JUAS Accelerator workshop 2016

Final presentation

Outlook

- Presentation of the task & introduction of the team
- Lattice design
- RF design
- Collective effects and correction
- Vacuum considerations
- Magnet considerations
- Transition considerations

Presentation of the task & introduction of the team

Presentation of the task and the basic layout

- Replacement for the PS machine at CERN
- Acceleration of protons from a momentum of 3.5 GeV/c to a momentum of 20 GeV/c
- For the basic accelerator lay out a 'rectangular' ring design (with four superperiods) was chosen
 - + Space for beam control, correction and instrumentation
 - + Space for acceleration, injection and extractions
 - + Space for future tasks the accelerator may have to handle

bending region

straight region

Presentation of the groups

- Design is a 'rectangular' ring (four super periods)
- The project was divided into three main groups
 - Lattice group
 - RF group
 - Collective effects group
- Special attention has been payed to the magnets, the vacuum and the crossing of the gamma transition

Lattice design

Lattice design – basic parameters

Element	Number	Length	
Focusing quadrupoles	40	0,45m	
Defocusing quadrupoles	40	0,45m	
Bending dipoles	48	8m	

$$\rho_d = \frac{L_d}{2\pi/N_d} = 61,12m \ (R = 150m)$$

Accelerator workshop - final presentation

06/02/2016

Lattice design - geometry

Horizontal plan view [X-Y plane]

06/02/2016

Lattice design – lattice optimization

Accelerator workshop - final presentation

Average transversal dimension of the beam

$$\sigma_{x} = \sqrt{\varepsilon_{x} \cdot \beta_{x}} = 16.4mm$$
$$\sigma_{y} = \sqrt{\varepsilon_{y} \cdot \beta_{y}} = 11.6mm$$

Accelerator workshop - final presentation

06/02/2016

RF design

What we need Vs What we have:

 $\gamma_{transition} = 6.36$

Free Space
$$=\frac{250}{4}$$

For R.F = 64 m

Objectives for the RF:	$\Delta E = 16.4 \; GeV$	
. Get to 20 GeV/c.	$T_{REV(Inj)} = 3.25 \times 10^{-6} s$	
. Get the intensity of 3 x 10 ¹³ Protons/Beam.	$T_{REV(Ext)}$ = 3.14 x 10 ⁻⁶ s $\rho = 61.115 m$ (Bending Radius)	
. Preserve the beam from the booster.0. Try not to blow things up0	$\frac{dB}{dt} = \frac{B_{ext} - Binj}{T^*} = 3.6 [T/s]$	
Circunference (m)	982.48	
Number of protons per pulse	3E13	
Cycling frequency (Hz)	3.125	
Momentum at injection (GeV/c)	3.5	
Momentum at extraction (GeV/c)	20	
Gamma at Injection	3.86	
Gamma at Extraction	21.35	

h	Numbe	$er \ of \ proton \ /puls$	$es \ want$	ed = 20	$\in = 0.1 \pi eV.s$
n =	Number o	of proton / pulses .	from bo	$\overline{ooster} = 20$	$\Delta t = 51.2 ns$ $\Delta E = 3.9 MeV$
	Booster:	Number of rings	4		
	(fast cycling)	Average radius	37.5	Circumference [m]	235.619449
		Dipole occupation [fraction]	0.28	Length [m]	65.97344573
		Extraction momentum [GeV/c]	3.5	Top field [T]	1.111866667
				Gamma at extraction	3.862040361
				Beta at extraction	0.965895958
				Extraction kinetic energy [GeV]	2.685323679
				Rigidity at extraction [Tm]	11.674600
		Harmonia numbar		Extraction revolution period [s]	8.186139E-07
		Runching factor (neak/average)	5 66	Bunch lath/RE period	4.000309E+00
		Denoming racion (pearvaverage)	0.00	Extracted bunch loth [s]	5.12E-08
				Gap for kicker [s]	1.54E-07
		Kicker rise or fall time [s]	1.00E-07		
		Assume multi-turn injection with 2	0 turns with 50%	% efficiency after bunching giving (6.E12 particles/ring
		Particles per ring	6.00E+12	Particles/bunch	1.50E+12
		Norm. Hemit. [π mm mrad]	40	Geom. H. emit.[π mm mrad]	10.72291429
		Norm. V emit. [π mm mrad]	20	Geom. V. emit.[π mm mrad]	5.361457143
		Longitudinal emittance [eV s]	0.1		

 $f_{rev(inj)} = 307 \text{KHz}$

 $f_{rev(_{ext})} = 318$ KHz

 $f_{RF(inj)} = 6.14$ MHz

 $f_{RF(ext)} = 6.36$ MHz

 $\frac{\Delta f_{RF}}{f_{RF}} = 3.6 \%$

CERN PS cavity

Courtesy of Metral

Consideration for Transition:

 $\gamma_{transition} = 6.36$ $\emptyset_s(After Transition) = \pi - 30^\circ$

Some Numbers:

 $Q_{Inj} = 8.29 \ x \ 10 - 4$ $Q_{ext} = 2.265 \ x \ 10 - 4$ Ramp Time = 0.25 second $(\Delta E)_{gain} = 200 \ KeV$

Number of Turns = 72500 *turn*

Group photo

06/02/2016

Collective effects and corrections

Eleonora Belli, Rodrigo Varela, Jay Kalinani

1. Tune control

Remind: the tune is the number of oscillations per turn *Avoid resonance conditions (integer tune)*

$$Q_x = 7.1$$
 $Q_y = 7.05$

$$Q = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)} = \frac{\mu}{2\pi}$$

7.5000

1. Tune control (cont.)

 $\overline{2} \beta^2 \gamma^3 (2\epsilon_{x,y})$ 1.Coherent space charge 2. Incoherent space charge with $\frac{\Delta p}{D} = 10^{-3}$ @ 3.5GeV 3. Incoherent space charge with $\frac{\Delta p}{D} = 10^{-1}$ @3.5GeV 4. Incoherent space charge with $\frac{\Delta p}{D} = 10^{-3}$ @ 20GeV

 Nr_0

Accelerator workshop - final presentation

3. Closed orbit prognosis and correction

3. Closed orbit prognosis

Accelerator workshop - final presentation

06/02/2016

3. Closed orbit correction

CHOOSE PLANE :			
 Correct HORIZONTAL plane 	Compute	Add a corrector	
Correct VERTICAL plane	_# corrPk-Pk [m]	Mean [m]RMS [m]	15 correctors
CHOOSE MONITOR OPTION :	00.060406	0.0000890.016453	Expected closed orbit
🗩 Use elements of types HPU, VPU, HVPU	60.012841	0.0002460.002396	
• Use entries to quadrupoles for positions (backup mode)	8 0.012812	-0.000179 0.002277	\sim amplitude \approx 1cm
CHOOSE CORRECTOR OPTION :	90.011170 100.011060	0.0000890.002162 0.0000500.00213	
Use entries to quadrupoles for positions (backar mode)	120.011004	-0.000016 0.002120	
Se use entries to quadrupoles for positions (backup mode)	14 0.010635	-0.000061 0.002069	
Edit monitor and/or corrector lists		0.002014	
NO. OF CORRECTORS TO BE USED :			
Enter min. no. of correctors to be used 6			
Enter max. no. of correctors to be used 15			
Total no. of monitors available = 103			
Total no. of correctors available = 103			
COMPUTATIONAL METHOD :			
C Least Squares Fit + Gauss-Jordan (fast)			
Singular Value Decomposition Fit (safe)	SELECT ONE SOLUTION	N IN THE LIST BOX THEN CLICK OK	
C Least Squares Fit + Householder Trans. + Tri-diag.	OK	Cancel	

3. Closed orbit correction (cont.)

Pk-Pk amplitude $\approx 1 cm$

06/02/2016

Vacuum consideration

Vacuum considerations

	MAIN WINDOW											
Options	File C	alculations	Aids	Tables	Graphs	Output	: Help					
Sele	ction:			Conventio	onal magn	et desig	n aid	OK				
Center Are				Conventio	onal magn	et cost a	aid					
Center Arc				Eddy curre	ent calcula	ator		ring	je-	field Off		
				Water coo	pied coil d	osign ai	d	Iro	m	aticity eqn	Non-space cha	rge optics
	Eile e	, had		Vacuum d	lesign aid.	-)	<	,_F	т	ATTICE EI	EMENTS (On	Arrico
Quit	Tree la	ame ioas		RF cavity r	oerforman	ec aid			T	ATTICE EL	EMENTS (OI	-AXIS)
User title: Qu Halc				RFQ period performance aid								
			Halo collir	Halo collimation design aid			-					
Alias	Unit			Emittance	growth ca	alculato	r	1		Hor. Mbend	Vert. Mbend	Edge ang
	no.]	I		Relativisitic data calculator			4	4	[rad] 5	[rad] 6	[rad]	
	1	Center		Analytic m	natching			000	0	0.000000	0.000000	0.0
	2							0.0000	0	0.000000	0.000000	0.0
Grid	3))			0.0000	D	0.000000	0.000000	0.0
	4	QF1			QU/	ADR		0.4500	0	0.000000	0.000000	0.0
	5	s0			DRI	FT		1.440	5	0.000000	0.000000	0.0
	6	Dip1			SBE	END		8.0000	0	0.130900	0.000000	0.0
Field	7	s0			DRI	FT		1.4405	5	0.000000	0.000000	0.0
1 ieu	8	QD1			QU/	ADR		0.4500	0	0.000000	0.000000	0.0

VACUUM SYSTEM DESIGN AID

INTRODUCTION:

Equilibrium pressure calculation for an infinite array of uniformly spaced vacuum pumps connected to a vacuum pipe of circular or elliptical cross-section

INPUT.		OUTPUT	
EVICI.		001101.	
Pump separation [m] = 10		Maximum pressure	[Torr] = 1.01E-0010
Pump speed [1/s] = 50	COMPUTE	Average pressure	[Torr] = 9.13E-0011
Major half-width of pipe $[m] = 0.04$	<u>ا</u>	Minimum pressure	[Torr] = 7.00E-0011
Minor half-width of pipe $[m] = 0.0^{\circ}$	7	Conductance of pipe (over separation lgth)	[l/s] = 13.72
Specific surface area 'seen' by vacuum $[cm^2/m] = 35$		Specific conductance of pipe	[1 m/s] = 137.19
Specific out-gassing rate	. 10		
$(enter #.#E##) [10rr I/s/cm^2] = [10.1]$	-12		
Absolute temperature [K] = 300			Copy data to clipboard
Molecular weight of residual gas = 28	QUIT		Copy data to notebook
· · · · · · · · · · · · · · · · · · ·		Paste time stamp	Load from notebook
NOTES			
- The specific surface area 'seen' by v	acuum should be increased to	account for shields, scre	ens, bellows etc.
- Some typical outgassing rates are:	Stainless steel baked for 24 h	nour at 300 deg. C	= 1 E -12
51 0 0	Stainless steel, unbaked afte	r 100 hour pump-down	= 2 E -9
	Copper after 10 hour pump-o	lown	= 5 E -9
	Brass after 10 hour pump-do	wn	= 2.5 E -8
	Teflon and aluminium after 1	0 hour pump-down	= 1 E -7
	Araldites B, D and F after 10	hour pump-down	= 8 E -7, 5 E -7, and 4 E -7
	Nylon after 10 hour pump-do	own	= 4.5 E -6
- Molecular weights: 2(H2), 28(N2), 3	2(02).		

х

OUTPUT:

Maximum pressure	[Torr] = 1.01E-0010
Average pressure	[Torr] = 9.13E-0011
Minimum pressure	[Torr] = 7.00E-0011
Conductance of pipe (over separation lgth)	[l/s] = 13.72
Specific conductance of pipe	[l m/s] = 137.19

Pressure can be transformed to particle density:

P.V = N.k.T

10⁻¹⁰ Torr ~ 3 million particles/cm³

(1mbar ~0.75 Torr)

Da	itei	Start	Einfügen	Seitenlayout	Formeln	Daten	Überprüfe	
		D25	• (*	f_x				
		А	В	С	D	E	F	
1	1	11:59:30						
2	VAC	UUM SYS	STEM DESIGN:	INPUT- can b	e reloaded, o	do not re-f	format	
3	Pum	p separa	ation [m] =5					
4	Pum	p speed	[l/s] =50					
5	Majo	or half-w	idth of pipe [[m] =0.04				
6	Mind	or half-w	idth of pipe	[m] =0.07				
7	Spec	ific surfa	ace area 'seer	n' by vacuum	[cm^2/m] =35	5		
8	Spec	ific out-	gassing rate [Torr I/s/cm^2	2] =10E-12			
9	Abso	olute ter	nperature [K]	=300				
10	Mole	ecular w	eight of resid	ual gas =28				
11								
12								
13	VAC	UUM SYS	STEM DESIGN:	OUTPUT				
14	Maxi	imum pr	essure [Torr]	= 4.30E-0011				
15	Average pressure [Torr] = 4.03E-0011							
16	5 Minimum pressure [Torr] = 3.50E-0011							
17	7 Conductance of pipe (over separation lgth) [l/s] = 27.44							
18	Spec	ific cond	ductance of p	ipe [l m/s] =	137.19			
19								
20								

Output can be saved in an EXEL-file

06/02/2016

06/02/2016

$$P(x) = A_{q} \left\{ \frac{L_{x} - x^{2}}{2w} + \frac{L}{5} \right\}$$

$$P_{max} = A_{q} \left\{ \frac{L^{2}}{5w} + \frac{L}{5} \right\}$$

$$P_{av} = A_{q} \left\{ \frac{L^{2}}{12w} + \frac{L}{5} \right\}$$

Accelerator workshop - final presentation

06/02/2016

Magnet consideration

Dipoles

MAIN SPECIFICATIONS

Bmax [T]	1.09
Bending Radius [mm]	61500
Bending Angle [°]	7,44
Magnet lenght [mm]	8000

IRON YOKE SPECIFICATIONS

Pole iron gap [mm]	100
L overall [mm]	8270
L iron [mm]	7870
Pole width [mm]	500
Overall width [mm]	1400
Overall height [mm]	1100

COIL SPECIFICATIONS

Number of turns	220
Nominal current [A]	393
Conductor type	Hollow
Conductor dimensions [mm]	14 x 14
Hole diamater [mm]	8,5

WATER-COOLED COIL DESIGN AID ...

INTRODUCTION:

- Parameters are for a SINGLE water circuit.

It is left to the user to combine water circuits in series/parallel to get the overall temperature rise, power consumption, etc.
For circular conductors, set conductor height = width and the rounding radius = 0.5*width.

INPUT:			OUTPUT FOR SINC	GLE WATER C	IRCUIT:
Conductor height	[mm] = 17.15		Water speed	[m/s] =	2.61263
Conductor width	[mm] = 17.15		Water flow	[l/min] =	13.83346
Diameter of water hole	[mm] = 10.6		Water flow (turbul	ent/laminar)	TURBULENT
Radius of edge rounding	[mm] = 3	COMPUTE	Water temp. rise	[deg C] =	0.67739
	[]		Power dissipation	[watt] =	652.822
Conductor length in a single water circuit	[m] = 50		Resistance (hot)	[ohm] =	0.004227
Arailable water proceure			Current density	[A/mm^2] =	1.98335
for a single circuit	[bar] = 4		Conductor mass	[kg] =	88.50347
Input water temp.	[deg C] = 18	_	PROPOSION TRO		
		-	RESPONSE TIME:		_
Current	[A] = 393		If the cooling water	is cut off, then	the temperature
Conductor material:	Copper		will rise at the rate	01; 0.019	[deg C/s]
	🔿 Aluminium				
				Cop	y data to clipboar
Load from notebook Pa	ste time stamp	QUIT		Cop	y data to noteboo
- NOTES: - Typical values for lattic temperature rise 10-30 d - For septa, parameters a	ce magnets: turbulent wa eg C. For air cooling, ke are more extreme: try not	ater flow at 3-5 m/s; c ep below 2 A/mm^2. to exceed a current d	urrent density 3-5 A/m lensity of 50 A/mm^2 (a	m^2; pressure abs. max. 90 A/r	drop 4-8 bar; mm^2); try not to
exceed a water velocity	of 10 m/s; try to use a so	quare conductor to fa	cilitate bends in both p	olanes.	

- For high current densities, check the rate of temperature rise if the water stops and be sure the temperature interlock is fast enough to cut the current.

- The maximum length of conductor without a braze is limited by the maximum billet size for drawing (120 kg approx. for Cu).

Accelerator workshop - final presentation

×

Qadrupoles

MAIN SPECIFICATIONS

Maximum gradient [T/m]	6,6
Magnet lenght [mm]	450
IRON YOKE SPECIFICATIONS	
Aperture diameter[mm]	100
L overall [mm]	500
Liron [mm]	450
Overall Width [mm]	400

COIL FEATURES

36	Number of turns per pole			
183	Nominal current [A]			
Hollow	Conductor type			
9,4 x 9,4	Conductor dimensions [mm]			
5,83	Hole diamater [mm]			

WATER-COOLED COIL DESIGN AID ...

INTRODUCTION:

- Parameters are for a SINGLE water circuit.

It is left to the user to combine water circuits in series/parallel to get the overall temperature rise, power consumption, etc.
For circular conductors, set conductor height = width and the rounding radius = 0.5*width.

INPUT:			OUTPUT FOR SIN	GLE WATER C	IRCUIT:
Conductor height	[mm] = 9.4		Water speed	[m/s] =	5.74642
Conductor width	[mm] = 9.4		Water flow	[l/min] =	9.29894
Diameter of water hole	[mm] = 5.86		Water flow (turbu	lent/laminar)	TURBULENT
Dell's of sheep with a		COMPUTE	Water temp. rise	[deg C] =	0.09670
Radius of edge rounding	[mm] = 3		Power dissipation	[watt] =	62.645
Conductor length in a single water circuit	[m] = 6		Resistance (hot)	[ohm] =	0.001871
Arailahla watar pressure			Current density	[A/mm^2] =	3.41010
for a single circuit	[bar] = 4		Conductor mass	[kg] =	2.87629
Input water temp.	[deg C] = 18		DESDONSE TRUE.		
Current	[A] = 183		If the cooling water	is cut off, then	the temperature
Conductor material:	Copper		will rise at the rate	01;	[deg C/s]
	🔿 Aluminium				[9]
1.00				Copy	y data to clipboard
Load from notebook P	aste time stamp	QUIT		Cop	y data to notebook
NOTES:					

- Typical values for lattice magnets: turbulent water flow at 3-5 m/s; current density 3-5 A/mm^2; pressure drop 4-8 bar; temperature rise 10-30 deg C. For air cooling, keep below 2 A/mm^2.

- For septa, parameters are more extreme: try not to exceed a current density of 50 A/mm^2 (abs. max. 90 A/mm^2); try not to exceed a water velocity of 10 m/s; try to use a square conductor to facilitate bends in both planes.

- For high current densities, check the rate of temperature rise if the water stops and be sure the temperature interlock is fast enough to cut the current.

- The maximum length of conductor without a braze is limited by the maximum billet size for drawing (120 kg approx. for Cu).

х

Transition considerations

Gamma transition crossing I

Transition crossing without jump

Non adiabatic theory needed

 At transition, bunch length ↘ and momentum spread ↗

Main risk: losses in the beam

Gamma transition crossing II

-Gamma (beam) ——Gamma transition (with jump)

• Solution: create a jump in γ_{tr}

 How to: add quadrupoles to change the momentum compaction factor

 Problem: adding quadrupole changes the tune

Gamma transition crossing III

- Switch on the quadrupoles:
 - γ_{tr} increases
- Switch off or invert the polarity of the quadrupoles at the right time
 - γ_{tr} decreases suddenly
 - You have crossed transition
- The tune changes
 - You may cross resonances
 - To avoid it, one may want to change the tune before the gamma jump and reestablished it afterward

Gamma transition crossing

Do we have time to do this gamma jump?

• Assume a 30kV RF cavity, a $\dot{B} = 3.6 T/s$ and a $\gamma_{tr} = 6.36$

- Therefore $\Delta E = 10 MeV/turn$
- A $\Delta \gamma = 0,27$ means an increase in energy of $\Delta E = 250 MeV$ so we would need approximately 10 turns to operate the quadrupoles (about 300µs)

Thanks for your attention

Spare slides

Chromaticity correction

Gerardo Guillermo, Shuang Ruan, Geng Wang, Kedong Wang, Liping Yao

Chromaticity correction I

- In order to correct the chromaticity 2 sextupoles were added, one focusing and one defocussing
- The sextupoles where placed next to the defocussing quadropoles
- WinAGILE calculated the closed orbit parameters (without sextupoles):

	CENTRAL ORBIT		
	Circular machine		
Circumference	[m] =	943.0480	
Horizontal tune	Qx =	7.104830	
Vertical tune	Qz =	7.054848	
 Horizontal chromaticity	dQx/dp/p =	-8.513	
Vertical chromaticity	dQz/dp/p =	-3.349	
Gamma transition	gamma tr =	6.36840	

Chromaticity correction II

- To steps to find the strength of the sextupoles are:
 - Go into calculations menu
 - Select correct chromaticity
 - In the menu select the desired chromaticity, e.g. 0.
 - Click on recompute, and it will display the strength needed
- After getting the values, it is recommended that you check it is feasible within technological restrictions.

-1. ENTER DESIRED CHRO	MATICITIES:
Horizontal, dQx/dp/p =	= 0
Vertical, dQz/dp/p =	0
2. CHOOSE FROM INVENT	IORY:
	2QF1 4 SD
CITUED aliak an unit in	6Dip1
inventory	8QD1
OD antes diseaths halow	28QUADD1 33QUADE1
the indices and	35QUADD2
increments to be used	43QUADF2
	,
3. UNITS/SERIES AND ST	EP-SIZES TO BE USED:
Index of 1st unit or unit in 1st	st series 4
Index of 2nd unit or unit in 2	nd series
index of 2nd unit of unit in 2	Ind Seller 3
Step-size for 1st unit/series	= 0.010000
Step-size for 2nd unit/sereis	. = 0.01
	,
(Re-) (Compute
dOx	/dp/p dOz/dp/p
Desired values =	
Obtained values =	
Residual errors =	
OK - accept new values	Reset original value
•	