

RADIOACTIVE ION SOURCES

An Introduction

http://radchem.nevada.edu/

Ion Source for Radioactive Ion Beams (RIB) facilities

- Motivation: study exotic nuclei far from stability
- Two exotic RIB production method:
 - Isotope Separation On-Line (ISOL)
 - Projectile separation

1+ Radioactive source for ISOL

- Physics Requirement: Exotic nuclides may have a short half-life. The radioactive atoms have to be ionized and transferred to the beam line as fast as possible.
- Source Technical requirement:
 - Radiation hard (even 1 MGy)
 - Compact
 - Simple and reliable in use (no maintenance access due to the strong radiation level)

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1A	2A		3B	4B	5B	6B	7B		8B		1B	2B	3A	4 A	5A	6A	7A	8A
Period								\subset	Io	n sour	ce:)							
1	1 H								+ S	Surface									2 He
2	3 Li	4 Be								Laser		J		5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg		CER	Nb	eam	is, T	. Sto	ora, C	CAS_	2012	lect	ures	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							
* Lant	hani	des	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
Lance		400		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Ho	Er	Tm	Yb		
** Ac	tinic	les	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

As an example: after the CERN production target, the following 1+ ion sources are mainly used:

- 1. Surface Ion Source (SIS) (see ion source section)
- 2. Resonant Ionization Laser Ion Source (RILIS)
- 3. Forced Electron Beam Induced Arc Discharge (FEBIAD)

(Slide H. Koivisto, JUAS2013)

Surface Ion Source with ISOL-target

- Production target can produce large variety of different nuclei having the same mass
- Produced 1+ ions having same mass cannot be separated by a dipole magnet
- Some "selectivity" can be made by a tape system

How to separate Iso-mass radioactive atoms?

• Sometimes only a very small amount of the element of interest is produced. This is a great problem if other elements having the same mass and higher abundance have been produced! For example:

Resonance Ionization Laser Ion Source (RILIS)

- The co-produced iso-mass radioactive atoms have specific electronic level states
- Lasers can help selecting the atom of interest using any specific resonant excitation state having a much higher cross section than others
- When using several appropriate lasers, only the element of interest is ionized!

Uas

Resonance Ionization example

- Order of magnitudes photo-ionization cross sections:
 - non-resonant (direct ionization): $\sigma = 10^{-19} 10^{-17} \text{ cm}^2$
 - resonant: $\sigma = 10^{-10} \text{ cm}^2$
 - auto-ionizing states (AIS): σ = 10⁻¹⁴ cm²
- Several laser wavelength are often required

Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source

•FEBIAD are used for example at CERN and TRIUMF to produce radioactive 1+ beams at $\sim \mu A$ intensity level.

- the electrons are produced by a hot cathode
- electrons are accelerated through a grid
- Electron impact ionization of vapors emitted by the hot anode

Charge breeding $(1 \rightarrow Q +)$

 The charge breeding technique consists to increase the ion beam charge state online

accelerator	Max. Energy reached (MeV/u)	parameters
Cyclotron	$K\left(\frac{Q}{A}\right)^2$	K~(Br) ² B : cycl.magnetic field r : cycl.radius
LINAC	$\frac{Q}{A}\langle E_{acc.}\rangle$ L	⟨ E_{acc.}⟩ : average acceleration field L : LINAC length

- Motivations to increase the radioactive ion charge state Q:
 - Higher energy reachable
 - Shorter accelerator dimension (COST REDUCTION)
 - Faster transport to the experiment
 - Furthermore, for LINAC, the RFQ radius decreases with the $\frac{Q}{A}$
 - LINAC cost ~ $length \times radius^n$ 1 < n < 2

The 3 Charge breeding techniques

- Stripper foil
 - A foil is placed in the beam to multiionize the beam
 - Several charge states extracted
 - Mean charge state function of the beam velocity
 - Work with high currents, but Emittance increase
 - Not discussed here
- ECR charge breeder
 - A decelerated 1+ ion beam passes through a plasma with hot electrons
- EBIS charge breeder
 - A decelerated 1+ beam is trapped in an EBIS and crossed an intense electron beam

Fast electrons

Slow electrons

Q+

Q+

Fast ions

Carbon foil at CERN LINAC3

$$\eta = \frac{I(q+)}{q.I(1+)}$$

ECR charge breeder

- lons are decelerated down to a few eV and cross slowly a $10^{12} \ e^-/cm^3$ plasma with hot electrons
 - · lons are naturally decelerated to the ion plasma temperature
 - Ions collide with other ions (coulomb collision) and scatter => memory loss
 - · lons are ionized on flight
 - lons are <u>captured by the plasma</u>, and finally extracted after having being multiionized

ECR Charge breeder

• Optimization of ion beam capture: ΔV plot

 The 1+ beam emittance and energy needs to be carefully tuned to grant plasma capture, specially for condensables which are lost if they touch the ion source wall

ECR Charge Breeder features

- 1+ beam intensity up to \sim 100 eµA •
- Continuous Work operation
- Breeding time \sim 3-10 ms/charge
- Breeding efficiencies in the range : $\eta \sim 2 18\%$
- Extracted beam contaminated by any chemical species present in the source and vacuum (source operation a 10⁻⁷ mbar)
 - C.N.O.H.Fe.Cu.Al.Ar.Kr.Xe...
- Requires a very high resolution mass separator downstream to purify the beam

JUas

EBIS Charge Breeding

- Bunch of 1+ ions are introduced in an electron beam ion source
 - The ions are electrostatically confined and are ionized by an intense electron beam

gas filled cylindrical Penning trap

beam in

Ion cooling Prior to EBIS injection

- Prior to EBIS injection, the 1+ RIBs needs to pass throught a Penning trap to:
 - Accumulate the beam
 - Bunch the beam
 - Cool down the ions to reduce the emittance

EBIS charge breeder features

- Breeding time τ ~1-5 ms/charge
- Breeding efficiency η ~5-20%
- Limited extracted beam intensity : $10^9 10^{10}$ ions/s (~1 enA)
- Very low contamination (P~10⁻¹⁰ mbar)
- Requires a beam cooling stage (Penning trap)

Source : F. Wenander CAS 2012

Element of Bibliography

- J.R. Pierce, Theory and Design of Electron Beams, Van Nostrand Company, 1954
- S. Schiller, U. Heisig, S. Panzer, Electron beam technology, John Wiley & Sons Australia, Limited, 1982
- Low Emittance Thermionic Electron Guns, SLAC-PUB-4843, January 1989
- V. M. Aguero and R. C. Adamo, 6th Spacecraft Charging Technology Conference, AFRL-VS-TR-20001578, 1 September 2000
- Ultra Low Emittance Electron Gun Project for FEL Application THP27, Proceedings of LINAC 2004, Lübeck, Germany, www.jacow.org
- Beam characterization for the field-emitter-array cathode-based low-emittance gun, S. C. Leemann, A. Streun, and A. F. Wrulich, Phys. Rev. Special Topics Accelerators and Beams 10, 071302 (2007)
- K.L. Jensen et al., Jour. Appl. Phys. 107, 014903 (2010) (electron source emittance
- D.H. Dowell, USPAS 2008, January, High Brightness Electron Injectors for Light Sources
- A. Hawari, D. Gidley, J. Xu, J. Moxom, A. Hathaway, B. Brown, R. Vallery; "The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor"; Application of Accelerators in Research and Industry; 20th International Conference; 2009
- L. Rinolfi, R. Chehab, O. Dadoun, T. Kamitani, V. Strakhovenko, A. Variola, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **309** (2013) 50-55
- Ian G. Brown The Physics and Technology of Ion Sources, Wiley & Sons, ISBN 3-527-40410-4
- R. Geller, Electron Cyclotron Resonance Ion Sources, ISBN 0-7503-0107-4
- F. Wenander, CAS 2012, Senec, Charge Breeding of Radioactive Ions