Joint Universities Accelerator School JUAS 2016

Archamps, France, $22^{nd} - 26^{th}$ February 2016

Normal-conducting accelerator magnets

Thomas Zickler,
CERN

Lecture 3: Magnet production

Magnetic materials

Manufacturing techniques

QA & Acceptance tests

Recurrent issues

Magnetic measurements

Cost estimates and optimization

Magnet manufacturing

Mechanical design

Procurement

- Raw materials
- Tooling

Yoke production

Tests & measurements

Magnet assembly

Coil production

Massive vs. laminated yokes

Historically, the primary choice was whether the magnet is operated in persistent mode or cycled (eddy currents)

- + no stamping, no stacking
- + less expensive for prototypes and small series
- time consuming machining, in particular for complicated pole shapes
- difficult to reach similar magnetic performance between magnets

- + steel sheets less expensive than massive blocks (cast ingot)
- + less expensive for larger series
- + steel properties can be easily tailored
- + uniform magnetic properties over large series
- expensive tooling

Magnetic steel

Today's standard: cold rolled, non-oriented electro-steel sheets (EN 10106)

- Magnetic and mechanical properties can be adjusted by final annealing
- Reproducible steel quality even over large productions
- Magnetic properties (permeability, coercivity) within small tolerances
- Homogeneity and reproducibility among the magnets of a series can be enhanced by selection, sorting or shuffling
- Material is usually cheaper, but laminated yokes are labour intensive and require more expensive tooling (fine blanking, stacking)

Profile of steel strips

The rolling process produces a thickness variation perpendicular to the rolling direction:

Courtesy of ThyssenKrupp

NGO steel properties

ISOVAC 1300-100A: H_c = 65 A/m

ISOVAC 250-35HP: $H_c = 30 \text{ A/m}$

Sheet thickness:

 $0.3 \le t \le 1.5 \,\mathrm{mm}$

Specific weight:

 $7.60 \le \delta \le 7.85 \text{ g/cm}^3$

Electr. resistivity @20°C:

0.16 (low Si) $\leq \rho$ \leq 0.61 μΩm (high Si)

Sheet insulation

Surface coating:

- electrical insulation of several μm thickness
- one or both sides
- oxid layer, phosphate layer, organic or inorganic coating

	Insulation designation IEC 60404-1-1	Insulation type	Color ¹⁾	Coating	Coating thickness each side in µm	Insulation resistance at room temperature to ASTM A717/A717M-95 Ωm²/Lamelle
	STABOLIT 10 EC-3 by prior arrangement only	organic	yellow- green	both sides	max. 1.5	> 15
	STABOLIT 20 EC-5-P	inorganic with organic components	grey- green	both sides	0.5 – 1.5	> 5
	STABOLIT 30 EC-5-P	inorganic with organic components	light grey	both sides	0.5 - 1.5	> 5
	STABOLIT 40 EC-6	organic pigmented	grey	one or both sides	3.0 - 5.0 4.0 - 7.0 6.0 - 9.0	> 90
	STABOLIT 60 EC-5	inorganic with organic components pigmented	grey	both sides	0.3 - 1.0 1.0 - 2.0 2.0 - 3.5	> 5 > 15 > 50
(STABOLIT 70	organic bonding lacquer (active)	colorless	one or both sides	5.0 - 8.0	-
	Combined insulation	organic bonding lacquer with one side heat treatment (passive)	colorless	both sides	active 5.0 - 8.0	-
					passive max. 1.5 Source	e: ThyssenKrupp

Other magnetic materials

1. High purity irons

- Iron referred to as "high purity" when total concentration of impurities (mainly C, N, O, P, S, Si and Al)
 does not exceed a few hundred ppm
- Otherwise Low Carbon Steel or Non-alloyed Steel
- Very pure Fe: high electrical conductivity \rightarrow not suitable for AC applications
- For high permeability at B > 1.2 T it is advisable to anneal at max. 800 °C and cool down slowly

Low-Carbon Steels

- e.g. type 1010
- Disadvantage: Magnetic ageing (increase of coercivity with time)

3. Non-grain oriented Silicon Steels (NGO)

Advantages:

- Increase in permeability
- Decrease in hysteresis loss
- Eddy current loss decrease due to higher resistivity (Al and Mn added as well)
- No ageing

4. Grain-oriented Silicon Steels

5. Iron alloys

- a. Iron-Nickel
- b. Iron-Cobalt alloys with high magnetic saturation
- 6. Compressed powdered Iron and Iron alloys
- 7. Ferrites
- 8. Innovative materials and rare earths

Reference: S. Sgobba: Physics & Measurements of Magnetic Materials, CAS 2009, Brugges

Yoke manufacturing

Lamination punching

- Punching or fine blanking
- Fine blanking requires more expensive tooling
- Tolerances less than +/- 8 μm achievable (depending on thickness, material and layout)
- Material can be delivered in sheets or strips (coils)

Alternatives to punching

Technique	Accuracy [mm]	Repeatability [mm]	Drawbacks	
Water jet cutting	> 0.13	>0.025	rough cutting edge, relatively slow	
Laser cutting	>0.01	>0.005	cutting edge ,burnt', relatively slow	
CNC machining	0.01-0.001	0.01-0.001	stacks only	
Wire-cut EDM	> 0.002	>0.001	very slow, limited size	

...or a combination of different techniques

Yoke stacking

Tooling for:

- stacking
- baking
- welding

Bonding & insulation

Special coatings have been developed for the adhesive bonding of laminations:

- provide electrical insulation and mechanical bonding
- based on epoxy resins
- available in B-stage (partly cured) and C-stage (fully cured)
- Referred to as STABOLIT 70 by ThyssenKrupp

Glueing vs. Welding

Welding

- + mechanically more ridgig
- + no aging
- massive end plates/tension straps needed
- continous welding introduces stress and deformation
- sophisticated welding procedure/ requires stacking fixture

Glueing

- + no stress, no distortions
- + no tension straps, no end plates (→ no eddy currents)
- glue sensitive to radiation and aging
- requires clean laminations and conditions
- requires baking oven

/ requires stacking fixture

Recommendation: combine gluing, welding & bolting

Coil manufacturing

Conductor materials

	Al	Cu (OF)
Purity	99.7 %	99.95 %
Resistivity @ 20°C	2.83 μΩ cm	1.72 μΩ cm
Thermal resistivity coeff.	0.004 K ⁻¹	0.004 K ⁻¹
Specific weight	2.70 g/cm ³	8.94 g/cm ³
Thermal conductivity	2.37 W/cm K	3.91 W/cm K

Key-stoning: risk of insulation damage & decrease of cooling duct cross-section

$$R = 3 \cdot A \Rightarrow \frac{\Delta A}{A} = 3.6\%$$

Coil insulation

In a magnet coil, the electrical insulation ensures that current flows only along the conductors and not between individual conductors or between the conductors and other parts of the magnet

Dielectric materials can be distinguished in three main classes:

- inorganic materials: ceramics, glass, quartz, cements and minerals (e.g. mica)
- organic materials: thermoplastic (Rubber, PA (Nylon), PP, PS, PVC, PC, PTFE) or thermosetting: Polyethylene, PI, PEEK, Epoxy, phenolic, silicon, polyester resins
- composites: fully organic (aramidic fibres-epoxy tapes) or mixed (epoxy-mica tapes)

The electrical insulation is stressed by several factors:

- electric
- thermal
- mechanical
- chemical (including oxidation)
- radiation

A weak electrical insulation may produce:

- current leaks with local heating up to melting and possible fire
- progressive damage of the leakage path up to a short circuit
- unbalanced circulating currents (→ magnetic field distortion)
- incorrect functioning of protections

Montsinger's rule / Arrhenius equation: $L(T+10 K) \approx 0.5 t(T)$

A temperature rise of 10 K halves the expected live time of an insulation system

Radiation hardness

Radiation hardness is an important criterion for insulation materials used for accelerator applications

Radiation hardness

Coil insulation

Conductors with small cross-section:

straigthening \rightarrow cleaning \rightarrow conductor insulation \rightarrow winding \rightarrow ground insulation

Coil insulation

Conductors with large cross-section:

straigthening \rightarrow winding \rightarrow sand blasting \rightarrow cleaning \rightarrow conductor insulation \rightarrow ground insulation

Coil impregnation

heating and evacuating mold and coil (auto-clave or vacuum mold) \rightarrow mixing resing \rightarrow heating and degassing resin \rightarrow injecting resin \rightarrow curing cycle \rightarrow cooling

Magnet assembly

By hand....

... or with the help of tooling

Auxiliary components

- Electrical connections
- Hydraulic connections
- Interlock sytem (temperature, pressure, water flow)
- Magnetic measurement devices (pick-up coils, hall probes)
- Alignment tragets, adjustment tables and support jacks

Hydraulic circuits

- Water cicuits are most critical items
- 95% of all magnet failures due to water leaks:
 - Corrosion
 - Errosion
 - Poor brazing quality
 - Poor welding quality
 - Failure or aging of joints
 - Inadequate materials
 - Incorrect assembly
 - Radiation damage
 - Inadequate design

- ... but, many leaks occur only after years in operation
- Often not monitored \rightarrow magnet damage (short cicuits, corrosion of iron yoke) and collateral damages on other equipment possible

Interlock Sensors

Thermo-switch:

- D Laser weld
- E Bimetal disc

Flow-switch:

QA & Acceptance tests

QA is important at each production stage

- Constant monitoring of critical items from the raw material, to semi-finished parts, to subcomponents to the final product
- Sample testing (destructive or non-destructive) to qualify materials, manufacturing techniques and processes
- Acceptance test can include electrical, hydraulic, mechanical, thermal, and magnetic measurements
- Tests/measurements can be systematically (entire series) or on specific/random samples
- Complete recording and documentation indispensible (back-tracing in case of doubts or failures)

- Magnetic steel
- Laminations
- Bond strenght (laminations
- Brazing
- Welding
- Bond
- Impre

- Magnetic steel
- <u>Laminations</u>
- Bond strenght (laminations)
- Brazing
- Welding

- Magnetic steel
- Laminations
- **Bond strenght (laminations)**

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- Brazing
- Welding
- Bond strength (coil)
- Impregnation

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- Brazing
- Welding
- Bond strength (coil)
- Impregnation

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- Brazing
- Welding
- Bond strength (coil)
- Impregnation

Despite a severe quality control by the manufacturer, we often find quality deficiencies during the acceptance tests and certification at CERN

Amongst several other recurrent issues, the following are the most frequent and most serious:

- Poor brazing quality
- Poor bonding stength
- Poor coil insulation/impregantion
- Insufficient rust protection
- Loose or moving parts
- Covers not respecting IP2X
- Insufficient cable cross-section
- Obstructed cooling circuits
- Transport damages due to inadequate packaging

Lack/excess of brazing filler

Lack of resin: bubbles, voids, fissures, cracks, poor penetration, poor wetting Excess of resin: volumes of pure resin

Poor lamination bonding stength

Cost estimate

Production specific tooling:

5 to 15 k€/tooling

Material:

Steel sheets: 1.0 - 1.5 € /kg

Copper conductor: 10 to 20 € /kg

Yoke manufacturing:

Dipoles: 6 to 10 € /kg (> 1000 kg)

Quads/Sextupoles: 50 to 80 € /kg (> 200 kg)

Small magnets: up to 300 € /kg

Coil manufacturing:

Dipoles: 30 to 50 € /kg (> 200 kg)

Quads/Sextupoles: 65 to 80 € /kg (> 30 kg)

Small magnets: up to 300 € /kg

Contingency:

10 to 20 %

-	Magnet type	Dipole
Magnet	Number of magnets (incl. spares)	18
Σa	Total mass/magnet	8330 kg
Ş	Design	14 kEuros
Fixed costs	Punching die	12 kEuros
ed (Stacking tool	15 kEuros
ιĚ	Winding/molding tool	30 kEuros
	Yoke mass/magnet	7600 kg
<u>ě</u>	Used steel (incl. blends)/magnet	10000 kg
Yoke	Yoke manufacturing costs	8 Euros/kg
	Steel costs	1.5 Euros/kg
	Coil mass/magnet	730 kg
Coil	Coil manufacturing costs	50 Euros/kg
	Cooper costs (incl. insulation)	12 Euros/kg
	Total order mass	150 Tonnes
	Total fixed costs	71 kEuros
osts	Total Material costs	428 kEuros
Total costs	Total manufacturing costs	1751 kEuros
Tot	Total magnet costs	2250 kEuros
	Contingency	20 %
	Total overall costs	2700 kEuros

NOT included: magnetic design, supports, cables, water connections, alignment equipment, magnetic measurements, transport, installation Prices for 2011

Cost optimization

Focus on economic design!

Design goal: Minimum total costs over projected magnet life time by optimization of capital (investment) costs against running costs (power consumption)

Total costs include:

Cost optimization

Cost optimization

Consider alternatives!

So far we have discussed only normal-conducting, iron-dominated magnets operated in dc... but this might not always be the best choice!

- Permanent magnets (Sm2Co17)
- Hybrid magnets
- Use of high-saturation materials
- Superconducting / super-ferric magnets
- Pulsed operation

EAST AREA ANNUAL POWER CONSUMPTION AFTER CONSOLIDATION

	PULSED MODE		DC MODE	
	Energy in MWh	Price in kCHF	Energy in MWh	Price in kCHF
Total magnet electrical consumption	557	28.3	9 128	464
Water cooling electrical consumption	79	4.0	1 294	66
Air cooling electrical consumption	26	1.3	431	22
Total electricity consumption	662	33.7	10 853	551.8
Total cooling fluid		6.2		101.5
TOTAL energy cost		40 kCHF		653 kCHF

Future challenges: CLIC

Here there are the ~ 20000 "2-Beams Modules" with ~40000 DBQ and ~4000 MBQ magnets

