Joint Universities Accelerator School JUAS 2016 Archamps, France, 22nd – 26th February 2016

Normal-conducting accelerator magnets

Thomas Zickler, **CERN**

Normal-conducting accelerator magnets

Normal-conducting accelerator magnets

 \odot

- Goals in magnet design and coherence
- What do we need to know before starting?
- Defining the requirements & constraints
- Deriving the magnet main parameters
- Coil design and cooling

Goals in magnet design

The goal is to produce a product just good enough to perform reliably with a sufficient safety factor at the lowest cost and on time.

- Good enough:
	- Obvious parameters are clearly specified, but tolerance difficult to define
	- Tight tolerances lead to increased costs
- Reliability:
	- Get MTBF and MTTR reasonably low
	- Reliability is usually unknown for new design
	- Requires experience to search for a compromise between extreme caution and extreme risk (expert review)
- Safety factor:
	- Allows operating a device under more demanding condition as initially foreseen
	- To be negotiated between the project engineer and the management
	- Avoid inserting safety factors a multiple levels (costs!)

Magnet interfaces

A magnet is not a stand-alone device!

Design process

Electro-magnetic design is an iterative process:

- Field strength (gradient) and magnetic length
- Integrated field strength (gradient)
- Aperture and , good field region'
- Field quality:
	- field homogeneity
	- maximum allowed multi-pole errors
	- settling time (time constant)
- Operation mode: continous, cycled
- **Electrical parameters**
- Mechanical dimensions
- **Cooling**
- Environmental aspects

General requirements

Performance requirements

Performance requirements

Field quality

- •Homogeneity (uniformity)
- Maximum allowed multipole errors
- Stability & reproducibility
- Settling time (time constant)
- •Allowed residual field)

Normal-conducting accelerator magnets

 $\ddot{\odot}$

Normal-conducting accelerator magnets

:ERI

Equipment linked to the magnet is defining the boundaries and constraints

Environmental aspects

Other aspects, which can have an influence on the magnet design

Normal-conducting accelerator magnets

Input parameters - Magnetic design - Coil design - Cooling - Summary

Magnet Components

Alignment targets Yoke **Coils** Sensors Cooling circuit Connections Support

Translate the beam optic requirements into a magnetic design

Beam rigidity

Bean rigidity (*B\rho*) [Tm]:
$$
(B\rho) = \frac{p}{q} = \frac{1}{qc}\sqrt{T^2 + 2TE_0}
$$

- $p:$ particle momentum [kg m/s]
- $q:$ particle charge number [Coulombs]
- c : speed of light [m/s]
- ^T: kinetic beam energy [eV]
- E_0 : particle rest mass energy [eV] (0.51 MeV for electrons, 938 MeV for protons)

" …resistance of the particle beam against a change of direction when applying a bending force…"

Magnetic induction

Dipole bending field *B* [T]:

- B : Flux density or magnetic induction (vector) [T]
- r_M : magnet bending radius [m]

 r_M $B=\frac{(B\rho)}{B}$

Quadrupole field gradient $B'[T/m]$:

 k : quadrupole strength $[m⁻²]$

 $B' = (B\rho)k$

- Sextupole differential gradient B'' [T/m2]: *B*'' = (*B*ρ)*m*
	- $m:$ sextupole strength $\lceil m^{-3} \rceil$

Aperture =

Good field region

Maximum beam size

- Lattice functions: beta functions and dispersion
- Geometrical transverse emittancies (energy depended)
- Momentum spread
- Envelope (typical 3-sigma)
- Largest beam size usually at injection
- + Closed orbit distortions (few mm)

2 $\overline{}$ $\sqrt{2}$ \int \setminus $\overline{}$ I \setminus $\int_{\mathbf{R}} \Delta$ $= \int_{1}^{1} \mathcal{E} \beta +$ *p* $\sigma = \sqrt{\varepsilon \beta + D \frac{\Delta p}{\rho}}$

- + Vacuum chamber thickness (0.5 5 mm)
- + Installation and alignment margin (0 10 mm)
	- *"…good field region: region where the field quality has to be within certain tolerances…"*

The two types are slightly different in terms of focusing:

- S-bend: focuses horizontally
- R-bend: no horizontal focusing, but small vertical defocusing at the edges

Note: the curvature has no effect, it is just for saving material, otherwise the pole would have to be wider ("*sagitta"*).

Excitation current in a dipole

Ampere's law $\oint \vec{H} \cdot d\vec{l} = NI$ and $\vec{B} = \mu \vec{H}$ with $\mu = \mu_0 \mu_r$

leads to
$$
NI = \oint \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_{gap} \frac{\vec{B}}{\mu_{air}} \cdot d\vec{l} + \int_{yoke} \frac{\vec{B}}{\mu_{iron}} \cdot d\vec{l} = \frac{Bh}{\mu_{air}} + \frac{B\lambda}{\mu_{iron}}
$$

assuming, that B is constant along the path

If the iron is not saturated:

$$
\frac{h}{\mu_{air}} >> \frac{\lambda}{\mu_{iron}}
$$

then:
$$
NI_{(per\, pole)} \approx \frac{Bh}{2\eta\mu_0}
$$

 h : gap height [m] *η*: efficiency (typically 95% - 99 %)

Reluctance and efficiency

Reluctance:

Normal-conducting accelerator magnets

Normal-conducting accelerator magnets

© Thomas Zickler, CERN

 \odot

Thomas Zickler, CERN

 $_M$ μ _r μ ₀ *M* $M - \Phi$ ⁻ A $R_M = \frac{NI}{I} = \frac{l}{I}$ Φ =

Term ($\frac{1}{1}$) in previous slide is called 'normalized reluctance' of the yoke µ*iron* λ

Keep iron yoke reluctance less than a few % of air reluctance $(\frac{\prime\prime}{\prime\prime})$ by providing sufficient iron cross section ($B_{iron} < 1.5 T$) μ_{0} *h*

Efficiency:

$$
\eta = \frac{R_{M, gap}}{R_{M, gap} + R_{M, yoke}} \approx 99\%
$$

Magnetic flux

Flux in the yoke includes the gap flux and stray flux

Total flux in the return yoke:

$$
\Phi = \int_A B \cdot dA \approx B_{gap} (w + 2h) l_{mag}
$$

$$
B_{leg} \cong B_{gap} \frac{w + 2h}{w_{leg}}
$$

Pole design

It is easy to derive perfect mathematical pole configurations for a specific field configuration

In practice poles are not ideal: finite width and end effects result in multipole errors disturbing the main field

The uniform field region is limited to a small fraction of the pole width

Estimate the size of the poles and calculate the resulting fields

Better approach: calculate the necessary pole overhang using:

$$
x_{\text{unoptimized}} = 2\frac{a}{h} = -0.36 \ln \frac{\Delta B}{B_0} - 0.90
$$

- x : pole overhang normalized to the gap
- *a* : pole overhang: excess pole beyond the edge of the good field region to reach the required field uniformity
- h : magnet gap

Magnetic length

Coming from ∞ , B increases towards the magnet center (stray flux)

Magnetic length:
$$
l_{mag} = \frac{\int_{-\infty}^{\infty} B(z) \cdot dz}{B_0}
$$

'Magnetic' length > iron length

Approximation for a dipole: $l_{mag} = l_{iron} + 2hk$

Geometry specific constant k gets smaller in case of:

- pole length < gap height
- saturation
- precise determination only by measurements or numerical calculations

CERN

Choosing the shown integration path gives:

$$
NI = \oint \vec{H} \cdot d\vec{l} = \int_{s_1} \vec{H}_1 \cdot d\vec{l} + \int_{s_2} \vec{H}_2 \cdot d\vec{l} + \int_{s_3} \vec{H}_3 \cdot d\vec{l}
$$

For a quadrupole, the gradient $B' = \frac{dB}{dr}$ is constant
and $B_y = B'x$ $B_x = B'y$
Field modulus along s_1 : $H(r) = \frac{B'}{\mu_0} \sqrt{x^2 + y^2} = \frac{B'}{\mu_0} r$
Neglecting *H* in s_2 because: $R_{M,s_2} = \frac{s_2}{\mu_{iron}} << \frac{s_1}{\mu_{air}}$
and along s_3 : $\int_{s_3} \vec{H}_3 \cdot d\vec{l} = 0$
leads to: $NI \approx \int_{0}^{R} H(r) dr = \frac{B'}{\mu_0} \int_{0}^{R} r dr$

 $\frac{1}{2}$

ERN

Magnetic length for a quadrupole:

$$
l_{mag} = l_{iron} + 2rk
$$

NI increases with the square of the quadrupole aperture:

$$
NI \propto r^2 \qquad P \propto r^4
$$

More difficult to accommodate the necessary Ampere-turns (= coil cross section)

 \rightarrow truncating the hyperbola leads to a decrease in field quality

Coil design

Ampere-turns $\overline{N}I$ are determined, but the current density j , the number of turns N and the coil cross section need to be defined Bedstead or saddle coil

JUAS 2016

JUAS 2016

Power requirements

Assuming the magnet cross-section and the yoke length are known, one can estimate the total dissipated power per magnet:

$$
P_{dipole} = \rho \frac{Bh}{\eta \mu_0} \, j l_{avg} 10^6
$$

$$
= \rho \frac{Bh}{\eta \mu_0} \, j l_{avg} 10^6
$$
\n
$$
P_{quadrupole} = 2\rho \frac{B'r^2}{\eta \mu_0} \, j l_{avg} 10^6
$$

j: current density [A/mm²]:
$$
j = \frac{NI}{f_c A} = \frac{I}{a_{cond}}
$$

 ρ : resistivity [Ωm] of coil conductor

 l_{avg} : average turn length [m]; approximation: 2.5 l_{iron} < l_{avg} < 3 l_{iron} for racetrack coils

 a_{cond} : conductor cross section [mm²]

- A : coil cross section [mm²]
- f_c : filling factor = coil cross section net conductor area

(includes geometric filling factor, insulation, cooling duct, edge rounding)

Note: for a constant geometry, the power loss P is proportional to the current density *j.*

Note: If the magnet is not operated in dc, the rms power has to be considered.

Number of turns

The determined power can be divided into voltage and current: *P* =*UI*

Basic relations:

 $P_{magnet} \propto j$ *V*_{magnet} $\propto Nj$

```
R_{magnet} \propto N^2 j
```
Large $N = low$ current = high voltage

- Small terminals
- Small conductor cross-section
- Thick insulation for coils and cables
- Less good filling factor in the coils
- Large coil volume
- Low power transmission loss

Small $N =$ high current $=$ low voltage

- Large terminals
- Large conductor cross-section
- Thin insulation in coils and cables
- \sim 1000 ming factor in the construction \sim 0000 ming factor in the construction of \sim • Good filling factor in the coils
	- Small coil volume

dt

• High power transmission loss

The number of turns N are chosen to match the impedances of the power converter and connections

Attention when ramping the magnet: $V_{tot} = RI + L \frac{dI}{dt}$

Practical example ebg MedAustron

MedAustron: ion therapy facility under construction near Vienna/Austria

Providing beam energies from 120 to 400 MeV/u for carbon ions and from 60 to 220 MeV for protons

16 synchrotron bending magnets:

- Bending angle: 22.5°
- Bending radius: 4.231 m
- Field ramp rate: 3.75 T/s
- Max. current: 3000 A
- Overall length: < 2 m
- Good field region: 120 x 56 mm

- Field quality: $\frac{\Delta \int B \cdot dl}{\int B \cdot dl} = 2 \cdot 10^{-4}$ ∫ ∫ $B \cdot dl$ $B \cdot dl$

MedAustron Synchrotron

Dipole

- # of turns $N_{\text{(per pole)}}$: 16
- Current: 3000 A
- Voltage: 100 V

Quadrupole

- # of turns $N_{\text{(per pole)}}$: 20
- Current: 650 A
- Voltage: 12 V

Sextupole

- # of turns $N_{\text{(per pole)}}$: 14
- Current: 650 A
- Voltage: 16 V

Corrector

- # of turns $N_{\text{(per pole)}}$:240/96
- Current: 15/30 A
- Voltage: 7/3 V

Coil cooling

Air cooling by natural convection:

- Current density
	- $j \leq 2$ A/mm² for small, thin coils
	- Cooling enhancement:
		- Heat sink with enlarged radiation surface
		- Forced air flow (cooling fan)
- Only for magnets with limited strength (e.g. correctors)

Direct water cooling:

- Typical current density $j \leq 10$ A/mm²
- Requires demineralized water (low conductivity) and hollow conductor profiles

Indirect water cooling:

- Current density j ≤ 3 A/mm²
- Tap water can be used

JUAS 2016

JUAS 2016

Direct water cooling

Practical recommendations and canonical values:

- Water cooling: 2 A/mm² ≤ j ≤ 10 A/mm²
- Pressure drop: $1 \leq \Delta p \leq 10$ bar (possible up to 20 bar)
- Low pressure drop might lead to more complex and expensive coil design
- Flow velocity should be high enough so flow is turbulent
- Flow velocity u_{avg} ≤ 4 m/s to avoid erosion and vibrations
- Acceptable temperature rise: $\Delta T \leq 30^{\circ}C$
- For advanced stability: $\Delta T \leq 15^{\circ}C$

Assuming:

- Long, straight and smooth pipes without perturbations
- Turbulent flow = high Reynolds number (Re > 4000)
- Good heat transfer from conductor to cooling medium
- Temperature of inner conductor surface equal to coolant temperature
- Isothermal conductor cross section

Note: practical (non-SI) units are used in the following slides for convenience

Direct water cooling

Useful simplified formulas using water as cooling fluid:

Water flow Q [litre/min] necessary to remove power $P: Q_{water} = 14.3 \frac{P}{\Delta T} 10^{-3}$

- P : dissipated power [W]
- ΔT : temperature increase [°C]

Average water velocity u_{avg} [m/s] in a round tube: $u_{avg} = \frac{Q}{A} = 66.67 \frac{Q}{\pi d^2}$

- $A = \frac{\pi d^2}{4}$: tube section [mm²]
- d : hydraulic diameter [mm]

Pressure drop Δp [bar] : $\Delta p \approx 60 l \frac{Q^{1.75}}{d^{4.75}}$ (from Blasius' law)

 l : cooling circuit length $[m]$

Reynolds number Re []: $Re = d \frac{u_{avg}}{v} 10^{-3}$

- Re: dimensionless quantity used to help predict similar flow patterns in different fluid flow situations
- $ν$: kinematic viscosity of coolant is temperature depending, for simplification it is assumed to be constant (6.58 ⋅ 10⁻⁷ m²/s @ 40°C for water)

Direct water cooling

Number of cooling circuits per coil: $\Delta p \propto \frac{1}{K^3}$ 1 K_{W}^{3} ∆*p* ∝

 \rightarrow Doubling the number of cooling circuits reduces the pressure drop by a factor of eight for a constant flow

- Diameter of cooling channel: $\Delta p \propto \frac{1}{d^5}$ 1 *d* ∆*p* ∝
	- \rightarrow Increasing the cooling channel by a small factor can reduce the required pressure drop significantly

Cooling circuit design

 \int

 \setminus

 $\overline{}$ \setminus

 \int

w

T K

 \setminus

 $\sqrt{}$ $\int \frac{1}{\Delta}$

l

Already determined: current density *j*, power *P*, current *I*, number of turns N

- 1. Select number of layers m and number of turns per layer n
- 2. Round up N if necessary to get reasonable (integer) numbers for n and m
- 3. Define coil height c and coil width $b : A = bc = \frac{NI}{IA}$ (Aspect ratio c: b between 1 : 1 and 1 : 2 and $0.6 \le f_c \le 0.8$) $\int f_c$
- 4. Calculate average turn length $l_{avg} = pole$ perimeter + 4b
- 5. The total length of cooling circuit $l=\frac{K_cK_a}{K_c}$ (start with single cooling circuit per coil) 0.368 \leftarrow 0.21 c^{IVI} avg *K* K_c *Nl* $l =$
- 6. Select ΔT , Δp and calculate cooling hole diameter $0.5\left|\frac{I}{\Delta T K}\right| \left|\frac{l}{\Delta n}\right|$ $\overline{}$ \setminus $\bigg($ $= 0.5 \left(\frac{I}{\Delta T K_w} \right) \left(\frac{I}{\Delta p} \right)$ $d = 0.5 \left(\frac{P}{1.5} \right)$ *w*
- 7. Change Δp or number of cooling circuits, if necessary
- 8. Determine conductor area $a = \frac{I_{nom}}{j} + \frac{a^2 \pi}{4} + r_{edge}(4 \pi)$ $\frac{1}{2}$ *rom* + $\frac{a}{4}$ *r r*_{edge} *d I a*
- 9. Select conductor dimensions and insulation thickness *j*
- 10. Verify if resulting coil dimensions, N*,* I*,* V*,* ^Δ^T are still compatible with the initial requirements (if not, start new iteration)
- 11. Compute coolant velocity and coolant flow
- 12. Verify if Reynolds number is inside turbulent range (Re > 4000)
	- K_c: Number of coils
	- K_{ω} : Number of cooling circuits per coil

Cooling water properties

- For the cooling of hollow conductor coils demineralised water is used (exception: indirect cooled coils)
- Water quality essential for the performance and the reliability of the coil (corrosion, erosion, short circuits)
- Resistivity > 0.1×10^6 Qm
- pH between 6 and 6.5 (= neutral)
- Dissolved oxygen below 0.1 ppm
- Filters to remove particles and loose deposits to avoid cooling duct obstruction

- Magnetic design means translating beam optic requirements
- Before starting the design, all input parameters, requirements, constraints and interfaces have to be known and well understood
- Establishing the coherence between beam physics requirements, magnet design & manufacture, and measurements is indispensable for the success of a project
- Analytical design is necessary to derive the main parameters of the future magnet before entering into a detailed design using numerical methods
- Magnet design is an iterative process often requiring a high level of experience