SRF Tutorial – part I

Sergio Calatroni

- What is a RF cavity?
	- Q factor
	- Different shapes
- Surface impedance
	- Definition
	- Normal metals
- Basics of superconductivity
	- Surface impedance of superconductors
	- Two fluids
	- BCS
	- Skin depth
- Cryogenics

- Review paper:
	- J.P. Turneaure, J. Halbritter and H.A. Schwettman, J. Supercond. 4 (1991) 341
- Details:
	- J. Halbritter, Z. Physik 238 (1970) 466
	- J. Halbritter, Z. Physik 243 (1971) 201
- Books:
	- RF Superconductivity for Particle Accelerators by H. Padamsee, Vols I & II
	- HTS Thin Films at Microwave Frequencies by M. Hein (Springer, Berlin, 1999)
- CERN Accelerator Schools: Superconductivity in Particle Accelerators "Yellow reports" n. 89-04, 96-03 and 2014-05
- <http://w4.lns.cornell.edu/public/CESR/SRF/SRFHome.html> and links therein
- Wikipedia http://en.wikipedia.org/wiki/Superconducting Radio_Frequency !!!

- You need electric fields of the order of several MV/m
- You cannot do it in DC!
- You need a trick...

• An accelerating RF cavity is a resonant RLC circuit

 $2\pi\sqrt{LC}$ $\mathcal V$ 1 0 $=$

In order to fully exploit the accelerating effect, it is required that the transit time of the particle $be \leq than$ the half-period of the RF wave

$$
d/v_{particle} \leq 1/(2v_0)
$$

Which translates into

$$
2d v_0 \le \beta c
$$

That is

d≤/2

High beta QWR design (electromagnetic)

Ref. Proceedings of SRF2009, p. 609

Normalized field distributions

WOW

- As we said at the beginning, an accelerating RF cavity is indeed a resonator for an electromagnetic wave. We already mentioned the idea of comparing an RF cavity to an RLC circuit.
- Two important quantities characterise a resonator (remember your first physics course..): the resonance frequency f_0 and the quality factor Q_0

Pc U f f $Q_0 = \frac{J_0}{a} = \frac{\omega_0}{c}$ $=\frac{\omega_{0}}{2}$ Δ $=$

$$
U = U_0 \exp(-t/\tau_L)
$$

• Where *U* is the energy stored in the cavity volume and P_c/ω_0 is the

• Let's expand on the latter definition:

$$
Q_0 = \frac{\omega_0 U}{P_c} \qquad U = \frac{1}{2} \mu_0 \int_V \left| \mathbf{H} \right|^2 \mathrm{d}v \qquad P_c = \frac{1}{2} R_s \int_S \left| \mathbf{H} \right|^2 \mathrm{d}s
$$

• Thus:

$$
Q_0 = \frac{\omega_0 \mu_0}{R_s} \frac{\int_{V} |\mathbf{H}|^2 dv}{\int_{S} |\mathbf{H}|^2 dv} = \frac{\Gamma}{R_s} = \frac{\omega_0 L_{eff}}{R_s}
$$

- \cdot Γ depends only on the shape of the cavity, and is generally calculated numerically with computer codes (HFSS...)
- For a "pillbox" cavity Γ is 257 Ω . For an accelerating cavity for relativistic particles (β =1) like those used at CERN Γ ranges in 270÷295 Ω .
- The Q_0 factor of a SC cavity is in the 10⁹÷10¹⁰ range!
- *Leff* is the effective inductance of the equivalent RLC circuit

- Our cavities are meant to accelerate particles, and the accelerating electric field is of basic importance.
- However most of the considerations on the surface impedance are based on the surface magnetic field and on the induced currents.
- For a given geometry, there exists a fixed proportionality between H_0 , E_0 and E_{acc} .

Shape vs β

Remember: $2dv_0 \leq \beta c$

• We have already mentioned that the β of particles to be accelerated is an important parameter. The design of cavities depend strongly on this.

Split Rings $(\lambda/4)$

From J. Delayen, TJNAF

Split Rings $(\lambda/4)$

From K.W. Shepard, ANL

Quarter Wave $(\lambda/4)$

Spoke resonators $(\lambda/2)$

From J. Delayen, TJNAF

From F. Krawczyk, LANL and A. Facco, INFN-LNL

Elliptical cavities ("pizza")

Trasco cavities (INFN) and SNS cavities (Oak Ridge)

Elliptical cavities $\beta=1$

Surface Impedance: definition

For a plane E-M wave incident on a semi-infinite flat metallic surface:

$$
Z_{S} = R_{S} + iX_{S} = \frac{E_{\parallel}(0)}{H_{\parallel}(0)}
$$

Where we use: E, H always in complex notation

E, H parallel to the surface

Our reference frame has *x, y* parallel to the surface of the metal, and the z axis directed towards its interior: *z=0* means at the surface.

Surface impedance in normal metals

- The Surface Impedance *Z^s* is defined at the interface between two media. It can be calculated in a similar way as for continuous media.
- You take Maxwell's equation, set the appropriate boundary conditions for the continuity of the waves (incident, reflected, transmitted), and you get:

$$
Z_S = \frac{E_{\parallel}(0)}{H_{\parallel}(0)} = \sqrt{\frac{i\omega\mu_0}{\sigma}} = \sqrt{\frac{\omega\mu_0}{2\sigma}} + i\sqrt{\frac{\omega\mu_0}{2\sigma}} = R_S + iX_S
$$

• Introducing appropriate numbers:

For copper (ρ =1/ σ =1.75x10⁻⁸ µ Ω .cm) at 350 MHz

 $R_s = 5$ m Ω δ = 3.5 µm (from previous page)

The surface impedance $Z_s = R_s + iX_s$ is a very useful concept, since it contains all properties of the dissipative medium. Making use of Maxwell's equations for plane waves:

• Power dissipation per unit surface (equivalent to the energy flux through the unit surface) making use of Poynting vector :

$$
|S| = \text{Re}[E \times H]
$$

• Averaging over one period, at the surface, recalling the definition of Z_s

$$
\overline{P} = \frac{1}{2} \text{Re} \left[\mathbf{E}_0 \times \mathbf{H}_0 \right] = \frac{1}{2} \text{Re} \left[Z_s H_0^2 \right] = \frac{1}{2} \mathbf{R}_s \mathbf{H}_0^2
$$

• Effective magnetic penetration depth (most general definition):

$$
\lambda = \text{Re}\left[\int_{0}^{\infty} H(z) dz / H(0)\right]
$$

Using Maxwell's eq.:
$$
\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \implies \frac{\partial E}{\partial z} = -i \omega \mu_0 H
$$

integrating and using the fact that: $E(\infty) = 0$

$$
E(\infty) - E(0) = -i\omega\mu_0 \int_0^{\infty} H(z) dz \implies \int_0^{\infty} H(z) dz = -\frac{i}{\omega\mu_0} E(0)
$$

Substituting:

$$
\lambda = \text{Re}\left[-i\frac{E(0)}{\omega\mu_0 H(0)}\right] = \frac{1}{\mu_0 \omega} \mathbf{X}_s
$$

Remarkably similar to $1 - \sqrt{\omega \mu}$ ϵ in the case of normal metals δ σωμ β $=\sqrt{\frac{\omega \omega \mu}{2}}$ = 2 1

Surface resistance: intuitive meaning

Since we will deal a lot with the surface resistance R_s in the following, here is a simple DC model that gives a rough idea of what it means:

Consider a square sheet of metal and calculate its resistance to a transverse current flow:

The surface resistance R_s is the resistance that a square piece of conductor opposes to the flow of the currents induced by the RF wave, within a layer δ

More on electrical conductivity

We mentioned before the electrical conductivity σ and the law J= σE .

 \cdot σ depends on the frequency: $(1 + i \omega \tau)$ $(\omega) = \frac{O_0}{\sqrt{1-\frac{1}{c^2}}}$ $2\pi n^2$ 0 $\frac{\sigma_0}{\sin i \omega \tau)}$ $\sigma \omega$ τ $\sigma_0 = \frac{v}{m} = \frac{v}{mv_F} \rightarrow \sigma(\omega) = \frac{v}{(1+i)^2}$ *ne m ne* F $(1 +$ $=\frac{ne^{-t}}{t}=\frac{ne^{-t}}{t} \rightarrow \sigma(\omega)=$ ℓ

- For low temperatures τ increases and (as function of frequency), it happens $\ell \gg \delta$
- In this case, an electron senses a variation of field during its travel between two collisions.
- The local relationship J= σ E between current and field does not hold anymore and a new "non-local" law has to be introduced -> the Anomalous Skin Effect

Theories of Superconductivity

- Gorter & Casimir two fluid model
	- London Equations
	- Pippard's Coherence length
- Ginzburg-Landau
	- $-$ Second order phase transition of complex order parameter Ψ
- BCS (Bardeen-Cooper-Schrieffer)
	- Microscopic theory
	- Two Fluid Model revised
- (Strong coupling Elihasberg)

London equations

Postulated on plausibility arguments

$$
\frac{\partial \mathbf{J}}{\partial t} = \frac{n_s e^2}{m} \mathbf{E} \qquad \nabla \times \mathbf{J} = -\frac{n_s e^2}{m} \mathbf{B}
$$

Applying $B = \nabla \times A$

$$
\mathbf{J} = -\frac{n_s e^2}{m} \mathbf{A} = -\Lambda^{-1} \mathbf{A}
$$

Applying Ampere's law to London's 2nd eq gives:

$$
\nabla^2 \mathbf{B} = \frac{1}{\lambda_L^2} \mathbf{B} \qquad \lambda_L = \sqrt{\frac{m}{\mu_0 n_s e^2}}
$$

Exponential decay of B inside SC

- You will probably be only half surprised to hear that a superconductor at T>0 has a $R_{\rm s}$ ≠0.
- This can be easily understood in the framework of the two fluids model, where a population of normal electrons of density n_n and a population of "superconducting electrons" of density $n_s=n_0(1-T^4/T_c^4)$ coexist such as $n_{n}+n_{s}=1$ and both give a response to the varying e.m. fields.
- Let's "invent" the conductivity of superconducting electrons:

$$
\sigma(\omega) = \frac{ne^2\tau}{m_e(1+i\omega\tau)} \qquad \lim_{\tau \to \infty} \sigma(\omega) = -i\frac{ne^2}{m_e\omega}
$$

Superconductors – Complex conductivity

• The conductivity of superconductors then becomes:

- Where $n_s=n_0(1-T^4/T_c^4)$ and $n_n=n_0(T^4/T_c^4)$ with n_0 total electron density
- Note:

$$
\sigma_2 = \frac{\sigma_0}{\omega \tau} = \frac{1}{\mu_0 \omega \lambda_L^2} = \frac{1}{\Lambda \omega} \quad \text{with} \quad \lambda_L^2 = \frac{\Lambda}{\mu_0}
$$

Superconductors – Equivalent circuit

Indeed if you take the time derivative of $J = -\Lambda^{-1}A$ you get the 1st London eq:

$$
-\frac{\partial \mathbf{A}}{\partial t} = \mathbf{E} = \Lambda \frac{\partial \mathbf{J}}{\partial t}
$$

 Λ is interpreted as a specific inductance. This justifies representing the complex conductivity of a superconductor with an equivalent circuit of parallel conductors:

- It is now possible, within the basic approximations we have made, to calculate the surface impedance of a superconductor.
- Take the formula for normal metals:

$$
Z = (1+i)\sqrt{\frac{\mu_0 \omega}{2\sigma_n}}
$$

- Perform the substitution: $\sigma_n \rightarrow \sigma_s = \sigma_1 i \sigma_2$
- Calculate:

$$
R_s = \sqrt{\frac{\mu_0 \omega}{\sigma_n} \frac{\left[\left(\sigma_1^2 + \sigma_2^2 \right)^{1/2} - \sigma_2 \right]^{1/2}}{\left(\sigma_1^2 + \sigma_2^2 \right)^{1/2}}}
$$
 $X_s = \dots$

- In the approximation of small ℓ (small $\omega \tau \rightarrow \sigma_1 < \sigma_2$)
-

• and
$$
0 < T < 0.5T_c
$$
 ($n_n < n_s$ $\rightarrow \sigma_1 < \sigma_2$)it gives:
\n
$$
R_s = \frac{R_N}{\sqrt{2}} \frac{\sigma_1/\sigma_n}{(\sigma_2/\sigma_n)^{3/2}} = \frac{1}{2} \mu_0^2 \omega^2 \sigma_1 \lambda_L^3
$$
\n
$$
X_s = X_N \frac{\sqrt{2}}{(\sigma_2/\sigma_n)^{1/2}} = \sqrt{\frac{\mu_0 \omega}{\sigma_2}} = \mu_0 \omega \lambda_L
$$

• Which is a good description of the experimental data, but...

Superconductors – BCS approach I

Mattis & Bardeen, Phys. Rev. 111 (1958) 412

1st step:
\n
$$
j(r,t) = \sum_{\omega} \frac{e^{2N(0)v_0}}{2\pi^2 \hbar c} \times \int \frac{R[R \cdot A_{\omega}(r')]I(\omega, R, T)e^{-R/l}dr'}{R^4},
$$
\n(3.3)
\nis
\n
$$
I(\omega, R, T) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ L(\omega, \epsilon, \epsilon') - \frac{f(\epsilon) - f(\epsilon')}{\epsilon' - \epsilon} \right\} \times \cos[\alpha(\epsilon - \epsilon')] d\epsilon d\epsilon',
$$
\n(3.4)
\n2nd step:
\n
$$
\frac{\sigma_1 - i\sigma_2}{\sigma_N} = \frac{I(\omega, 0, T)}{-\pi i \hbar \omega}.
$$
\n3rd step:
\n
$$
\frac{\sigma_1}{\sigma_N} = \frac{2}{\hbar \omega} \int_{\epsilon_0}^{\infty} [f(E) - f(E + \hbar \omega)]g(E) dE
$$
\n3rd step:
\n
$$
+\frac{1}{\hbar \omega} \int_{\epsilon_0 - \hbar \omega}^{\epsilon_0} [1 - 2f(E + \hbar \omega)]g(E) dE, \quad (3.9)
$$
\n
$$
\frac{\sigma_2}{\sigma_N} = \frac{1}{\hbar \omega} \int_{\epsilon_0 - \hbar \omega, -\epsilon_0}^{\epsilon_0} \frac{[1 - 2f(E + \hbar \omega)](E^2 + \epsilon_0^2 + \hbar \omega E)}{(\epsilon_0^2 - E^2)^{\frac{1}{2}}[(E + \hbar \omega)^2 - \epsilon_0^2]^{\frac{1}{2}}}.
$$
\n(3.10)

SRF - Tutorial I Sergio Calatroni **1988** Sergio Calatroni **1988**

Superconductors – BCS approach II

• These can be approximated for low frequencies *h«2* as:

$$
\frac{\sigma_1}{\sigma_n} = 2f(\Delta)\left\{1 + \frac{1}{kT}\ln\left(\frac{2\Delta}{\hbar\omega}\right)[1 - f(\Delta)]\right\} \qquad \frac{\sigma_2}{\sigma_n} = \frac{\pi\Delta}{\hbar\omega}\tanh\left(\frac{\Delta}{2kT}\right)
$$

- The surface impedance Z can be calculated from $\sigma_{\gamma}/\sigma_{n}$ and σ_{2}/σ_{n}
- However the formulas seen until now are approximate valid only in a very specific limit.
- Calculations can be done having a full validity range (but only for H_{RF} << H_{c})
	- Abrikosov Gorkov Khalatnikov, JETP 35 (1959) 182
	- Miller, Phys. Rev. 113 (1959) 1209
	- Nam, Phys. Rev. A 156 (1967) 470
	- Halbritter, Z. Phys. 238 (1970) 466 and KFK Ext. Bericht 3/70-6

Superconductors – Halbritter's theoretical predictions

In the green region (small ℓ):

$$
\frac{Z_s}{Z_n} = \left(\frac{\sigma_1}{\sigma_n} - i\frac{\sigma_2}{\sigma_n}\right)^{1/2}
$$

$$
R_s \propto \frac{\omega^2}{T\sqrt{\sigma}} \exp\left(-\frac{\Delta}{K}T\right)
$$

In the red region (large ℓ):

$$
\frac{Z_s}{Z_n} = \left(\frac{\sigma_1}{\sigma_n} - i\frac{\sigma_2}{\sigma_n}\right)^{1/3}
$$

$$
R_s \propto \frac{\omega^{3/2}}{T} \exp\left(-\frac{\Delta}{kT}\right)
$$

Superconductors – CERN results on films

Compilation of results from several Nb/Cu and Nb bulk 1.5 GHz RF cavities

Temperature dependence of R_{BCS}

Exponential dependence limited by a temperature independent "residual" term

Other materials than niobium

BCS surface resistance at 4.2 K and 500 MHz for films (Nb \sim 45 n Ω)

• London penetration depth

– dependence on mean free path

$$
\lambda_L(T,\ell) = \lambda_L(T,0)\sqrt{1 + \frac{\pi \xi_0}{2\ell}}
$$

 $-$ dependence on T (T>T $_c$ /2) $(T, \ell) = \lambda_L(0, \ell) * 1/\sqrt{1 - \left(\frac{1}{T}\right)^2}$ $\overline{}$ \int $\left.\rule{0pt}{10pt}\right)$ $\overline{}$ $\overline{}$ \setminus $\bigg($ $= \lambda_{L}(0,\ell)*1/ \sqrt{1$ *c* μ (1, ℓ) - λ _L(0, ℓ) + $\frac{1}{\ell}$ $\left(\frac{1}{T} \right)$ *T* $\lambda_L(T,\ell) = \lambda_L(0,\ell)$

- define
$$
\gamma(T,\ell) = \lambda_L(T,\ell) / \xi_F(T,\ell)
$$
 $\xi_F(0,0) = \frac{\pi}{2} \xi_0$ $\frac{1}{\xi} = \frac{1}{\xi_0} + \frac{1}{\ell}$

- London limit γ >>1 (mfp "small") $\lambda_{SC}(T,\ell) = \lambda_L(T,\ell)$
- Pippard limit γ < 1 (mfp "large") $\lambda_{SC}(T,\ell) = \lambda_L(T,\ell) * f_s \propto \lambda_L(T,\ell) * \gamma^{-1/3}$
	- (non-local effects, non-exponential decay of fields, field reversal for $\gamma \leq 1$

4

• We are ready to meet again our friend *X^s* :

$$
\sum_{\infty}^{\infty} = \omega \mu_0 \lambda = 2 \Gamma \frac{\omega_{\infty} - \omega}{\omega_{\infty}}
$$

- Where ω_{∞} is the resonant frequency if the cavity walls were perfectly conducting, in which case the penetration depth would vanish.
- This formula (Slater's theorem) in its differential form is particularly useful to measure the penetration depth
- A non-zero penetration depth results in a larger resonating volume, thus a lower resonating frequency
- Changes in $\lambda(T)$ with the temperature result in changes of ω_0 ,
- Recall the two-fluids (London limit) formula for $\lambda(T)$:

$$
\lambda_L(T,\ell) = \lambda_L(0,0)\sqrt{1 + \frac{\pi \xi_0}{2\ell}} \frac{1}{\sqrt{1 - \left(\frac{T}{T_c}\right)^4}}
$$

Surface impedance and skin depth

Expressing the frequency shift as a function of $\lambda(T)$ we can write:

$$
-\Delta V(t) = \frac{\pi \mu_0 V^2}{\Gamma - \pi \mu_0 V \Delta \lambda(T)} \Delta \lambda(T)
$$

• Non-linear-fitting it to experimental data (measuring frequency as a function of temperature, approaching Tc) one can calculate the mean free path assuming reasonable values for the material (Nb) parameters:

• Our most studied "thin film" cavity

- The reason is very simple: to obtain very high accelerating fields in continuous mode, the power dissipated by normal conducting (i.e copper) cavities becomes too large. Remember that there can be a 10⁵ difference in R_{s} , thus in dissipated power, for the same surface fields.
- This is valid also taking into account the efficiency of the cryogenic plant. The Carnot efficiency of a perfect cooler working between 300 K and *T* is:

$$
\eta_c = \frac{T}{300 - T}
$$

- For T=4.2 K, η_c =0.014. A modern cryoplant has a technical efficiency that can reach about 30% of the ideal one, thus $\eta_{\text{real}} = 0.0042$. Even taking this into account the energy savings are huge.
- Moreover, SC cavities allow designs with larger beam pipes which, are beneficial for beam stability although reducing $R_{a\cdot}$ This would be unacceptable for NC cavities, but owing to the huge Q_0 the performance of SC cavities don't suffer much.

• When RF power is fed into a cavity, a voltage is developed inside it. As for any RLC circuit, we must match the impedance of the generator to that of the resonator to transfer the maximum amount of power:

$$
P_c = \frac{V_c^2}{R_a}
$$

- R_a is called shunt impedance [Ω / accelerating cell], and we want to maximise it in order to develop the largest voltage for a given power.
- Substituting into the definition of Q_0 :

$$
\frac{R_a}{Q_0} = \frac{V_c^2}{\omega_0 U}
$$

The quantity is independent of surface resistance, of cavity size and only depends on its shape. For a pillbox it is 196 Ω /cell, for LEP-type cavities it is 83 Ω /cell

• Here is a brief summary for comparing SC cavities (Nb @ 4.2 K) and NC cavities, both at 500 MHz

Performance of cavities II

Nb/Cu cavities 1.5 GHz at 1.7 K (Q₀=295/R_s)

FNAL + Jlab Nine Cell 2.0K Results, doping recipe 2/6

- The first notable fact is that the surface resistance R_s is not constant with field. (The Mattis-Bardeen equations are a zero-field perturbation theory, and this should not come as a surprise)
- Second, even when lowering temperature the surface resistance does not reduce as foreseen. This is the residual surface resistance R_{res}
- Third, other phenomena take place at high fields: electron field emission, thermal breakdown (quench)
- Fourth, in the case of films, there is a stronger decrease of Q_0 factor (increase of R_s) with field compared to bulk cavities
- In fact the surface resistance is generally:

$R_s(T, E_{rf}, H_{DC}) = R_{BCS}(T, E_{rf}, 0) + R_{res}(0, E_{rf}, 0) + R_{fl}(T, E_{rf}, H_{DC})$

- As already said, there is in principle no intrinsic lower limit for the surface resistance $(R_s\rightarrow 0$ for T $\rightarrow 0)$
- However all superconductors are faced with the hard limit: H_c
- When H_{rf} exceeds some superheating H_{sh} value linked to H_c they loose superconductivity. This limit is around 50 MV/m for Nb at 1.7 K

Thank you!

(end of part I)

Some useful definitions

```
· FOR NORMAL METALS :
   1) LOCAL OR CLASSICAL LINIT e \rightarrow o or e \ll 5ii) ANOMALOUS LINIT Ras on or Prof
 · FOR SUPERCONJUCTORS
   i) LOCAL LIMIT C CO }, A ( INDEPENDENTLY EITHER
       FOR TYPE I OR I SUPERCONSULTERS)
       MORE COMMONLY CALLED \frac{\text{DIRIT}}{\text{MUNIT}} LINIT \ell_{\xi} -> 0
       WHICH HAPPENS TO BE EQUIVALENT
   I IN THE CLEAN LIMIT & -> OR WE HAVE TWO CASES:
   ii) ANOMICOUS OR PIPPARD LIMIT FOR X << }, e
       (A CLEAN TYPE I SUPERCONDUCTOR)
   \vec{u} LONDON LIMIT \vec{f} \ll \lambda \ell (A CLEAN TYPE II)
. NO FOR e \rightarrow \infty is in THE ANDHALOUS LIMIT
   WHEN NORMAL BUT IN LOWDON LIMIT WHEN
   SUPERCONDUCTOR
```


- Gauss' Law
- Faraday's law of induction
- Gauss Law for magnetism
- Ampère's circuital law
- With:
- Continuity equation

$$
\nabla \times E = -\frac{\partial B}{\partial t}
$$

 $\nabla \cdot D = \rho$

 $\nabla \cdot B = 0$

$$
\nabla \times H = J + \frac{\partial D}{\partial t}
$$

$$
D = \varepsilon E \qquad B = \mu H
$$

$$
\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0
$$