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Abstract 
This paper intends to introduce the beam dynamics in the cyclotron. The 
long history of the cyclotron evolution is reminded and the different 
developments since 1929 from E. Lawrence’s great idea are reviewed from 
conventional cyclotron to synchrocyclotron. The transverse and longitudinal 
beam dynamics are detailed as well as the specific quantities applied to 
cyclotron. Finally, and since the study of the dynamics in cyclotrons differs 
from the one in synchrotrons due to the non-periodic lattice, an opening to 
beam dynamics computation is proposed to handle the peculiar way of 
cyclotron tuning. A list of books, articles and proceedings is referred to the 
end to go deeper in the subject  

1 Introduction 
The need from nuclear physicists to get ions with higher and higher kinetic energies, obliged engineers 
to design accelerating structures. In 1932, Cockroft and Walton, from Cambridge, built an accelerator 
capable of developing an accelerating voltage up to 700 000 volts for the acceleration of protons. 

Simultaneously, Robert van De Graaf reached 1.5 MV D.C. with a machine afterwards named 
after him. But, electrostatic machines are very sensitive machines, due mainly to breakdowns. Then, in 
1928, Rolf Wideröe, imagined, a linear accelerator bringing Sodium and Potassium ions up to 50 keV. 
The beam needs to pass a large number of drift tubes to be accelerated. In 1929, Ernest Lawrence, 
from Berkeley, inspired by an article by Wideröe, had the idea to put the beam and the cavity inside 
one, large dipole in order to curve the particle trajectory and have only one accelerating cavity [1].  

Figure 1 shows schematically the evolution from a linear accelerator to a cyclotron. Figure 2 
illustrates the first accelerating cavities (called Dees). One cavity is at ground and the opposite at an 
other alternating potential. 

 
Fig. 1: From a linear structure to the cyclotron 
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Fig. 2: First accelerating cavities in cyclotron called Dees 

2 Conventional cyclotron 
“Conventional” means here a cyclotron operating with a uniform magnetic field generated by a 
magnet with flat parallel pole tips. It was the first cyclotron ever designed. Let us consider an ion with 
a charge q and a mass m circulating at a speed vθ  in a uniform induction field B. The motion equation 
can be derived from the Lorentz force F and the Newton’s law  

 ( )F q v B= ×  (1) 

 ( )d mv F
dt

=  (2) 

for obvious practical reasons, cylindrical coordinates are used . (1) and (2) become 

 2
z θ

( ) [ ]d mr mr q r B zB
dt

θ θ− = −  (3) 

 r z
( ) [ ]d mr mr q zB rB
dt

θ θ+ = −  (4) 

 θ r
( ) [ ]d mz q rB r B
dt

θ= −   (5) 

where dotted symbols are the derivatives with respect to time. Since the energy gained in this first type 
of cyclotron is small, we can consider the dynamics for a non-relativistic particle (γ ~ 1) where m = m0  
.  Taking the magnetic field Bz along the negative z-axis: Bz= –B0, the equations become 

 2
0 0( )m r r qr Bθ θ− = −  (6) 

 0 0( 2 )m r r qrBθ θ+ =  (7) 

 0 0m z =   (8) 
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with the beam initial conditions ( 0,  ,  0)r zθ= = , the equations (6), (7) and (8), the trajectory is a 
circle (Fig 3). It is called closed orbit in the median plane (r, θ). The radius is r and the angular 
velocity (Larmor frequency frev): 

 rev 0
rev

02
f qB

m
ω θ

π
= = =  (9) 

the magnetic rigidity is defined by 

 
q
prB =0  ( 10) 

with p = m0v the particle momentum. During acceleration and in this non-relativistic domain (γ ~ 1), 
the revolution frequency ωrev remains constant. The particle takes the same time to make one turn 
which defines the isochronism condition.  

 
Fig. 3: Field and forces layout on a closed orbit for a classic cyclotron 

The applied RF accelerating voltage between the Dees 

 0 RFcos( )V V tω=   (11) 

the synchronism condition is 

 RF revhω ω=   (12) 

where h = 1, 2, 3 … is called the RF harmonic mode. It is obvious now that the beam is bunched with 
the same time structure than the RF field, each bunch laying on an accelerating wave. Figure 4 shows 
the bunch position with respect to the RF accelerating wave at each gap crossing between the two 
Dees. With this simple configuration and with the isochronous and synchronous conditions between 
the particle, the RF field and magnetic field, the beam arrives always at the same optimum accelerating 
RF phase. The AC generator alternates the polarity of the Dees in order to give to the ion an 
accelerating field every half period. With 180° Dees, if the harmonic number is 1, only one beam can 
be accelerated per turn. 
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Fig. 4: Accelerating field configuration with Dees on harmonic 1 

The kinetic energy of the beam out of the cyclotron at a radius r will be  

 2 2 2rf
0 0 rev 0

1 1 1v (2 ) (2 )
2 2 2

fW m m r f m r
h

π π= = =  . 

The frequency dependence is one of the limiting factor for the acceleration. A fixed frequency 
range available from the AC generator, given by the technology constraints, gives a fixed range of 
kinetic energy (depending on 2

rff  with h = 1). But, the energy range can be extended through the 
harmonic number. With the same magnetic and cavity configuration, the next possible harmonic is 
h = 3 (Fig. 5), the beam velocity is 3 times smaller and there are 3 bunches per turn. Lower energies 
are reachable. 

 

 

Fig. 5: Other acceleration configuration with h = 3 

2.1 Transverse dynamics 

2.1.1 Horizontal stability 

The cylindrical coordinates (r, θ, z) are well suited to express the particle motion in a cyclotron. 
Figure 6 recalls the coordinate system. For the ideal reference particle, we define a closed orbit with a 
radius ρ and consider the motion of particles with small orbit deviations (paraxial condition) around 
this trajectory such as:  

 )1(
ρ

ρρ xxr +=+=   

+V 

-V 
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Fig. 6: Coordinates system attached to the reference particle on the closed orbit 

The magnetic field (0, 0, Bz) around the median plane is expanded in Taylor series along the 
radial dimension   

 z z
0z 0z 0z

0z

(1 ) (1 )z
B B x xB B x B B n
x B x

ρ
ρ ρ

∂ ∂= + = + = −
∂ ∂

 (13) 

and we define the field index as the fractional change of the axial component of the field Bz(x) 
associated with a fractional change of radius (can be expressed also as n = –k) 

 z

0z

Bn
B x
ρ ∂=−

∂
 (14) 

Particles on the closed orbit see the centrifugal force compensating the horizontal restoring 
force 

 
2
θ

θ z
mv qv B

r
=  (15) 

For particles off the closed orbit, a restoring force Fx appears 

 
2
θ

x θ z
mvF qv B

r
= −  (16) 

inserting (13) into (16) 

 
2 2
θ θ

x θ 0z(1 ) (1 ) (1 )mv mvx x xF qv B n n
ρ ρ ρ ρ ρ

= − − − = − −  (17) 

Recalling Newton’s law xF mx= , we finally find 

 
2
θ
2

v (1 ) 0x n x
ρ

+ − =  (18) 

 2
r 0x xω+ =  (19) 

z 
x 

θ 

ρ 
r 

Closed orbit 

Median plane 

BEAM DYNAMICS FOR CYCLOTRONS

213



which is the equation of an harmonic oscillator with r 01 nω ω= −  and ω0 = vθ/ρ the angular velocity 
of the particle on the closed orbit and the horizontal betatron number r 1 nν = − (νr can be called Qr 
in the literature). The motion is stable only if 1<n  

A selected particular solution in the median plane is 

 max r 0( ) cos( )x t x tν ω=  (20) 

As an example, Fig 7, the particle makes nine horizontal oscillations for 10 turns in the 
cyclotron which is directly related to the betatron number  νr = 9/10 = 0,9 

 
Fig. 7: Horizontal betatron oscillations 

2.1.2 Vertical stability 

Similarly, in the vertical plane we have a restoring force Fz  such as 

 z θv xF mz q B= =  (21) 

Because 0=×∇ B , x z 0B B
z x

∂ ∂− =
∂ ∂

, we get 0z
x

BB n z
ρ

= − . By substitution in (21), the vertical 

equation of motion is 

 02 =+ zz zω  (22) 

which is the equation of a harmonic oscillator with  0ωω nz = and the vertical betatron number is 

nz =ν . The motion is stable only if 0>n  

The oscillations around the median plane are described by 

 )cos()( 0max tztz zων=  (23) 

 
Fig. 8: Vertical betatron oscillation 
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In Fig 8, one vertical oscillation for 9 turns in the cyclotron gives νz =1/9 = 0,11 

2.1.3 Weak focusing  

During acceleration, simultaneous horizontal and vertical stability are needed, therefore, the field 
index n should be bounded between 0 and 1 (weak focusing definition) which is, by the definition of n, 
the characteristic of a slightly decreasing field.  

Equation (9) shows the dependence of the revolution frequency on the magnetic field. If the 
magnetic field decreases, ωrev will also decrease. Then a phase difference Δφ between the accelerating 
field phase and the beam will build up such as:  

 ( )RF rev/ 1ϕ π ω ω⎡ ⎤Δ = ⋅ −⎣ ⎦ .  

The synchronism condition (12) is fulfilled only at one radius for the so-called isochronous 
bunch (Fig. 9).  

   
Fig. 9: Beam phase evolution in a conventional flat pole cyclotron   

The focusing condition is not compatible with the isochronism of the machine. The beam 
extraction should be done before reaching the decelerating phase region. The energy range is limited 
by the geometry of the cyclotron. The weak focusing  does not allow to get high energies.  

3 Azimuthally Varying Field (AVF) cyclotron 
When higher energies are aimed at, the relativistic mass increase during the acceleration cannot be 
neglected anymore and m = γm0 should be put in the previous equations. The revolution frequency ωrev 
is then dependent on 1/γ [Eq. (9)].The isochronism condition can only be fulfilled if the mean field 
increases as γ.  

 ( ) ( )z z( ) 0B r r Bγ=  (24) 

This is clearly in opposition to the weak focusing condition and a vertical focusing. In 1938, 
Thomas discovered that to improve the vertical focusing, sectors have to be inserted [2] and [3]. The 
succession of hills and valleys creates an azimuthal field modulation (Fig. 10 and Fig. 11). A Bθ 
component of the field appears and as the trajectory of the beam is no longer a circle, a component vr 
of the beam speed is created. Therefore, the vertical component Fz ∝ vr . Bθ of the Lorentz force is 
created. 
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Fig. 10: Creation of a new vertical force to compensate the field increase necessary to the 
isochronism condition 

            
Fig. 11: Sectors to create azimuthal field modulation 

The field modulation induced by the sectors can be express through the flutter F defined by:  

 
( )22 2

hill val
2 28

l

B B B B
F

B B

− −
= ≈  (25) 

where B  is the field average over one turn. To ease the comprehension, the flutter term can also be 
expressed into hill and valley terms. 

From (21) and (22), the vertical focusing force strength 2 2 2 2
z z 0 zF z v z vω ω= = ⋅ ≈   

For a cyclotron with N sectors, the betatron number depends on the flutter term such as 

 
2

2
z z 2 1 l

NF v n F
N

≈ = + +
−

…  (26) 

Therefore, the flutter term Fl enhances the initial weak focusing term n.  
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With (14) and (24) and for high energies, 2γ  is greater than 1 

 21 0r dn
dr
γ γ

γ
= − = − <  (27) 

the field index becomes negative and the particle motion is unstable. To reach high beam energy (γ 2 
term), and a stable motion νz > 0, the condition on the flutter term is the following 

 1
1

2
2

2

−=−>
−

γnF
N

N
l  (28) 

Remark: Increasing the number of sector does not help in the focusing [ 2 2/( 1)N N − term 
slightly decreases with N]. The choice to increase the number of sector N derives from resonance 
considerations developed in §8.4 

Then, we find that to aim at high energies where the Lorentz factor becomes large one has to 
increase the flutter term to keep an efficient vertical focusing effective, which is possible from (25) by 
lowering the field in the valley down to zero leading to the separated sector cyclotron 

4 Spiral sector cyclotron 

In 1954, Kertz realised that spiralling sectors by an angle ξ, the valley-hill 
transition became more focusing while the hill-valley transition was less 
focusing. But by the strong focusing principle (larger betatron amplitude 
in focusing, small in defocusing), the net effect is focusing. 

 

Then an additional term is added to the vertical restoring force  

 
2

2 2
z z 2 (1 2 tan )

1 l
NF v n F

N
ξ≈ = + +

−
 . (29) 

Similarly, in the radial plane 

 
2

2 2
r z 2 2

31 (1 2 tan )
( 1) ( 4) l

NF v n F
N N

ξ≈ = − + +
− ⋅ −

 . (30) 

5 Superconducting cyclotron 
Most of the cyclotrons utilize room temperature magnets with a maximum induction field of 2 Tesla 
coming from the iron saturation. Beyond this limit, superconducting coils are used and 6 Tesla can be 
reached. The magnets are smaller and this technology lowers also the operational cost. The maximum 
energy per nucleon capability of a cyclotron is given by 

 
( )2 2 22

b
u2

B e Q QW K
m A A

ρ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (31) 
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where A is the number of nucleon, Kb is the so-called bending factor of the cyclotron, mu is the atomic 
mass unit, e the charge unit and, q = Qe. But for superconducting cyclotrons, the iron is saturated, the 
term (Bhill – Bval)2 is constant and Fl ≈ 1/<B>2 . The consequence is that for high energy per nucleon 
requiring high magnetic fields, the superconducting cyclotrons see their vertical focusing term 
decrease (Fig. 12).  

 f
QW K
A

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (32) 

where Kf is the so-called focusing factor of a superconducting cyclotron. If the field is decreased, the 
focusing limit is increased, the dot-dash line is where the bending and focusing limits are equal and up 
to which the cyclotron is usable [4]. 

    
Fig 12: Superconducting cyclotron behaviour and focusing limitation 

6 Frequency modulated cyclotron or synchrocyclotron 
The last machine to be described is the synchrocyclotron; only four of them remain around the world. 
This machine has an uniform magnetic field and a positive field index. Therefore, to make an efficient 
acceleration, the RF frequency needs to be decreased to compensate for the increase of mass 
(ωrev = QB/γm0 ≈ωrf). This is a cycled machine (compared to continuous beam for cyclotrons) and the 
beam makes thousand turns mainly due to the low voltage applied. This type of machine delivers very 
high energy beams from MeV to GeV.  

 
Fig. 13: Synchrocyclotron frequency cycle from the injection to extraction with fixed magnetic 
field 
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7 Longitudinal dynamics 
A cyclotron can accelerate only a portion of an RF cycle and the acceptance is about ± 20° RF (out of 
360°). The external source, such as ECR or EBIS etc. delivers DC-beams compared to the cyclotron 
RF frequency. A buncher located upstream from the cyclotron injection accelerates particles which 
would come late to the first accelerating gap and decelerates the ones coming too early. Then, more 
particles can be accelerated in the cyclotron within the ± 20° acceptance. This increases the cyclotron 
injection efficiency by a factor 4–6 

The final energy is independent of the accelerating potential V = V0cosφ: if V0 varies, the 
number of turn varies. The energy gain per nucleon and per turn depends on the peak potential V0, but 
is constant, if the cyclotron is isochronous (ϕ =const): 0/ cosgW N Q AVδ ϕ= , where Ng is number of 
gaps. The radial separation turn between two turns varies as 1/r (γ ~ 1) : 

 0
2

/ cos1 1
2 2

Q AVr W
r W W r

ϕδ δ= = ∝  (33) 

7.1 Acceleration with sector cavities (not Dees) 

To ease the comprehension, we take the example of the CIME cyclotron at GANIL [5], Caen, France, 
with two RF cavities whose azimuthal extent are α = 40°.The energy gain per turn is 

0/ sin( /2)cosW Q AV hδ α ϕ= . For a maximum energy gain, the particle crosses the symmetry cavity 
axis when ϕ = 0° (cosϕ = 1). 

   

Fig. 14: Acceleration principle with sector cavities 

The acceleration is efficient for harmonic numbers up to 8.  

h 2 3 4 5 6 7 8 

Sin(hα/2) 0.64 0.87 0.98 0.98 0.86 0.64 0.34 

The table below summarizes a few cyclotron characteristics. 
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Laboratory 
 

Cyclotron 
name/type 

K (MeV/n) 
(or proton energy 
Q/A =1) 

Extraction 
radius 
(m) 

GANIL(FR) C0 28 0.48 

NAC (SA) SSC 220 4.2 

GANIL (FR) CIME 265 1.5 

GANIL (FR) SSC2 380 3 

RIKEN (JP) RING 540 3.6 

PSI (CH) Ring 592 4.5 

DUBNA (RU) U400 625 1.8 

CATANIA(I) LNS (S.C.) 800 (kf  = 200) 0.9 

MSU (USA) K1200 (S.C.) 1200 (kf  = 400) 1 

8 Beam dynamics computation 
We can assume that along the closed orbit, the particle sees a succession of drift, dipole and focusing 
lenses. But putting those elements into a transport code is not going to work to fully predict the beam 
trajectory and envelopes. This is because we do not know a priori where the orbit is for any 
momentum neither the edge angles nor the field index in that region. The only realistic solution is to 
get the field map from measurements or calculations and compute the equation of motion through it in 
2D or 3D [6]. 

The field map computation by codes is obtained at present with a great accuracy with respect to 
the measured one (Fig. 15 and Fig. 16) [7]. Since, the field precise configuration varies with the field 
level, the field maps covering the working diagram (see §10) of the cyclotron has to be determinded. 
For CIME, 10 levels were necessary. Similarly, the RF field map can be decomposed into two regions: 
the central region where the beam is injected into the cyclotron and the cavity gaps.  

The transport of particles through the 3D field map will predict the behaviour of the beam during the 
acceleration. One can rely on numerical models even for large machine. The transport of the particle 
through the accelerating gaps depends on its vertical position. One has to take into account the real 
equipotential distribution, especially in the central region where the energy is low. 

 
 

Fig. 15: Comparison between computed/measured 
magnetic field for CIME 

Fig. 16: Field map of CIME with successive high and 
low field regions (high /valley)  
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8.1 Trajectories and matching recipes 

As the cyclotron cannot be decomposed into periodic lattice, the trajectory is found by an iterative 
process. To handle the peculiar way of cyclotron tuning here is a short recipes 

– Find a reference trajectory (1 particle) for a isochronous field level and a given frequency  

 find first a closed orbit at large radius with no RF field in the cavities 

 Then turn on RF field to decelerate the central particle to the injection. 

 Tune the RF and the magnetic field at the injection to join the injection point out of the 
inflector. 

– Find a matched beam in the cyclotron (multiparticles) 

 Start with a matched beam at large radius around the central trajectory (see §8.2) without RF 
field and check the beam matching  

 Again in backward tracking determine the matched beam  (see §8.2, 8.3) at the injection point 

– Forward tracking 

 confirm the matching from the injection to the extraction 

 fine tune the magnetic field with the isochronism coils 

 and if the 6D matching at the injection is not completely feasible by the injection line predict 
the new beam envelope and extraction 

– Ejection tracking 

Of course this is an iterative process and should be done for the different magnetic field level of 
the machine. 

8.2 Transverse phase space in a cyclotron 

The horizontal and vertical beam distributions are described by the emittance areas Ax and Ay assumed 
to be upright ellipses with axis max max max max max max,   and ,   where  and x x z z x z′ ′ ′  denote the divergence of 
the particle with respect to the reference particle at the centre of the beam.  

As for the FODO cell or in synchrotron, the beam has to be matched to the field configuration in 
order to minimize the beam envelopes and reduce the effective acceptance. From the equation (18) and 
(19) at a radius R  

 

⎪
⎩

⎪
⎨

⎧

−===′

=

)sin()()(

)cos()(

0
max

0

0max

t
R

x
dtR

dx
ds
dxtx

txtx

r
r

r

ωνν
ω

ων
 

 

The emittance areas are 2
x max max max r /A x x x v Rπ π′= ⋅ = ⋅  meaning that all particle included in this 

surface will remain bounded in it. That initial beam conditions depends on νr which varies with the 
cyclotron field level. If the matching condition ( )max max( ) /rx t x Rν θ′ =  is not respected, the width of 
the beam will oscillates with the betatron frequency and the acceptance has to be larger for the same 
emittance (Fig. 17).  

max r /x x v R′ =
 

xmax 
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Fig. 17: Radial phase-space evolution for an unmatched beam to the eigenellipse of the cyclotron 

A matched beam, Fig. 18, remains matched as long as vr and vz change slowly under 
acceleration. Under acceleration and taking into account relativistic mass increase, the normalized 
emittances εx and εz remain constant 

 

2
x x max r

2
z z max z

constant

constant

A x
c

A z
c

ωε βγ π γ ν

ωε βγ π γ ν

= = =

= = =

 

 
Fig. 18: Radial and vertical matched beam transportation from injection to extraction. vr ≈ 1 and 
vz ≈ 0.26 over the acceleration. 

From §2.1.1, the horizontal betatron frequency can be expressed as r 1 .nν γ= − =  Since εx is 
constant, xmax scales as 1/γ. And because γ does not varies strongly in most cyclotrons, the horizontal 
dimension xmax is considered to remain constant. Therefore, the divergence max max( ) /rx t x Rν′ =  varies 
as 1/R. 

Similarly, the vertical size for a matched beam  is proportional to z1/ ν γ which can be fairly 
large in the case of weak focusing with zν small. 

x

x′  

maxx

maxx′  

x′

x xmax

maxx′  

x 

x′

νr = 1/5
1 
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4 

5 
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8.3 Backward 6D matching 

The determination of the central trajectory and the matched beam at large radius does not allow the 
determination of the phase space at injection in the cyclotron. A correlation exists within transverse 
phase space variable and also between transverse and longitudinal phase space. The good matching of 
the beam in the cyclotron will depend on these initial conditions. As the injection field distribution and 
acceleration are of great complexity in this region, one solution is to transport a matched beam 
backward from large radius to this injection point in the cyclotron which can be an inflector or an 
injection beam line and see how the beam shape evolves. 

This refinement in tuning appeared with the external sources. ECR sources, for example, could be 
placed far from the cyclotron injection and magnetic lenses can be inserted in between, along the 
transport line, to shape the beam into a matched beam 

Figure 19 and Fig. 20 show an example of injection centre and the correlation required for a given 
field level. A Gaussian distribution is calculated over the particles to determine the representative 
dimension such as the beam maximum extension and the correlation within the phase space.  

Unfortunately, the Gaussian distribution is not always well suited to the particle distribution (see dphi-
dpr/p0 plot in Fig 20). One has to check by a forward tracking that the initial mismatch will not be 
critical. This pattern will be greatly modified as a function of the magnetic field level and harmonic 
number.  

A beam line before the injection point can then create such a predicted correlation with quadrupoles, 
skew-quadrupoles and/or solenoid for transverse correlation and buncher for the longitudinal 
dimensions (Fig. 21).  

 
Fig.19: Example of injection centre from the CIME cyclotron with the beam trajectory over the 
first three turns 
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Fig. 20: Phase space out of the inflector in order to get a matched beam during acceleration 

 

Fig. 21: CIME injection beamline which adapts the beam shape in the 6 D phase-space 

F. CHAUTARD

224



8.4 Tunes and resonances 

Resonances in an accelerator affect the amplitude of the beam betatron oscillation and may bring the 
beam to blow out . They are produced by the magnetic field configuration expressed through vr and vz. 
Resonances are encountered when 

 r zK L Pν ν⋅ + ⋅ =  (34) 

where K, L and P are integers. |K| + |L| is called the resonance order. Its value 1, 2, 3 … is respectively 
driven by a dipolar, quadripolar and sextupolar component of the field. P is the symmetry of the 
driving term. For example in cyclotrons, the third order coupling r z2ν ν= , called , the Walkinshaw 
resonance is frequently encountered and considered as one of the most destructive. 

As shown in (24), (26) and (27) the betatron oscillation derives from the field index and their 
evolution from the injection to the extraction can be calculated. As r,z r,z( ) ( )rν ν γ≈ , one can plot the 
tunes as a function of the beam energy. Figure 22 shows that those critical diagram region  can be 
rapidly crossed during the acceleration process, Therefore not damaging the beam. 

 
Fig. 22: Tune diagram from TRIUMF 

The minimum number of sectors or symmetry periods in a cyclotron is fixed by the 
fundamental resonance r /2Nν = . At the cyclotron injection, r 1ν γ≈ =  and if N = 2, the cyclotron will 
be unstable from the centre. Therefore such a cyclotron does not exist.  

From the same fundamental resonance, the increase of the sector number to 3 or 4 gives a limit 
r 3/2 or 4/2ν γ≈ =  which for proton represent 470 MeV and 938 MeV. Hence, higher energies will 

require more sectors. 

9 Cyclotron as a separator 
The cyclotron can have two functions: acceleration and selection. The equations (9) and (12) imply 
that for an ion with a given q0/m0 ratio, acceleration is only possible for a given RF frequency and field 
level. This isochronous ion will be fully accelerated to the extraction. 
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An ion with a different q/m ratio will not have the right revolution frequency. The beam will not 
be isochronous. A phase shift of this ion compared to the RF phase during acceleration appears, giving 
a lack of acceleration. When the phase ϕ reaches 90°, the beam is decelerated and lost. 

The phase shift definition is: 

 
00

2 /
)/(12

Qm
QmNh Δ=Δ

γ
πϕ  

The figure below shows one isochronous beam (36Ar6+) and another beam (18O3+) whose mass 
over charge ratio differs by a few 10–4 [8]. In the cyclotron CIME, the non-isochronous beam is lost 
around a radius of 800 mm. 

 

The mass resolution is by definition  

 
0 turn

0

1
2

m
q

R m h N
q

π

⎛ ⎞
Δ ⎜ ⎟
⎝ ⎠= =  

We want R as  small as possible in order to have as high a selectivity of the cyclotron as 
possible. Then for a given RF harmonic h, the number of turn Nturn needs to be as large as possible. 
This is obtained by lowering the accelerating voltage, thus getting a smaller turn separation but 
inducing a poor injection and/ or extraction efficiencies. 

90° Extraction
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CIME example:  
h = 6, Nturn = 280  R = 10–4 , meaning that ions with a m/q > 1.0001 × m0/q0 will not be extracted 
This is one of the great challenges for new exotic beam machines with isobars as close as 10–5. Other 
means must be found to separate those ions. 

10 Working diagram 
An easy way to represent and visualize the capability of a cyclotron is to put together the field, 
frequency and  the voltage of the source limitation on a same diagram, each quantity being linked for a 
given ion by the q/m ratio. One remarks the interest of trying to make use of the harmonic of the RF 
frequency. The energy range is largely increased. The mean field Bcime is strictly limited in the high 
field level because of the coil constraints but the lower limit can be pushed down if necessary. Finally, 
the source voltage will also be a limiting factor because the magnetic rigidity required to inject in the 
cyclotron depends on it : u source2 /B Am V qρ = . In this diagram, the beams of identical q/m ratio are 
placed on a straight line. 
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