is the particle velocity. 

Acceleration is usually provided by the electric field inside of RF cavities.  Magnetic 
fields are produced in the bending magnets for guiding the charges on the reference 
trajectory (orbit), in the quadrupoles for the transverse confinement, in the sextupoles 
for the chromaticity correction. 

However, there is another source of e.m. fields, the beam itself…
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d m0γ v( )
dt

= Fe.m.
ext = e E + v × B( )



In a real accelerator, in partcular at high currents, there is an important source of e.m. 
fields to be considered, the beam itself,  which circulating inside the pipe, produces 
additional e.m. fields:

Direct space charge

Image space charge

 Wake  fields  

SPACE CHARGE AND WAKE FIELDS

Space Charge



•  betatron tune shift
•  synchrotron tune shift   
•  energy loss
•  energy spread and emittance degradation
•  instabilities. 

These self induced fields depend on:
•  the beam current and beam distribution
•  the surrounding geometry and the beam pipe 
•  the surrounding  material.

They are responsible of many phenomena of beam dynamics: 



Fields of a point charge with uniform motion 
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•    In O’ the charge is at rest
•    The electric field is radial with spherical symmetry
•    The magnetic field is zero
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vt is the position of the point charge in the system O.
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E x = γ( # E x + v # B y )
E y = γ( # E y − v # B x )
Ez = # E z
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Relativistic transforms of the fields and coordinates from O’ to O
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" r = " x 2 + " y 2 + " z 2( )1/2

" r = x2 + y2 +γ 2(z − vt)2[ ]1/2
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The electric field has lost the spherical symmetry but still keeps a 
symmetry with respect the z-axis.
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x2 + y2 + γ 2z2[ ]3/2
The field pattern is moving 
with the charge. For example, 
at t=0 we have



Electric field lines of a charge moving with velocity of 0.9c
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Bz = 0
Bx = −vE y /c
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B is transverse to the motion direction

!
B⊥ =

!v ×
!
E

c2

γ >> 1 

€ 

E x = γ( # E x + v # B y )
E y = γ( # E y − v # B x )
Ez = # E z

Bx = γ( # B x − v # E y /c
2)

By = γ( # B y + v # E x /c
2)

Bz = # B z

Bθ =
vEρ

c2
=
βEρ

cEρ

B⊥ ≡ Bθ



q

q In the frame O’in which
 charges are at rest
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Relativistic transforms 

Lorentz force

Two point charges with same velocity on parallel trajectories



Space Charge
The effect of the Coulomb interactions in a multi-particle system can be classified  
into two regimes:

1)   Collisional Regime ==> dominated by binary collisions between particles ==> 
Single Particle Effects (e.g. intra-beam scattering)

2) Space Charge Regime ==> dominated by the self fields produced by the entire 
distribution ==> Collective Effects



Collisional and Space Charge regimes

•  The interaction of the charged particles in a beam can be represented by the sum of a 
“collisional” and a “smooth” force. The collisional part of the interaction force arises 
when a particle “sees” its immediate neighbours and is affected by their individual 
positions.  This  force  will  cause  small  random  displacements  of  the  particle’s 
trajectory and statistical fluctuations in the particle distribution as a whole. In most 
practical beams, however, this is a small effect, and the mutual interaction between 
particles is described largely by a smoothed force.

•  A measure for the relative importance of collisional versus smoothed interaction, of 
single-particle versus collective effects, is the Debye length, λD: it is a distance over 
which  a  local  perturbation  in  the  equilibrium charge  distribution  of  a  beam with 
transverse  temperature  T  and  density  n,  confined  by  external  focusing  fields,  is 
screened off. 



Collisional and Space Charge regimes

If the Debye length is large compared with the beam radius (λD >>a), the screening 
will be ineffective and single-particle behaviour will dominate (motion of particles 
is influenced by local perturbations): collisional regime.

On the other hand, if the Debye length is small compared to the beam radius (λD 
<<a),  smooth  functions  for  the  charge  and  field  distributions  can  be  used,  and 
collective effects due to the self fields of the entire beam will play an important role: 
space charge regime.

The charges sourrounding a test particle have a screening effect at a distance λD
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λD =
εokBT
e2n

kB= Boltzman constant
T = Temperature
kB T = average kinetic energy of the particles
n = particle density (N/V)

= γmo v⊥
2

λD



Example 1. Relativistic Uniform Cylindrical Beam
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Lorentz Force

Fr r( ) = e Er −βcBθ( ) = e 1−β 2( )Er =
eEr r( )
γ 2

The attractive magnetic force, which becomes significant at high velocities, 
tends to compensate the repulsive electric force. Therefore, space charge 
defocusing is primarily a non-relativistic effect.

•  has only radial component

•  is a linear function of the transverse coordinate
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Space charge with image

 charges/currents



Static Fields: conducting or magnetic screens 

Let us consider a point charge q close to a conducting screen. 

The electrostatic field can be derived through the "image method". Since 
the metallic screen is an equi-potential plane, it can be removed provided 
that a "virtual" charge is introduced such that the potential is constant at the 
position of the screen

q q - q



A constant current in the free space produces a circular magnetic field. 

If µr≈1, the material, even in the case of a good conductor, does not affect 
the field lines.
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For  ferromagnetic  materials,  with  µr>>1,  the  very  high  magnetic 
permeability makes the tangent magnetic field zero at the boundary so that 
the magnetic field is perpendicular to the surface, just like the electric field 
lines close to a conductor. 

In analogy with the image method we get the magnetic field, in the region 
outside of the material, as superposition of the fields due to two symmetric 
equal currents flowing in the same direction. 

Law of refraction of 
magnetic field lines:

tanθ1
tanθ2

=
µr1

µr2

µr2 →∞⇒θ1→ 0



Satisfying a magnetic boundary condition by an image current.
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Time-varying fields  

Static electric fields vanish inside a conductor for any finite conductivity, 
while magnetic fields pass through unless of high permeability. 
This is no longer true for time changing fields, which can penetrate inside 
the  material  in  a  region  δw  called  skin  depth.  Inside  the  conducting 
material we write the following Maxwell’s equations:

Copper σ = 5.8 107 (Ωm)-1 
Aluminium σ = 3.5 107 (Ωm)-1 
Stainless steel σ = 1.4 106 (Ωm)-1 
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Consider a plane wave (Hy, Ex) propagating in the material
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(the same equation holds for Hy). Assuming that fields propagate  
in the z-direction with the law:

Hy = H 0e
iωt−kz
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(k2 +εµω 2 − iωµσ ) Eoe
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We say that the material behaves like a conductor if  σ >>ωε  thus: 
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Fields propagating along “z” are attenuated. 
The attenuation constant measured in meters is called skin depth δw: 

δw ≅
1

ℜ(k)
=

2
ωσµ

The skin depth depends on the material properties and on the frequency.
Fields pass through the conductor wall if the skin depth is larger than 
the wall thickness Δw. This happens at relatively low frequencies. 
 
At higher frequencies, for a good conductor  δw<< Δw and both  
electric and magnetic fields vanish inside the wall.   
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δw ≅
6.6
f (Hz)

(cm);       ω = 2πf

For a pipe 2mm thick, the fields pass through the wall up to 1 kHz. 
(Skin depth of Aluminium is larger by a factor 1.28)

For the copper
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Ratio σ/ωε as a function of frequency f for some common media (log-log plot)

Note  that  copper  behaves 
like  a  conductor  at 
frequencies  far  above  the 
microwave  region.  On  the 
other hand, fresh water acts 
like  a  dielectrics  at 
frequencies  above  about 
10MHz

M = log σ
εω

=

= log σ
ε2π

− log f

= log σ
ε2π

− N



•  Compare the wall thickness and the skin depth (region of penetration 
of the e.m. fields) in the conductor. 

•  If the fields penetrate and pass through the material, they can  
interact with bodies in the outer region. 

•  If the skin depth is very small (rapidly varying fields), fields do not 
penetrate, the electric field lines are perpendicular to the wall, as in the 
static case, while the magnetic field lines are tangent to the surface. 
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Example 2: Circular  Perfectly Conducting  Pipe 
(Uniform Beam at Center)

If  we  take  the  previous  uniform cylindrical  beam and 
enclose it into a cylindric perfectly conducting pipe, the 
field lines are not perturbed because the electric ones are 
already radial and then perpendicular to the pipe, and the 
magnetic ones remain circular. The presence of the pipe 
does not affect the fields.
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In the case of cylindrical charge distribution, with γ>>1, the electric field lines can be 
considered perpendicular to the direction of motion. The transverse fields intensity can 
be computed as in the static case, applying the Gauss’s and Ampere’s laws.

This direct space charge force does not depend on the longitudinal 
position along the beam. If λ is not constant, one should consider 
the local charge density λ(z) (some examples in the exercises)
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Defocusing  transverse  self  induced  forces  produced  by  direct  space 
charge in case of uniform (left) and Gaussian (right) distributions. 

If the transverse distribution is not uniform, we can still apply 
Gauss’s and Ampere’s laws (example in the exercises).



Relativistic  Uniform Cylindrical Beam – finite length 

δs ≅ b
γ

l0 >> δs

γ >>
b
l0Beam pipe radius b

Bunch length l0

Widening at the wall δs 

δsl0

e.g.: 
b = 1 cm 
l0 = 100 μm

γ >> 100
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∝
1
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Parallel Plates (Beam at Center)

In  some  cases,  the  beam  pipe  cross 
section  is  such  that  we  can  consider 
only  the  surfaces  closer  to  the  beam, 
which behave like two parallel plates. In 
this case, we use the image method to a 
charge distribution of radius a between 
two  conducting  plates  2h  apart.  By 
applying the superposition principle we 
get the total image field at a position y 
inside the beam. 
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Where we have assumed h>>a≥y. 

For d.c. or slowly varying currents, the boundary conditions imposed by 
the conducting plates do not affect the magnetic field. 

There is no magnetic field which can compensate the electric field due to 
the "image" charges. 
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From the divergence equation                              we derive also the other 
transverse component:
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Therefore, for γ>>1, and for d.c. or slowly varying currents the cancellation effect applies 
only for the direct space charge forces. There is no cancellation of the electric and magnetic 
forces due to the "image" charges.
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Usually, the frequency spectrum of a beam is quite rich of harmonics, especially 
for bunched beams. 

To simplify  our  study  it  is  convenient  to  decompose  the  current  into  a  d.c. 
component, I, for which δw >>Δw, and an a.c. component, Î, for which δw<< Δw.

The d.c. component of the magnetic field does not perceive the presence of the 
material, and only the ‘image’ electric field must be considered.

The a.c. component of the magnetic field must be tangent to the pipe wall, and it 
can be obtained by using an infinite  sum of  image currents  with  alternating 
directions as we did for the electric field.

We can see that this magnetic field is able to cancel the effect of the electric 
force.

Parallel Plates (Beam at Center) a.c. currents
Δw

δw
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For  the  a.c.  current  there  is  cancellation  of  the  electric  and 
magnetic forces.
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ˆ I = βc ˆ λ ( )



Parallel Plates - General expression of the force 

Taking  into  account  all  the  boundary  conditions  for  d.c.  and  a.c. 
currents, considering also the presence of ferromagnetic materials in 
dipoles, we can write the expression of the force as:
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u = x, y

where λ is the total current divided by βc, λ its d.c. part, g the gap in a 
dipole, and we take the sign (+) if u=y, and the sign (–) if u=x.

It  is  interesting  to  note  that  these  forces  are  linear  in  the  transverse 
displacement x and y. 
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-L. J. Laslett, LBL Document PUB-616, 1987, vol III



Space Charge Force - General expression

One often finds the space charge force written in terms of the Laslett 
form factors f0, f1 and f2  

where the Laslett form factors can be obtained for several beam pipe 
geometries. 

For example, for our case of parallel plates, we have:
 f0=1/2, f1=π2/48, f2=π2/24
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D.C. A.C.
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λ(z) = λo +  ˆ λ  cos kzz( )   ;  kz = 2π / lw

(δw<< Δw)



Space charge effects in 

circular accelerators



Consider  a  perfectly  circular  accelerator  with  radius  ρx.  The  beam 
circulates inside the beam pipe. The transverse single particle motion in 
the linear regime, is derived from the equation of motion. Including the 
self field forces in the motion equation, we have:

d mγ  v( )
dt

= F ext r( )+F self r( )
dv
dt
=
F ext r( )+F self r( )

mγ

Self fields and betatron motion
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 r = ρ x+x( )ˆ e x + y ˆ e y
 v = ˙ x ̂  e x + ˙ y ̂  e y +ω0 ρ x+x( ) ˆ e z
 a = ˙ ̇ x −ω0

2 ρ x+x( )[ ] ˆ e x + ˙ ̇ y ̂  e y + ˙ ω 0 ρ x+x( ) + 2ω0 ˙ x [ ]ˆ e z

Following the same steps of the "transverse dynamics" lectures, we 
write:

For the motion along x:
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We assume a small transverse displacement x so that:
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The external force is due to the magnetic guiding fields. We suppose to 
have  only  dipoles  and  quadrupoles,  or,  equivalently,  we  expand  the 
external guiding fields in a Taylor series up to the quadrupole component:
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the dipolar magnetic field By0 is responsible of the circular motion along 
the reference trajectory of radius ρx according to the equation :
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We finally get:

where we have introduced the normalized gradient
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with g the quadrupole gradient in [T/m] and p the charge momentum 



Both the curvature radius and the normalized gradient depend on the 
azimuthal position ‘s’. By using the focusing constant Kx(s) we then 
should write:

 Putting vz= βzc≅βc (small beam divergence), we get

where E0 is the particle energy.

In absence of self fields, the solution of the free equation, known as 
Hill’s equation gives the betatron oscillation.
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•  In the analysis of the motion of the particles in presence of the self 
fields, we will adopt a simplified model where particles execute simple 
harmonic oscillations around the reference orbit. 

•  This is  the case for which the focusing term is  constant  along the 
machine. Although this condition in never fulfilled in a real accelerator, 
it provides a reliable model for the description of the beam instabilities.
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ʹ ́ x (s)+ Kx x(s) = 0
Free betatron motion:

Perturbed motion:



Transverse incoherent effects

We take the linear term of the self induced transverse force in the 
betatron equation:
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Transverse incoherent effects

The shift of betatron wave number (tune shift) is negative since the 
space  charge  forces  are  defocusing  on  both  planes  (the  betatron 
wavelength increases).  Remember that  the space charge force,  and 
then the tune shift, is, in general, function of “z”, λ(z), therefore this 
expression represents a tune spread inside the beam. This is why we 
call  it  incoherent.  This  conclusion  is  generally  true  also  for  more 
realistic  non-uniform  transverse  beam  distributions,  which  are 
characterized  by  a  tune  shift  dependent  also  on  the  betatron 
oscillation amplitude. When ΔQx is not constant in the beam, instead 
of tune shift the effect is called tune spread.
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Example  3:  incoherent  betatron  tune  shift  for a  uniform electron 
beam of radius a=100μm, length lo=100μm, inside a circular perfectly 
conducting  pipe (energy E0=1GeV, N=1010, ρx=20m, Qxo=4.15)
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Remember that for real bunched beams the space charge forces depend on the 
longitudinal and radial position of the charge => tune spread.
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ΔQ as function of beam emittance and filling factor of the ring

This expression is valid also in the general case of non-uniform focusing 
along the accelerator for a uniform beam inside a circular pipe. The linear 
effect of the self induced forces can be treated as a quadrupole error ΔK 
distributed along the accelerator
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Shift and spread of the incoherent  tunes
If the beam is located at the centre of symmetry of the pipe, the e.m. forces 
due to space charge and images cannot affect the motion of the centre of 
mass (coherent), but change the trajectory of individual charges in the beam 
(incoherent). 

These forces may have a complicate dependence on the charge position. 
Our simple analysis is done by considering only the linear expansion of 
the self-fields forces around the equilibrium trajectory.

The consequences are a shift and a spread of the incoherent tunes.



Consequences of the space charge tune spreads

In circular accelerators the values of the betatron tunes should not be close 
to rational numbers in order to avoid the crossing of linear and non-linear 
resonances where the beam becomes unstable. The spread induced by the 
space  charge  force  can  make  hard  to  satisfy  this  basic  requirement. 
Typically, in order to avoid major resonances the stability requires 

ΔQu < 0.5
*

If the tune spread exceeds this limit, it is possible to reduce the effect of space 
charge tune spread, e.g. by increasing the injection energy.

The  incoherent  tune  spread  produces  also  a  beneficial  effect,  called  Landau 
damping,  which can cure the coherent  instabilities,  provided that  the coherent 
tune remains inside the incoherent spread. 

*See, for example, J. Rossbach, P. Schmüser, ‘Basic course on accelerator optics’, CAS Jyväskylä 1992, CERN 
94–01, p. 76.
J. P. Delahaye, et al., Proc. 11th Int. Conf. on High Energy Accelerators, Geneva, 1980, p. 299.



CERN  PS  Booster  accelerates  proton  bunches 
from 50 to 800 MeV in about 0.6 s. The tunes 
occupied  by  the  particles  are  indicated  in  the 
diagram by the shaded area. As time goes on, the 
energy  increases  and  the  space  charge  tune 
spread gets smaller covering at t=100 ms the tune 
area  shown  by  the  darker  area.  The  point  of 
highest  tune corresponds to the particles  which 
are least affected by the space charge. This point 
moves  in  the  Q  diagram  since  the  external 
focusing is  adjusted such that  the reduced tune 
spread  lies  in  a  region  free  of  harmful 
resonances.

The small red area shows the situation at t=600 ms when the beam has reached the 
energy of 800 MeV. The tune spread reduction is  lower than expected with the 
energy increase (1/γ3) dependence since the bunch dimensions also decrease during 
the acceleration. 

Example from A. Hofmann in CAS 1992 (General Course - Jyväskylä Finland) 



Transverse coherent effects

If the beam experiences a transverse deflection kick, it starts to perform 
betatron oscillations  as  a  whole.  The beam,  source of  the  space charge 
fields moves transversely inside the pipe, but its centre of mass (X), due to 
simmetry, cannot be affected by the direct space charge. Only image space 
charge can affect its motion.

X
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The image charge is at a distance “d” such that
the pipe surface is at constant voltage, and pulls
the beam away from the center of the pipe.



The effect is defocusing: the horizontal electric image
 field E and the horizontal force F are: 
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Example 4: coherent betatron tune shift for a uniform electron beam 
of length lo=100μm, inside a circular perfectly conducting  pipe of 
radius b=14cm, (energy E0=1GeV, N=1010, ρx=20m, Qxo=4.15)

re =
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4πεomoc2  = 2.82×10−15m

ΔQxc = −
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≈ ?       -0.7



Consequences of the space charge forces on LINACS

For the stability it  is required anyway that the defocusing space charge 
forces must not be larger than the external focusing forces.

In a LINAC or a beam transport line, the space charge forces cause energy spread and 
perturb the equilibrium beam size.

They  can  also  lead  to  a  significant  longitudinal-transverse  correlation  of  the  bunch 
parameters, which may produce mismatch with the focusing and accelerating devices, 
thus contributing to emittance growth.

The dynamics can be studied by considering the beam as an ensemble of longitudinal 
slices, for each of which it is possible to write a differential equation giving the behavior 
of the transverse dimension along the machine (envelope equation).



  LONGITUDINAL FORCES 

E ⋅dl = − ∂
∂t!∫ B ⋅ndS

S
∫

We choose as path a rectangle 
going  through  the  beam  pipe 
and  the  beam,  parallel  to  the 
axis. 

Longitudinal forces can be obtained from the knowledge of the transverse 
ones.
In order to derive the relationship between the longitudinal and transverse 
forces inside a beam, let us consider the case of cylindrical symmetry and 
ultra-relativistic bunches.  We know from Faraday's law of induction that a 
varying magnetic field produces a rotational electric field:

z z+Δz
beam
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where (1-β2)=1/γ2. For perfectly conducting walls Ez=0. 
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Transverse uniform beam in a circular p.c. pipe. 



Longitudinal self fields and synchrotron motion
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Δϕ is the phase difference with respect to the synchronous particle. 
Including longitudinal space charge forces the equation becomes:

Longitudinal equations of motion for constant energy and circular machine, 
ignoring radiation damping 
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ϕ is the RF phase, h the harmonic number, η the slippage factor, ΔE the 
energy difference with respect to the synchronous particle 

η =
1
γ 2
−αc



There are numerical  codes used to evaluate the space charge effects  in circular  accelerators  and 
Linacs:

ORBIT: Objective Ring Beam Injection and Tracking Code 
https://oraweb.cern.ch/pls/hhh/code_website.disp_code?code_name=ORBIT
ORBIT is  a  computer  code designed for  beam dynamics  calculations  in  high-intensity  rings.  Its 
intended  use  is  the  detailed  simulation  of  realistic  accelerator  problems,  although  it  is  equally 
applicable to idealized situations. ORBIT is a particle-in-cell tracking code in 6D phase space that 
transports bunches of interacting particles through a series of nodes representing elements, dynamic 
effects, or diagnostics that occur in the accelerator lattice. It can be used in combination with PTC, a 
6D integrator as tracker.

GPT: General Particle Tracer
http://www.pulsar.nl/gpt/

GPT is based on full 3D particle tracking techniques, providing a basis for the study of all 3D and 
non-linear  effects  of  charged particles  dynamics in  electromagnetic  fields.  All  built-in  beam line 
components and external 2D/3D field-maps can be arbitrarily positioned and oriented to simulate a 
complicated setup-up and study the effects of misalignments. An embedded fifth order Runge-Kutta 
driver with adaptive stepsize control ensures accuracy while computation time is kept to a minimum. 
GPT provides various 2D and 3D space-charge models.

Numerical Analysis - 1



PARMELA: Phase and Radial Motion in Electron Linear Accelerators
http://laacg.lanl.gov/laacg/services/serv_codes.phtml#parmela

PARMELA  is  a  multi-particle  beam  dynamics  code  used  primarily  for  electron-linac  beam 
simulations. It is a versatile code that transports the beam, represented by a collection of particles, 
through a user-specified linac and/or transport system. It includes several space-charge calculation 
methods.  Particle  trajectories  are  determined  by  numerical  integration  through  the  fields.  This 
approach is particularly important for electrons where some of the approximations used by other 
codes (e.g. the "drift-kick" method commonly used for low-energy protons) would not hold. 

PARMILA: Phase And Radial Motion in Ion Linear Accelerators 
http://www.lanl.gov/projects/feynman-center/technologies/software/parmila.php

Parmila has been the standard code for the design of RF linacs for many years. The enhanced, second 
generation, PARMILA 2 program is utilized in the PBO Lab PARMILA-2 Module. The Module is 
ideally suited for the design of complex ion accelerator components such as drift tube linacs (DTLs), 
coupled cavity linacs (CCLs), coupled-cavity drift tube linacs (CC-DTLs) and superconducting linacs 
(SCLs).  The  program offers  two  different  multi-particle  space  charge  algorthims  which  permits 
comparing different high beam current modeling approximations. The PARMILA-2 Module is also 
useful  for  the  simulation  of  intense  beams  in  transport  channels  and  for  studying  beam  loss, 
misalignments, cavity mispowering, and similar off-nominal operation.
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