Exercises for RF Tutorial

F. Caspers, S. Federmann CERN, Geneva, Switzerland

1 Cavities

Question 1

Design a pillbox cavity which has a resonance frequency f_{res} of 150 MHz for the TM₀₁₀ resonance.

- 1. Determine the free space wavelength λ for $150\,\mathrm{MHz}.$
- 2. What is the cavity diameter?
- 3. The R/Q is 300Ω . Calculate the cavity height.
- 4. Determine the Q value for this cavity when made from copper and and when made from stainless steel. (conductivities: $\sigma_{copper} = 58 \cdot 10^6 \text{ S/m}$, $\sigma_{StSt} = 1.4 \cdot 10^6 \text{ S/m}$)
- 5. Determine the parameters R, L, C of the equivalent circuit for this cavity.

Question 2

A rectangular $TE_{101} = H_{101}$ mode cavity has the dimensions a = c = 100 mm b = 50 mm.

- 1. Determine its resonant frequency f_{res} .
- 2. Determine the unloaded Q-factor for copper walls. ($\sigma_{copper} = 58 \cdot 10^6 \text{ S/m}$)
- 3. The coupler, connecting the cavity to the outside world is adjusted for critical coupling. Then $Q_0 = Q_{ext}$ which allows maximum power transfer into or out of the resonator. What is the loaded Q value (Q_L) of the cavity?
- 4. What is the 3 dB bandwidth of the loaded cavity for the TE_{101} mode?
- 5. The critically coupled cavity is driven by $P_{in} = 50$ W of input power on its resonant frequency. How much power is thermally dissipated in the cavity?
- 6. How much energy is stored in the cavity?

Question 3

A stainless steel pillbox cavity with a radius a = 160 mm and a Q value of 4000 is given. ($\sigma_{StSt} = 1.4 \cdot 10^6 \text{ S/m}$)

- 1. What is the resonance frequency of the fundamental mode?
- 2. Determine the height of the cavity.
- 3. What is a suitable tuning range for this cavity with no external impedance matching? (3dB bandwidth?)
- 4. Determine the R/Q value for this cavity. Will it change if the cavity was made of copper? ($\sigma_{copper} = 58 \cdot 10^6 \text{ S/m}$)
- 5. What are the parameters R, L, C of the equivalent circuit for this cavity?
- 6. The cavity will be powered by a 10 W amplifier via critical coupling. What is the peak voltage for this configuration? The amplifier is designed for a load impedance of 50Ω . Determine the necessary transformer ratio k of the input coupler.
- 7. What would be the Q factor and the gap voltage if the cavity would be made out of copper?

2 Decibel

Question 4

Fill in the missing fields in the tables below:

Voltage ratio	Power ratio	dB
3.1623		
	100	
		40

Question 5

Fill in the missing fields in the tables below:

dBm (50 Ω)	RMS Voltage (50 Ω)	milli Watt
0		
+ 30		
- 60		
		100

3 Multiple choice

Question 6

- 1. Which mode is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section without inner conductor? (check 1)
 - ∘ TE
 - $\circ \, TEM$
 - $\circ \, TM$
- 2. Which mode is the fundamental mode in a cylindrical waveguide with inner conductor (coaxial line)? (check 1)
 - TE○ TEM○ TM
- 3. Adding capacitive loading to a cavity (check 1)
 - lowers the resonance frequency
 - \circ does not affect the resonance frequency
 - \circ increases the resonance frequency
- 4. Advantages of a nose cone cavity compared to an ordinary pill box cavity of same dimension (check 1)
 - \circ Smaller skin depth
 - \circ Higher R/Q
 - $\circ \ Higher \ Q$
- 5. Superconducting cavities usually do not have nose cones because (check 2)

• Superconductors are expensive, so don't waste them for nose cones

- o Nose cones are sensitive to multipactoring, which causes excessive heating and must therefore be avoided
- The shunt impedance is so high that it can't be increased any more by changing the geometry
- \circ Superconductors are sensitive to high electric field around the nose cones
- 6. When doing numerical simulations, geometrical symmetries are exploited in order to (check 2)
 - \circ ensure convergence of the simulation algorithms for resonant structures
 - \circ reduce calculation time
 - \circ account for the transit time factor
 - rule out certain higher order modes
- 7. The GSM standard specifies a minimum sensitivity requirement of about $-100 \,\text{dBm}$, while the maximum output power is in the order of 1 W. This corresponds to how many orders of magnitude in power? (Exact values: $-102 \,\text{dBm}$ minimum sensitivity, 1 to 5 W maximum output power) (check 1)
 - $\circ 5$
 - $\circ 8$
 - $\circ 13$
- 8. When you cover then antenna of your mobile with your hand while using it, the attenuation caused is in the order of 20 dB. Human tissue is a rather good absorber, so you can neglect reflections for this calculation. How many percent of the mobile's output power stay in the head and hand? (check 1)
 - 9○ 99○ 99.99

4 Resonant circuits and impedance plane

Question 7

A resonant circuit consists of an inductance with L = 100 nH, a capacitance with C = 10 pF and a resistor with $R = 1 k\Omega$ at resonance.

- 1. Calculate the resonance frequency, the Q value, Δf and the R/Q.
- 2. Sketch the locus of impedance of the circuit in the admittance plane.
- 3. Sketch the locus of impedance of the circuit in the impedance plane.

Question 8

Design a RLC parallel resonance circuit with a resonance frequency fres of 15.92 MHz.

- 1. For Q = 20 at resonance this circuit has an impedance R of $4 \text{ k}\Omega$. What are the values for L and C?
- 2. Sketch the locus of impedance of the resonant circuit in the complex impedance plane.

5 Transmission lines and striplines

Question 9

A TEM transmission line has a characteristic impedance of $Z_C = 75 \Omega ZC$ and a velocity of propagation of v= 0.5c (c = $3 \cdot 108 \text{ m/s}$, $\mu_r = 1$)

- 1. What is the capacitance C' and inductance L' per unit length?
- 2. What is the relative permittivity ϵ_r of the dielectric?
- 3. The transmission line with the above parameters is realized as a coaxial structure. The outer radius is R = 10 mm. What is the inner radius r?

Question 10

The impedance of a stripline is given via:

$$Z = \frac{60\Omega}{\sqrt{\epsilon_r}} \cdot \ln\left[\frac{1.9b}{0.8w+t}\right]$$

- 1. Determine the Impedance for a stripline with dimensions b = 15 mm, t = 0.02 mm and w = 3.1 mm. The stripline is filled with PVC which has a dielectric constant of $\epsilon_r = 4$.
- 2. What is the capacitance C' per unit length and what is the inductance L' per unit length?
- 3. What is the phase velocity of the line?

Question 11

A stripline has an impedance $Z = 50 \Omega$. It is filled with Teflon as a dielectric ($\epsilon_r = 2.1$).

- 1. What is the capacitance C' per unit length and what is the inductance L' per unit length?
- 2. What is the phase velocity of the line?

6 S-parameters

Question 12

Match the S-matrices to the corresponding components

1 [0 1]		[0 1]		0	0	1
$S_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$S_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	$S_3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	$S_4 =$	1	0	0
$\sqrt{2} \begin{bmatrix} 1 & 0 \end{bmatrix}$				0	1	0

Component	Isolator	Circulator	Transmission line, length $\lambda/2$	3 dB attenuator
S-matrix				

Question 13

Denote the S-Matix of a transmission line of length $\lambda/4$ and an ideal 10 dB amplifier.

7 Impedances and Smith chart

Question 14

- 1. Sketch the locus of impedance of a resistor in the impedance and addmittance plane.
- 2. Sketch the locus of impedance of an inductance in the impedance and addmittance plane.
- 3. Sketch the locus of impedance of a capacitance in the impedance and addmittance plane.

You may use figure 1

Fig. 1: The impedance plane. (Question 14 and 15)

Question 15

Mark the following impedances in the Z-plane:

$Z=(3+4j)\Omega$	$ Z = 2$, arg $(Z) = \frac{\pi}{4}$	Z = short circuit
$Z=2\Omega$	$ Z = 1$, arg $(Z) = -\frac{\pi}{2}$	$Y = Z^{-1} = (0.16 + 0.12j) \Omega^{-1}$
$Z=(1-4j)\Omega$	Z = 5, arg(Z) = 53°	

You may use figure 1

Question 16

The input impedance of an RLC circuit has been plotted in the Z-plane (blue circle — see figure 2 below). Mark the points in the diagram describing:

- 1. Impedance at resonance frequency
- 2. DC impedance
- 3. 3 dB bandwidth
- 4. Impedance at $f \rightarrow \infty$

For a capacitance of 80 pF and an inductance 150 nH, what is the resonance frequency?

Question 17

The impedance of a resonant circuit is a function of frequency. For a given resonator, the impedance has been measured at 7 different frequencies (f_1 to f_7 — figure 3). The result is plotted in the complex Z-plane.

Fig. 2: Reonant RLC circuit in the impedance plane. (Question 16)

Fig. 3: Different measured frequency points of a resonant circuit in the impedance plane. (Question 17)

	f [MHz]	Z [k Ω]
f_1	105.11	$200.0 e^{j30^{\circ}}$
f_2	105.05	$162.6 e^{j45^{\circ}}$
f_3	104.94	$115.0 e^{j60^{\circ}}$
f_4	105.29	$200.0 e^{-j30^\circ}$
f_5	105.35	$162.6 e^{-j45^{\circ}}$
f_6	105.46	$115.0 e^{-j60^{\circ}}$
f ₇	105.20	$230.0 e^{j0^{\circ}}$

- 1. Determine the resonance frequency.
- 2. Determine the 3 dB bandwidth of this resonator.
- 3. Draw the equivalent circuit for the measured resonator.
- 4. Determine R.
- 5. Draw the locus of admittance of this circuit in the Y-plane and indicate the lower and upper 3 dB point.
- 6. Determine the Q value as well as L and C for this circuit.

Question 18

The locus of inpedance of a parallel RLC resonant circuit is given in the complex z-plane (z-plane = normalized Z-plane, normalization to 50 Ohm; z = Z/50 Ohm).

- 1. Transform this locus of impedance into the Smith Chart.
- 2. Mark the resonance frequency both in the z-plane and in the Smith Chart.
- 3. Mark the -3 dB points (for unloaded Q) both in the z-plane and in the Smith Chart.

Question 19

1. Plot the following **normalized** impedances *z* in the Smith chart:

Point	z
А	0.6 + j 0
В	0.6 – j 0.6
С	0.6 – j 0.8
D	0.6 – j 1.0

2. Plot the following impedances Z in the Smith chart:

Point	Ζ
E	50 + j0
F	20 - j 15
G	10 + j 25
H	0 – j 150

Question 20

1. Mark the reflection factors Γ of points A to F in the Smith chart and find approximative values for the corresponding (normalized) impedances z.

Point	Reflection factor Γ	(Normalized) Impedance z
А	1∠0°	
В	$1 \angle 45^{\circ}$	
С	1∠90°	
D	1∠180°	
Е	$1\angle -90^{\circ}$	
F	0.5	

2. Mark the following (normalized) impedances z in the chart:

Point	(Normalized) Impedance z
G	0 + j 2
Н	1.00 + j 1.73
Ι	1.41 + j 1.41
J	1.73 + j 1.00
K	2.00 + j 0
L	0.30 + j 0.40

- 3. Sketch in the chart the locus of Re(z) = 0.5.
- 4. Sketch in the chart the locus of Im(z) = 2.