$\mu = \mu_0 \ \mu_r$ $\mu_0 = 4\pi \cdot 10^{-7} \ Vs/(Am)$ $\varepsilon = \varepsilon_0 \ \varepsilon_r$ $\varepsilon_0 = 8.854 \cdot 10^{-12} \ As/(Vm)$ $c_0 = 2.998 \cdot 10^8 \ m/s$ $\sigma_{copper} = 58 \cdot 10^6 \ S/m$

(6 points)

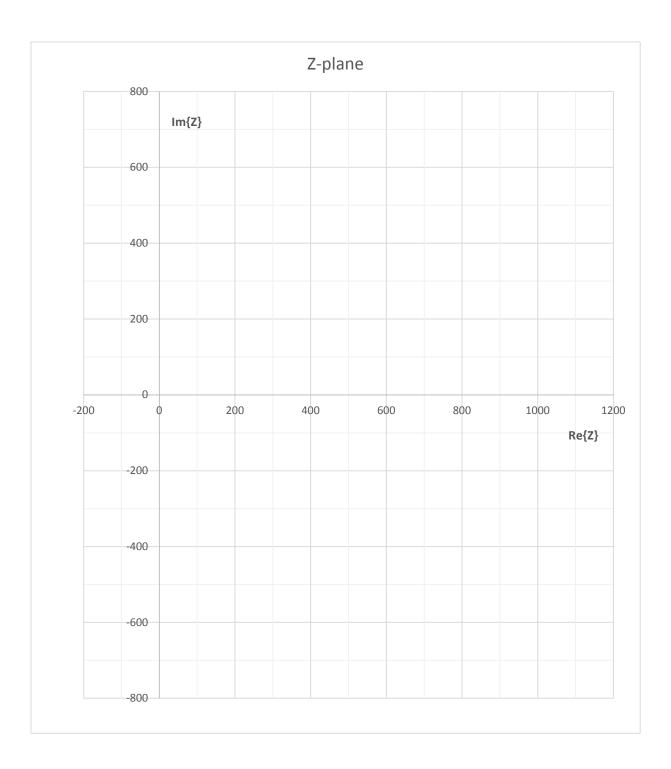
ID #:

Points: _____ of 20

Utilities: JUAS RF Course 2015 lecture script, personal notes, pocket calculator, ruler, compass, and your brain! (No cell- or smartphone, no iPad or wireless devices, text books or any other tools)

1. "Pillbox" Cavity

JUAS 2015 – RF Exam


Design a simple "pillbox" (cylindrical) cavity, made out of copper ($\sigma_{copper} = 58 \cdot 10^6$ S/m). The eigen-frequency of the lowest mode with longitudinal electric field components is 460 MHz. (The beam-pipe ports are neglected.)

The magnetic field if the TM ₀₁₀ mode das only longitudinal field components.				
(Mark the correct answer: false)	(½ point)			
What is the radius <i>a</i> of the cavity?	(1 point)			
What height <i>h</i> of the cavity has to be chosen,				
to achieve an (unloaded) Q -factor of $Q = 23500$?	(2 points)			
What is the 3-dB bandwidth of the resonance?	(½ point)			
Sketch the <i>RLC</i> equivalent circuit of this resonant mode,				
and determine the values.	(1 point)			
f) The cavity is fed from a RF power amplifier with a source impedance of R_g = 50 Ω . What is required transformer ratio of the coupling loop to match the cavity shunt impedance to the				
generator source impedance?	(½ point)			
Calculate the necessary RF power for a gap voltage of 1 MV.	(½ point)			
Resonator analysis in the complex plane (2	points)			
At the upper 3-dB point (definition see RF lecture script) of a 1 GHz resonator, the complex impedance measures $ Z(\omega=6.289 \ 10^9 \text{s}^{-1}) = 707 \ \Omega$.				
	The electric field if the IM ₀₁₀ mode das only transverse field components. (Mark the correct answer: false) What is the radius <i>a</i> of the cavity? What height <i>h</i> of the cavity has to be chosen, to achieve an (unloaded) <i>Q</i> -factor of <i>Q</i> = 23500? What is the 3-dB bandwidth of the resonance? Sketch the <i>RLC</i> equivalent circuit of this resonant mode, and determine the values. The cavity is fed from a RF power amplifier with a source impedance of $R_g = 50 \Omega$. required transformer ratio of the coupling loop to match the cavity shunt impedar generator source impedance? Calculate the necessary RF power for a gap voltage of 1 MV. Resonator analysis in the complex plane (2 upper 3-dB point (definition see RF lecture script) of a 1 GHz resonator, the complete			

- a) With help of compass and ruler, sketch the locus of Z(f) in the complex Z-plane
 - Indicated upper and lower 3-dB points, as well as the points for resonant frequency and frequency limits ($f = 0, f \rightarrow \infty$). (1 point)
 - Estimate the value of the shunt impedance *R*. (½ point)

2a

h

b) Determine the Q-value of the resonator.

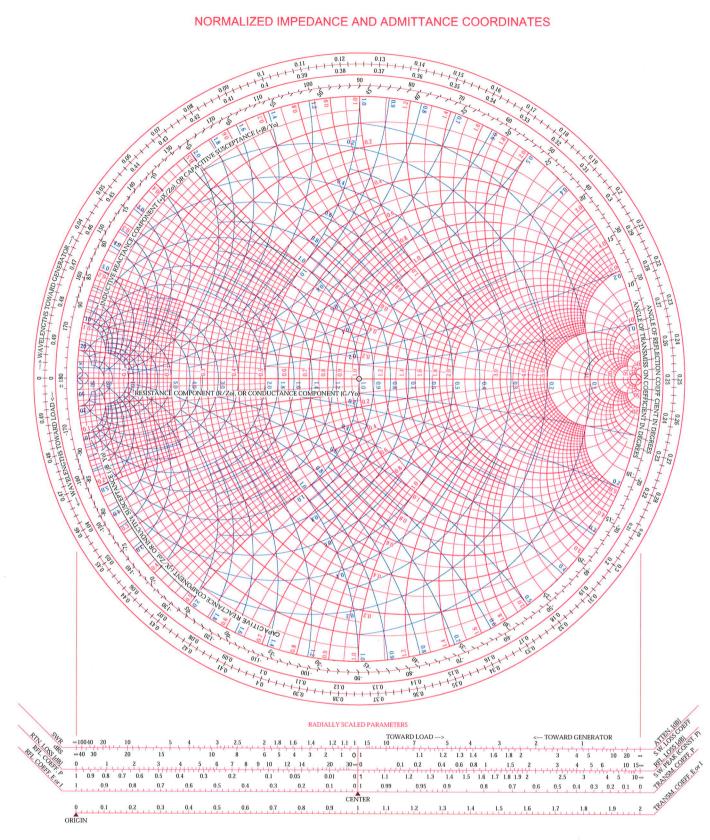
(½ point)

3. Smith chart

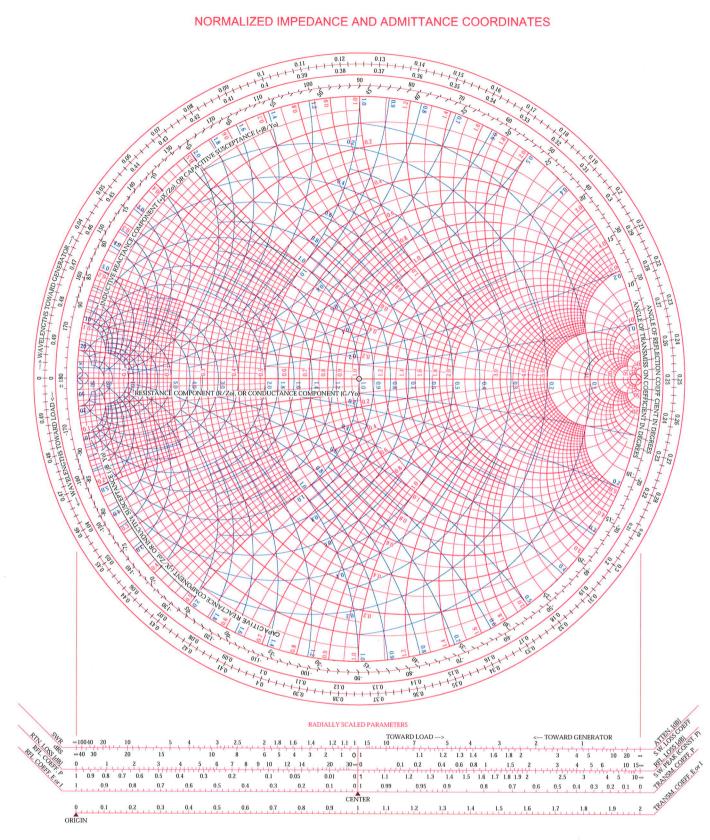
(6 points)

a) Indicate points $P_1...P_5$ in the Smith chart, assuming a reference impedance $Z_0 = 50 \Omega$. From the Smith chart, determine the missing Z or Γ , and complete the table. (1½ points)

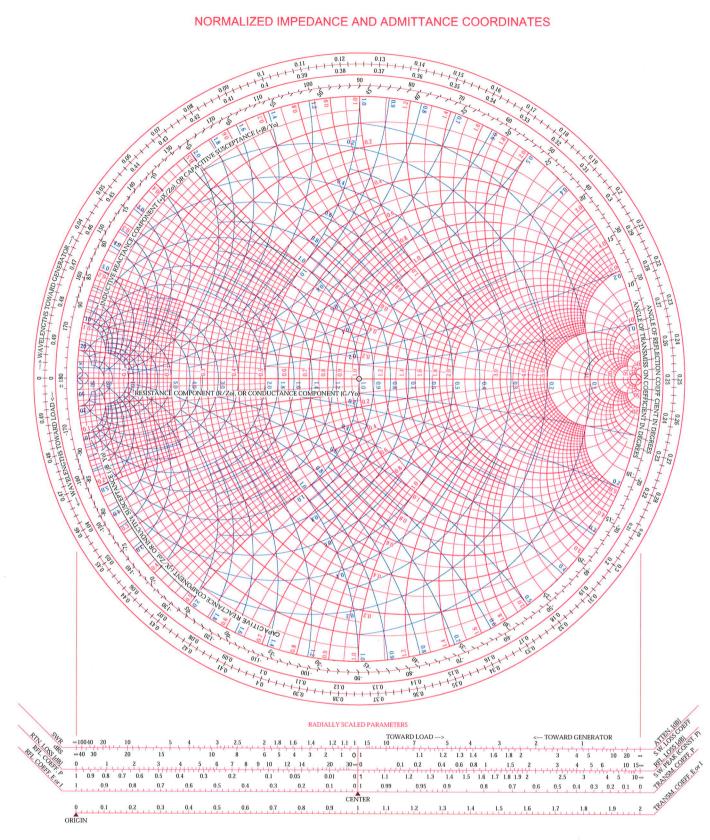
Point no.	P ₁	P ₂	P ₃	P ₄	P ₅
Ζ / Ω	50	0			R = 75 Ω, C = 4.25 pF, (@ f = 500 MHz)
Г			1∠0°	0.5∠45°	


b) Indicate $ \Gamma = 0.75$ in the Smith chart. (Hint: It is not a point)	(½ point)
c) At 400 MHz a complex load impedance measures Z_{load} = (25+j67) Ω .	
i. Indicate the normalized <i>z</i> _{load} in the Smith chart, and look up	
the reflection coefficient,	(¼point)
 the (voltage) standing wave ratio, 	(¼ point)
• the return loss (in dB),	(¼ point)
 the reflection loss (in dB) 	(¼ point)

for a reference impedance of $Z_0 = 50 \Omega$.


(Hint: Use a ruler to determine $|\Gamma|$ of z_{load} , and compare it with value found at the "radially scaled parameters" Smith chart ruler at the bottom.)

- ii. With help of the Smith chart, sketch a lossless matching network, and determine the component values to adapt to a 50 Ω source impedance of the RF generator.
 - Define the locus path lossless elements to route from z_{load} to the normalized reference impedance. (1 point)
 (Hint: Remember the Dellsperger Smith Chart computer exercises, only 2 lossless elements are required. Different solutions are possible.)
 - Determine the values of the lossless circuit elements. (2 points)


NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

4. S-Parameters

Match the ideal S-parameters in matrix form to the corresponding components.

$$S_{A} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad S_{B} = \frac{1}{10} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad S_{C} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & j & 1 & 0 \\ j & 0 & 0 & 1 \\ 1 & 0 & 0 & j \\ 0 & 1 & j & 0 \end{bmatrix} \qquad S_{D} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

a) Assign the S-matrices $(S_A \dots S_D)$ to the components:

component	dB directional coupler	transmission line, length = λ /	dB resistive power divider	dB attenuator
S-matrix				

b) Fill the missing dB and λ information (...).

5. Multiple choice

Tick the correct answer(s) like this: \bigotimes . (Except for questions 7. and 8., only one answer is correct)

- 1. A coaxial line is filled homogeneous with a dielectric material, e.g. PTFE ("Teflon"). The signal velocity of a coaxial line of same physical length, but filled with air is (½ point)
 - identical 0
 - higher 0
 - o lower
- 2. TEM stands for
 - Transient Electro-Magnetics
 - Transverse Electro-Magnetic mode
 - o Turbo Electric Motor
- 3. For a cylindrical ("pillbox") cavity, the eigen-frequencies are independent of the cavity height h dimension: $(\frac{1}{2} point)$
 - False, for any eigen-mode the resonance frequency depends on height h and radius a
 - True only for the fundamental mode
 - True only for TM₀₁₀ and TM₁₁₀ modes
- 4. When comparing with a charged particle passing the cavity gap with infinite velocity, the integrated field in the cavity gap, seen by a particle of finite velocity is (½ point)
 - o increased due to
 - o reduced due to
 - independent of

the transit time factor.

(1 point)

(4 points)

(½ point)

(1 point)

(2 points)

- 5. Critical coupling (match at resonance) between resonator and generator occurs at (½ point)
 - $\circ \quad Q_L = Q_{ext}$
 - $\circ \quad Q_L = Q_0/2$
 - $\circ \quad QL = 2 \ Q_0$
- 6. A 10 W RF generator is connected via a 20-dB attenuator to a 50 Ω load impedance. At the load we measure: (½ point)
 - o 1W
 - o -20 dBW
 - o +20 dBm
- 7. What is true for 2-conductor transmission-lines?
 - \circ $\;$ Ideal for broadband (down to DC), low level signal transmission.
 - The signal transmission is based on "modes".
 - Low losses at high frequencies, therefore ideal for high power RF transmission.
- 8. What is true for waveguides?
 - Ideal for broadband (down to DC), low level signal transmission.
 - The signal transmission is based on "modes".
 - Low losses at high frequencies, therefore ideal for high power RF transmission.

(½ point)

(½ point)