SR workshop (R. Bartolini)

The goal of the workshop is to design synchrotron light source based on a DBA lattice. The beam energy is 2.5 GeV.

From the initial DBA cell from P. J. Bryant

• assume 8 DBA cells with 3.2 m straight sections

complete matching (achieve betay = 2m in SS, check tunes)

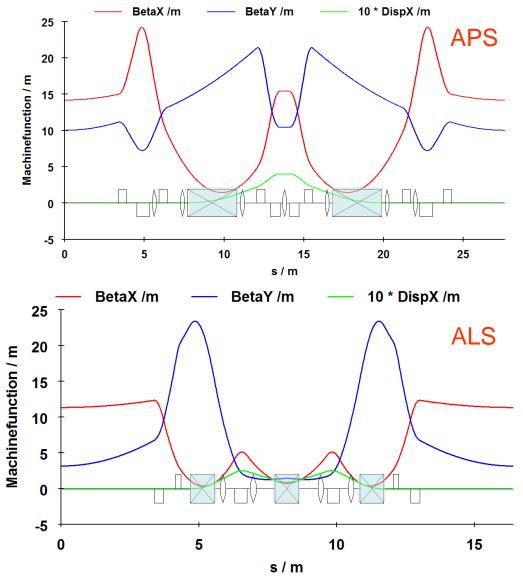
play with optics to reduce the emittance (break the achromatic condition)

compute critical frequency of bending, energy loss, total power radiated

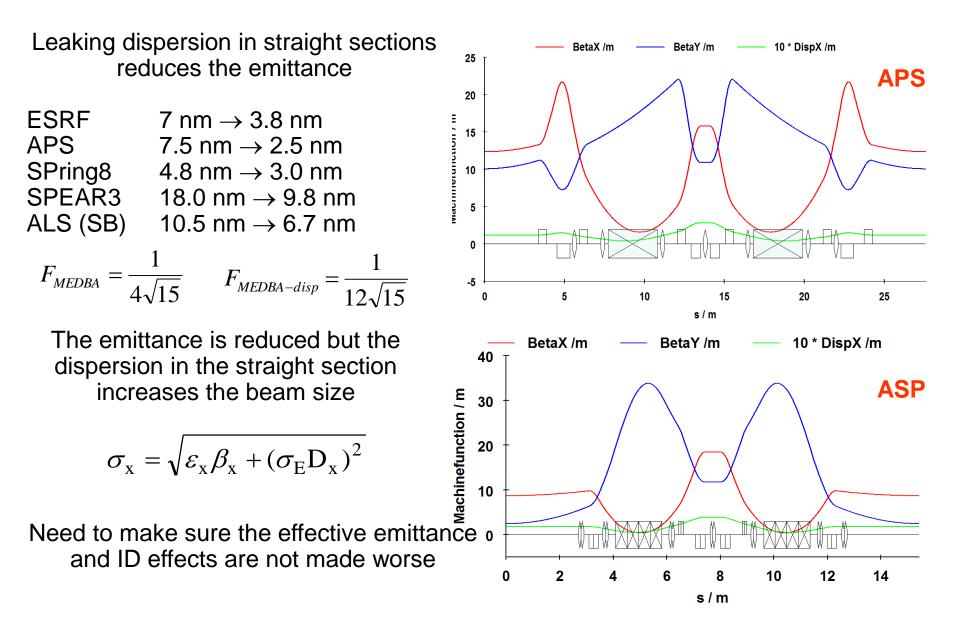
Install IDs to reach 8 keV

 compute tuning range, bandwidth, energy loss per turn, total power emitted by the IDs, brilliance, tuning curves

compute the RF power needed for 300 mA

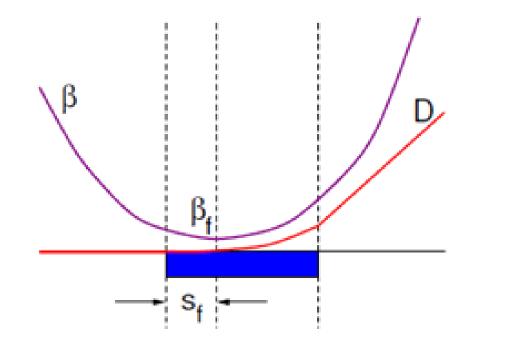

Low emittance lattices

Low emittance and adequate space in straight sections to accommodate long Insertion Devices are obtained in


Double Bend Achromat (DBA)

Triple Bend Achromat (TBA)

DBA used at: ESRF,	TBA used at ALS,
ELETTRA,	SLS,
APS,	PLS,
SPring8,	TLS
Bessy-II,	
Diamond,	
SOLEIL,	$C_a \gamma^2 \theta_b^3 = 1$
SPEAR3 \mathcal{E}_x	$= F \frac{C_q \gamma^2 \theta_b^3}{J_x} \propto \frac{1}{N_b^3}$
$F_{MEDBA} = \frac{1}{4\sqrt{15}}$	$F_{MEDBA-disp} = \frac{1}{12\sqrt{15}}$



Breaking the achromatic condition

Minimum emittance from a single dipole

The optics through the dipole looks like

Courtesy A. Streun

To close the dispersion this cell can be repeated mirror symmetrically using a quadrupoles. This is the simplest from of a double bend achromat called **Chashman-Green** lattice

Since $\epsilon \propto \theta^3$ many small angle bending are favoured to reach smaller emittances

Minimum emittance from a single dipole

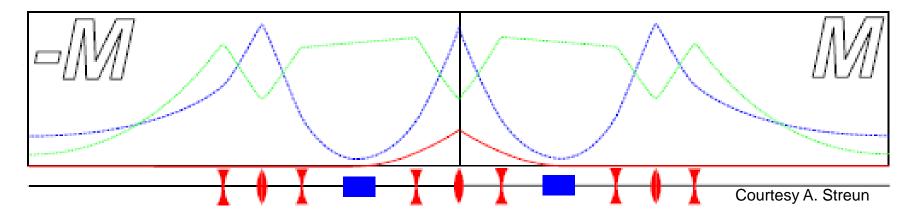
If we start with an achromatic condition at the beginning (or end) of the dipole we must find a minimum of <H> dipoles as a function of

 (α_0, β_0) with $(D_0, D'_0) = (0, 0)$

The average of the dispersion invariant is

< H $>_{dipoles} = \frac{1}{4\sqrt{15}} \rho \theta^3$ this is three time larger than the TME

The condition for the minimum emittance and requires that the focus of the beta function ($\alpha_f = 0$), i.e. the minimum of β is reached in the first half of the dipole and occurs at


$$s_f = \frac{3}{8}L$$
 and β reads $\beta_f = \frac{1}{8}\sqrt{\frac{3}{5}}L$

In this case, the values of the optics functions at the entrance of the dipole are

$$\beta_0 = 2L\sqrt{\frac{3}{5}}$$
 $\alpha_0 = \sqrt{15}$ $D_0 = D'_0 = 0$

Double Bend Achromat

A matching section can be added to tailor the optics for an insertion device as in

This is the basic structure of a DBA lattice used in many light sources

The horizontal emittance reached in medium size machines is in the order of few nm

$$\varepsilon_{\rm x} = \mathrm{F} \frac{\mathrm{C}_{\rm q} \gamma^2 \theta_{\rm b}^3}{\mathrm{J}_{\rm x}} \qquad \qquad F_{\rm MEDBA} = \frac{1}{4\sqrt{15}}$$