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Brilliance and emittance
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Flux = Photons / ( s  BW)

Brilliance = Flux / ( As   ) ,  [ Photons / ( s  mm2  mrad2  BW )]

The brilliance represents the number of photons per second emitted in a given 

bandwidth that can be refocus by a perfect optics on the unit area at the sample. 

 /  = Opening angle in vert. / hor. direction
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Diffraction limit storage rings (I)

The brilliance of a storage ring based synchrotron light source can be increased  by 

reducing  the emittance of the beam, up to the limit where the natural diffraction 

prevents any further reduction of the photon beam size and divergence.
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The condition for diffraction limit depends on the wavelength. To see this we must 

consider the photon beam size and divergence.

This is called diffraction limited  storage ring. 

In the expression appearing in the denominator of the brilliance

the natural photon beam size ph and divergence ‘ph dominate over the size and 

divergence of the electron beam



ID radiation beam size (I)

Usually the undulator radiation is approximated as the fundamental e.m. mode of a 

Gaussian beam. For the fundamental Gaussian mode we have

The Gaussain beam size and divergence of such mode are given by the relations



ID radiation beam size (II)

The undulator radiation is not striclty speaking a Gaussian mode (especially in helical 

undulators). However its angular distribution can be fitted with that of a Gaussian 

mode and the corresponding beam size and divergence are extracted from the fit:

The diffraction limited emittance of the photon beam of the undulator radiation 

generated by a filament beam is given by the product 
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Diffraction limit storage rings (II)

The contribution to the photon beam size and divergence due to a finite electron beam 

size and divergence add in quadrature (still within the Gaussian approximation for 

both).

The condition for diffraction limit is then given by

The condition for diffraction limit depends on the wavelength. Usually it is quoted 

that of 1 Angstron (hard X rays) the emittance should be less than 8 pm (/4).

The brilliance reads
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Diffraction limit storage rings (III)

Notice that the transverse emittance is minimised when the electron beam size 

and divergence are matched to the photon beam size and divergence, hence

This requires a special design of the optics in the ID straight sections

Courtesy B. Hettel



Diffraction limit storage rings (IV)

Reducing the emittance increseas also the transverse coherence of the radiaiton

The coherent fraction is defined as the ratio of the photon flux which is diffraciton 

limited, hence

A source where the electron beam has the 

same size and divergence of the photon beam 

correspond to a coherent fraction of only 50% 

(in each plane!)

Smaller electron beam emittances are 

necessary to increase the coherent fraction 

(beside increasing the brilliance)

Courtesy B. Hettel



The brilliance of the photon beam is determined (mostly) by the electron beam 

emittance that defines the source size and divergence. The horizontal emittance 

of existing light sources are very far from the diffraction limit

Emittance of third generation light sources



Emittance of third generation light sources
The emittance in the vertical plane however has been reduced to the pm range in 

several light sources. This radiation is diffraction limited in the vertical plane up to 

the hard X-rays

• operating

• under 

construction



Records for smallest vertical emittance (2011-2014)

APS

0.35 pm

Courtesy L. Rivkin

PSI and EPFL

SLS

0.9 pm



Lattice design has to provide low emittance and adequate space in straight sections

to accommodate long Insertion Devices
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Zero dispersion in the straight section was used especially in early machines

avoid increasing the beam size due to energy spread

hide energy fluctuation to the users

allow straight section with zero dispersion to place RF and injection

decouple chromatic and harmonic sextupoles

DBA and TBA lattices provide low emittance with large ratio between

Minimise  and D and be close to a waist in the dipole
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3rd generation storage ring LS and damping rings

Specific lattices are used in synchrotron light sources 

• (FODO)

• TME like lattices

• DBA

• TBA

• QBA

• MBA

• controlled dispersion in straight sections

Other specific techniques fare used or reducing the emittance, using

• gradient dipoles

• longitudinal gradient dipoles

• insertion devices and damping wigglers (NSLS-II) MAX IV, Pep-X



ALS

DBA used at: 
ESRF, 
ELETTRA, 
APS, 
SPring8, 
Bessy-II, 
Diamond, 
SOLEIL,
SPEAR3
...

TBA used at 
ALS, 
SLS, 
PLS,
TLS 
…

Low emittance lattices

APS

Low emittance and adequate space in 

straight sections to accommodate long 

Insertion Devices are obtained in 

Double Bend Achromat (DBA) 

Triple Bend Achromat (TBA)
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ASP

APS

Leaking dispersion in straight sections 
reduces the emittance 

ESRF 7 nm  3.8 nm
APS 7.5 nm  2.5 nm
SPring8 4.8 nm  3.0 nm
SPEAR3 18.0 nm  9.8 nm
ALS (SB) 10.5 nm  6.7 nm

The emittance is reduced but the 
dispersion in the straight section 

increases the beam size

Breaking the achromatic condition
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Need to make sure the effective emittance 
and ID effects are not made worse



New designs envisaged to achieve 
sub-nm emittance involve

Damping Wigglers
Petra-III: 1 nm
NSLS-II: 0.5 nm

MBA
MAX-IV (7-BA): 0.5 nm
Spring-8 (10-BA): 83 pm (2006)

10-BA had a DA –6.5 mm +9 mm 
reverted to a QBA (160 pm)
now 6BA with 70 pm

Low emittance lattices

MAX-IV

Spring-8 upgrade



The formula for the emittance tells us that the emittance is generated in the dipoles 
(and insertion devices), i.e. in the elements where radiation is generated. 

In fact emittance is determined by the equilibrium between radiation diffusion and 
radiation damping

Where is the equilibrium emittance generated?
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We can try to tailor the optics functions in each single dipole in order to reduce the 
value of  <H>dip. Indeed it is possible to show that there is a minimum emittance 
condition

This condition can be used to generate TME-like lattice with long straight sections 
by using matching sections.

Let us start with a single dipole…



We want the general expression for <H> dipoles in terms of the initial optics function, at 

the beginning of the dipole. In this way

Minimum emittance from a single dipole (I)
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becomes a function of 

(0, 0, D0, D’0)

since 0 will be uniquely defined by 0 and 0. The TME condition is found by setting 

the gradient of <H> dipoles to zero with respect to (0, 0, D0, D’0). 

It is often common to operate with achromatic condition in the straight section, 

which means fixing D0 and D’0 to zero at the entrance or at the exit of the magnet. 

In doing so we lose two fit parameters, since (D0, D’0) = (0, 0), and accordingly the 

minimum emittance value will be higher than that achieved in the general case.

Let us see how the optics functions evolve in a sector bending magnet



Minimum emittance from a single dipole (II)
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Minimum emittance from a single dipole (III)

Using the previous equations we can compute the dispersion invariant and 

integrate it over the dipole length. Check this as an exercise!
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This expression is usually simplified in the literature. Assume that

• no combined function gradient exists, i.e. K = 0 

• the bend angle is small. Approximate  = L/ << 1
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Minimum emittance from a single dipole (IV)

We now look for the initial optic functions that minimise the previous expression.

Making the gradient of <H>dipole zero we obtain the following results
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This minimum is reached for the following set of optics functions computed at

the centre of the dipoles

This optics gives the theoretical minimum emittance (TME) in the limit of small 

dipole angle
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Minimum emittance from a single dipole (V)

The optics through the dipole looks like

Since   3 many small angle bending are favoured to reach smaller emittances

The dispersion is non zero in the straight section and it cannot be zeroed without 

further dipoles

To build now a full lattice we can flank this dipole by a matching sections to 

create a full ring, repeating periodically the TME-cell

Courtesy A. Streun



Minimum emittance from a single dipole (VI)

If we start with an achromatic condition at the beginning (or end) of the dipole we

must find a minimum of <H> dipoles  as a function of 

(0, 0) with  (D0, D’0) = (0, 0) 
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The average of the dispersion invariant is 

The condition for the minimum emittance and requires that the focus of the beta

function (f = 0), i.e. the minimum of  is reached in the first half of the

dipole and occurs at

In this case, the values of the optics functions at the entrance of the dipole are

and  reads

this is three time larger than the TME



Minimum emittance from a single dipole (VII)

The optics through the dipole looks like

Since   3 many small angle bending are favoured to reach smaller emittances

To close the dispersion this cell can be repeated mirror symmetrically using a 

quadrupoles. This is the simplest from of a double bend achromat called 

Chashman-Green lattice

Courtesy A. Streun



Double bend achromat

A matching section can be added to tailor the optics for an insertion device as in

Courtesy A. Streun

This is the basic structure of a DBA lattice used in many light sources

The horizontal emittance reached in medium size machines is in the order 

of few nm
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Triple bend achromat

A TME cell can be added in between a DBA cell to generate a TBA cell

Notice that we cannot naively assume that the minimum emittance of the TBA

is the average of the TME of a DBA and one TME cell. 

We need to match the optics function between the two cells and this proves to be

impossible if we use only quadrupoles and leave the same type of dipole, i.e. 

same strength and same length. In particular we cannot match the dispersion

invariant at the dipole end s

The condition for matching with minimum emittance require the external dipole to

be shorter by 1/sqrt(3).

Courtesy A. Streun



Low emittance with multiple bend achromats

1/2 Insertion Straight 1/2 Insertion Straight

Achromat

Dispersion Function

DBA 7BA

Simplified explanation

– Emittance is driven by randomness of photon emission in presence of dispersive 

(energy-dependent) orbits – electron recoils randomly

– Breaking up dipoles and putting focusing (quadrupoles) between the parts allows 

reducing the amplitude of dispersive orbits – smaller electron recoils



Multi bend achromat
In much the same way more than one TME cell can be added in between a 

DBA cell to generate a MBA cell

With many small bending magnets the overall scaling of the emittance   3

will generate very small emittances

As the Pep-X lattice a 7BA with 5 TME cells

5 TME units



Summary
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In general we can say that the emittance scaling with the cubic power of the 

bending angle favours rings with a large number of bending and therefore, 

broadly speaking with a large circumference C.



Emittance vs circumference

The design of the most recent synchrotron light sources pushes the emittance 

close to the diffraction limit at hard X-rays also in the horizontal plane



Further emittance reduction: damping wigglers (I)

Insertion device can have a strong impact on  the equilibrium beam properties, 

namely on the emittance
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The IDs modify the radiation integrals. The modification to the equilibrium beam

properties can be computed from the modification to the radiation integrals (usually

I4 << I2)

Let us consider a insertion device made by a linear undulator with peak field BID

and period  u. The curvature radius associated to the trajectory reads 
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Modification to the radiation integrals I2 and I3

The computation of the additional terms generated by the IDs requires some care.

The radiation integrals depending only on the radius of curvature are straightforward
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where LID the length of the ID. They both increase with the ID field and ID length.

The radiation integrals involving also the dispersion and the optics functions are

usually calculated assuming either that the self-dispersion is negligible or, on the

opposite end, that there is only the self-dispersion contribution.

Let us see how to compute the self dispersion generated by the ID:



Self dispersion in IDs

The ID, as any bending magnet, also modifies the dispersion function. The effect of 

the ID on the dispersion is usually characterised by the concept of self-dispersion, i.e. 

the dispersion generated by the ID in a straight section in absence of any other 

dispersion. The self dispersion in the ID is given by
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When self dispersion dominates we have
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External dispersion in IDs
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If the external dispersion is large and self dispersion can be neglected we have

The expression for I5,ID can be computed by using the value of the dispersion

invariant Hi,ID at the centre of the straight section which usually has a waist for the

optics function, i.e. I, ID = 0, therefore
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The radiation integral reads



Emittance reduction with IDs

Using the modified radiation integrals we can write down the expression for the 

equilibrium properties of the beam in a storage ring with IDs. 

If I5 is dominated by external dispersion, isomagnetic lattice, we can write
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Thus the emittance can be increased or decreased depending on the relative 

values of H and r in the insertion device and in the bending magnets.

If I5 is dominated by self-dispersion, in the isomagnetic case ,we have
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Alternatively these expression can be used to define the limits on the insertion 

devices field in order not to change the equilibrium properties of the beam



Example: Pep-X design

Emittance = 11 pm-rad at 4.5 GeV

with parameters lw=5 cm, Bw=1.5 T

Average beta function at the wiggler section is 12.4 meter.

Wiggler Field Optimization Wiggler Length Optimization



Energy spread change with IDs
In a similar way, using the radiation integral I2 I3, and I4 can compute the modification  

to the energy spread as per

In this regime, the energy spread is defined by the radiation integrals that do not

depend on the dispersion function. We have the ratio

Since usually I4 << I2 we have
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If the peak field in the ID is less than that of the bending magnets (ID > ) there is a

reduction in energy spread, whereas if the peak ID field exceeds the bending magnet

field ( ID > ) the energy spread is increased.



Difficulties with low emittance lattices

Small emittance  Strong quadrupoles  Large (natural) chromaticity

 strong sextupoles (sextupoles guarantee the focussing of off-energy particles)

strong sextupoles reduce the dynamic aperture and the Touschek lifetime

 additional sextupoles are required to correct nonlinear aberrations 

Courtesy A. Streun



Nonlinear beam dynamics optimisation (I)

It is a complex process where the Accelerator Physicist is guided by 

• (semi-)analytical formulae for the computation of nonlinear maps, 

detuning with amplitude and off-momentum, resonance driving terms

• numerical tracking: direct calculation of non linear tuneshifts with 

amplitude and off-momentum, 6D dynamics aperture and the frequency 

analysis of the betatron oscillations

Many iterations are required to achieve a good solution that guarantees 

a good dynamic aperture for injection and a good Touschek lifetime

See lectures on nonlinear dynamics
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