

Accelerators for Medical Application

Marco Schippers

Acc. for Medical Applications

- Introduction: proton therapy
- How to apply the radiation dose
- Accelerators and beam transport
- Operational aspects
- Safety

The boost in particle therapy

PAUL SCHERRER INSTITUT

X-rays vs. Protons

X-rays vs. Protons

X-ray beams (IMRT) from 7 directions

Proton beams from 3 directions

pictures: Medaustron

Dose delivery techniques: Depth

Tumor thickness

PAUL SCHERRER INSTITUT

- → spread-out Bragg peak
- \rightarrow energy modulation
- During trmt \rightarrow "fast" (<0.1-0.2 sec)

Dose delivery techniques: Depth

Vary energy at accelerator

Synchrotron: Set energy at each spill:

- → Sets range only
- ➔ energy modulation in nozzle

Cyclotron has fixed energy => slow down (degrade) to desired energy

Pencil beam scanning

Present accelerator choice

e.g: Boston Florida Seoul Wanjie PSI München Orsay

Houston

Tsukuba

	cyclotron	synchrotron
Protons	in use, Ø3.5-5 m	in use, Ø8-10 m
Carbon ions	in design, Ø6 m	in use, Ø25 m

Cyclotron (1930)

250 MeV proton cyclotron (Varian)

Closed He system 4 x 1.5 W @4K

Proton source

superconducting coils => 2.4 - 3.8 T

4 RF-cavities ~100 kV on 4 Dees

Acc. for Medical Applications

Internal proton source

Acc. for Medical Applications

Beam on/off at PSI

Acc. for Medical Applications

=> An isochronous cyclotron provides:

- + high intensity (if desired)
- + accurate and adjustable intensity
- + continuous beam
- + fast Energy change with degrader

Disadvantages:

- degrader needed
- activation
- one particle type (protons)

Small cyclotron; strong field

PAUL SCHERRER INSTITUT

Synchro-Cyclotron

Synchro-Cyclotron

First beam extracted in May 2010

First beam at IBA in 2013

Acc. for Medical Applications

Synchrotron (1945)

Extraction into beam line

Ring:

- acceleration to desired E
- storing of the beam

Injection in ring at 7 MeV/nucl

2 linear accelerators in series

Magnet to select ion source

Ion sources for different particles

Extraction

=> a synchrotron provides:

- + high energy (if desired)
- + any particle
- + low radioactivity

Disadvantages:

- limited average intensity (ring filling)
- spill structure => low average dose rate
- energy change: wait for next spill (in development)
- noisy beam intensity

Particle therapy facility

gantry / fixed hor. line

Gantries

Acc. for Medical Applications

PSI Gantry-2: fast 3D scanning

Acc. for Medical Applications

Gantry as seen from patient side

ACC.Lab <-> Hospital

Groningen Protonen Therapie Centrum

Operators Technicians Experienced workshops More improvised actions

New settings need more procedures (operator) radiologist operates Technicians:only small repairs Service by equipment company CE/FDA-certification: PROCEDURES

Fractionated treatment

to spare healthy tissue

But: DO NOT interrupt treatment for more than 3-5 days

Operational aspects

Operational aspects

Operational aspects

So...

no long services =>

- well scheduled short services
- know what to do
- easy access
 - => low dose level needed
 - => many prepared spare parts

- Dose application within 1-2 %: REPRODUCIBILITY
 => beam intensity, on/off, positioning accuracy
- «just retune and do a test»: NOT allowed
- Operational MODES: THERAPY / SERVICE
- Operation by medical staff
- Multiple treatment rooms => MASTERSHIP concept
 with (CE / FDA) certification:
 - **Procedures** for designing / building / repair / testing
 - Standardized documentation
 - Only **certified** staff for certain tasks

Safety <-> Availability

At Psi: Separate interlock systems:

Acc. for Medical Applications

Hierarchy of Interlock signals

Acc. for Medical Applications

Redundancy

PAUL SCHERRER INSTITUT **Operation: non-accelerator experts** What has happened? Strong need for NO BEAM **ERGONOMIC** display of: Status

Instructions

SUMMARY

Accelerators for Medical Application:

What is so special?

Technics: dedicated, but not on the limitbut...
 Reliable, Reproducible, Reliable, Reproducible

• **Operation**: by non accelerator experts

strictly according procedures

NO long services or shut downs

Control and safety:

VERY DEDICATED and **SPECIAL** :

Reliable, redundant, but not too sensitive

Acc. for Medical Applications