Superconductivity for accelerators - why bother?

Abolish Ohm's

- no pw/ consumption (although do need refrigeration power)
- high current density ⇒ compact windings, high gradients
- ampere turns are cheap, so don't need iron ⇒ high fields (although often use it for shielding)

Consequence

- **S**ower power bills
- higher magnetic fields mean reduced bend radius
 - \Rightarrow smaller rings
 - \Rightarrow reduced capital cost
 - ⇒ new technical possibilities (eg muon collider)
- higher quadrupole gradients
 - \Rightarrow higher luminosity

Martin Wilson Lecture 1 slide 1

JUAS February 2015

Superconducting Magnets: plan of the lectures

1 Introduction to Superconductors

- critical field, temperature & current
- superconductors for magnets
- manufacture of superconducting wires
- high temperature superconductors HTS
- where to find more

2 Magnetization, Cables & AC losses

- superconductors in changing fields, critical state model
- filamentary superconductors and magnetization
- coupling between filaments ⇒ magnetization
- why cables, coupling in cables
- mini tutorial
- AC losses in changing fields

3 Magnets, 'Training' & Fine Filaments

- coil shapes for solenoids, dipoles & quadrupoles
- engineering current density & load lines
- degradation, training & minimum quench energy MQE
- flux jumping

4 Quenching and Protection

- the quench process
- resistance growth, current decay, temperature rise
- calculating the quench
- mini tutorial
- quench protection schemes

5 Cryogenics & Practical Matters

- working fluids, refrigeration
- cryostat design
- current leads
- accelerator magnet manufacture
- some superconducting accelerators

mini tutorials

get a feel for the numbers, bring a calculator

JUAS February 2015

The critical surface of niobium titanium

• NbTi is the standard commercial 'work horse' of the superconducting magnet business

- *critical surface* is the boundary between superconductivity and normal resistivity in *J*, *B*, θ space
- superconductivity prevails everywhere below the surface, resistance everywhere above it
- upper critical field B_{c2} (at zero temperature and current)
- critical temperature θ_c (at zero field and current)
- B_{c2} and θ_c are characteristic of the alloy composition
- critical current density J_c depends on processing

• keep it cold!

Martin Wilson Lecture 1 slide 3

JUAS February 2015

The critical line at 4.2K

- magnets usually work in boiling liquid helium, so the critical surface is often represented by a curve of current versus field at 4.2K
- niobium tin Nb₃Sn has a much higher performance than NbTi
- <u>but</u> Nb₃Sn is a brittle intermetallic compound with poor mechanical properties
- both the field and current density of both superconductors are way above the capability of conventional electromagnets

Martin Wilson Lecture 1 slide 4

JUAS February 2015

Two kinds of superconductor: type 1

- the materials first discovered by Kammerlingh Onnes in 1911 - soft metals like lead, tin mercury
- sphere of metal at room temperature
- apply magnetic field
- reduce the temperature resistance decreases
- reduce the temperature some more
 resistance decreases some more
- at the critical temperature θ_c the field is pushed out the Meissner effect superconductivity!
- increase the field field is kept out
- increase the field some more superconductivity is extinguished and the field jumps in
- thermodynamic critical field B_c is trade off between reducing energy via condensation to superconductivity and increasing energy by pushing out field $\sim 0.1T$

Martin Wilson Lecture 1 slide 5 JUAS February 2015

Two kinds of superconductor: type 2

- apply magnetic field
- reduce the temperature resistance decreases
- at the critical temperature θ_c the field is pushed out
- increase the field field jumps back in without quenching superconductivity
- it does so in the form of quantized fluxoids
- lower critical field B_{c1}
- supercurrents encircle the resistive core of the fluxoid thereby screening field from the bulk material
- higher field \Rightarrow closer vortex spacing
- superconductivity is extinguished at the (much higher) upper critical field B_{c2}

Martin Wilson Lecture 1 slide 6

JUAS February 2015

Type 1 and type 2 superconductors

- Meissner effect is not total
- magnetic field penetrates a small distance λ
- the *London Penetration Depth*.

- another characteristic distance is the **coherence length** ζ the minimum distance over which the electronic state can change from superconducting to normal
- theory of Ginsburg, Landau, Abrikosov and Gorkov GLAG defines the ratio $\kappa = \lambda / \xi$

if $k > 1/\sqrt{2}$ material is

Type 2

Critical fields of type 2 superconductors

- recap thermodynamic critical field **B**_c (slide 6)
- lower critical field $B_{c1} = B_c / \kappa$
- above B_{c1} magnetic field penetrates as discrete quantized fluxoids

human hair in earth's magnetic field ~

a fluxoid encloses flux

$$\phi_o = \frac{h}{2e} = 2 \times 10^{-15} Wb$$

h = Planck's constant e = electronic charge

upper

critical field
$$B_{c2} = \sqrt{2}\kappa B_c$$

thus the upper critical field

in the 'dirty limit'
$$\kappa \approx 2.4 \times 10^6 \gamma^{\frac{1}{2}} \rho_n$$

$$B_{c2} = 3.1 \times 10^3 \gamma \rho_n \theta_c$$

where ρ_n is the normal state resistivity - best superconductors are best resistors!

$$\gamma \sim 900 \text{ J m}^{-3} \text{ K}^{-2}$$

for NbTi:
$$\gamma \sim 900 \text{ J m}^{-3} \text{ K}^{-2}$$
 $\rho_n \sim 65 \text{ x} 10^{-8} \text{ W m}$ $\theta_c = 9.3 \text{ K}$

hence
$$B_{c2} \sim 18.5 \text{ T}$$

Sommerfeld coefficient of electronic specific heat $C_{\rho} = \gamma \theta$

Critical current density: type 2 superconductors

• a single fluxoid encloses flux

$$\phi_o = \frac{h}{2e} = 2 \times 10^{-15} Webers$$

human hair in Earth's field encloses 20 $\times \varphi_a$

h = Planck's constant, e = electronic charge

- so density of fluxoids \sim average field uniform density \Rightarrow uniform field \Rightarrow zero J (because Curl $B = \mu_o J$)
- to get a current density we must produce a gradient in the density of fluxoids

- fluxoids like to distribute uniformly
- must impose a gradient by inhomogeneities in the material, eg dislocations or precipitates

precipitates of α Ti in Nb Ti

Meingast, P Lee and DC Larbalestier: J. Appl. Phys. 66, 5971

Critical properties

- Critical temperature θ_c: choose the right material to have a large energy gap or 'depairing energy' property of the material
- Upper Critical field B_{c2}: choose a
 Type 2 superconductor with a high
 critical temperature and a high normal
 state resistivity
 property of the material

 Critical current density J_c: mess up the microstructure by cold working and precipitation heat treatments hard work by the producer

Martin Wilson Lecture 1 slide 10

JUAS February 2015

Critical field & temperature of LTS

Temperature Superconductors

Low

Note: of all the metallic superconductors, only NbTi is ductile.

All the rest are brittle intermetallic compounds

Critical field & temperature of LTS in accelerators (so far)

To date, all superconducting accelerators have used NbTi.

Of the intermetallics, only Nb₃Sn has found significant use in magnets

JUAS February 2015 Martin Wilson Lecture 1 slide 12

Practical wires for magnets

- ~ 50 years after its development, NbTi is still the most popular magnet conductor,
- Nb₃Sn used for special high field magnets and HTS for some developmental prototypes.
- superconducting materials always combined with a good normal conductor such as copper
- need intimate mixing between the two, so superconductor made as fine filaments in a matrix of copper
- typical dimensions:
 - wire diameter = 0.3 1.0mm
 - filament diameter = $5 50 \mu m$
- for electromagnetic reasons, the composite wires are twisted so that the filaments look like a rope (see Lecture 2)

Martin Wilson Lecture 1 slide 13

JUAS February 2015

NbTi manufacture

- vacuum melting of NbTi billets
- hot extrusion of the copper NbTi composite
- sequence of cold drawing and intermediate heat treatments to precipitate αTi phases as flux pinning centres
- for very fine filaments, must avoid the formation of brittle CuTi intermetallic compounds during heat treatment
 - usually done by enclosing the NbTi in a thin Nb shell
- twisting to avoid coupling see lecture 2

Martin Wilson Lecture 1 slide 14

JUAS February 2015

Filamentary Nb_3 Sn wire via the bronze route

- Nb₃Sn is brittle and cannot be drawn down.

 so draw down pure niobium in a matrix of bronze (copper tin)
- At final size heat the wire (~700C for some days)
 Sn diffuses through Cu & reacts with Nb ⇒ Nb₃Sn
- •Remaining copper still contains ~ 3wt% tin ⇒ high resistivity so add 'islands' of pure copper surrounded by a diffusion barrier

- BUT maximum ductile bronze is ~13wt% tin,
- reaction slows at ~ 3wt%
- \cdot so low engineering J_c

Martin Wilson Lecture 1 slide 15

JUAS February 2015

Nb_3Sn with higher engineering I_c

Martin Wilson Lecture 1 slide 16

JUAS February 2015

Measurement of critical current

• spiral sample with current leads and voltage taps

- place in the bore of a superconducting solenoid
- put in cryostat
- immerse in liquid helium

• at each field level slowly increase the current and measure the voltage across the test section

Resistive transition 1

• measured boundary between superconducting and resistive states is not sharp, but gradual.

Overall Current density 10 8 A.m⁻²

- measure J_c with voltage taps across sample
- see voltage rise gradually.
- define J_c at a given electric field or effective resistivity.

- common definitions are $\rho = 10^{-14} \Omega m$ or $E = 1 \mu V.m^{-1}$
- this level is about the critical current expected in a resin impregnated winding
 - at higher current self heating
 - ⇒ temperature rise ⇒ reduced critical current

Resistive transition 2

• empirically find that resistive transition follows a power law

$$\rho(J) = \rho_o \left\{ \frac{J}{J_o} \right\}^n$$

where n is called the resistive transition index.

- effect is partly within filaments (flux flow) and partly between filaments
- 'sausaging of filaments, forces current to cross the copper matrix as critical current is approached.

- resistive transition can be the main source of decay in persistent magnets
- 'n' is often taken as a measure of quality look for n > 50
- HTS conductors so far have low $n \sim 5 10$

Martin Wilson Lecture 1 slide 19

JUAS February 2015

Conductors for accelerator magnets

- to date, all superconducting accelerators have used NbTi superconductor.
- to control field errors and ac losses, filaments must be < 10μm diameter (lectures 2 & 3)

• to get high operating currents, many wires must be cabled together.

Martin Wilson Lecture 1 slide 20

JUAS February 2015

Engineering current density and filling factors

In magnet design, what really matters is the overall 'engineering' current density J_{eng}

 $J_{eng} = current \ / \ unit \ cell \ area = J_{sup} \times \lambda_{su}$ filling factor of superconductor in unit cell $\ \lambda_{su} = \lambda_{sw} \times \lambda_{wu}$

 λ_{sw} filling factor superconductor in the wire $\lambda_{sw} = 1/(1+mat)$

where mat = matrix: superconductor ratio, typically:

for NbTi $mat = 1.2 \text{ to } 3.0 \text{ ie } \lambda_{sw} = 0.45 \text{ to } 0.25$

for Nb₃Sn mat = 2.0 to 4.0 ie $\lambda_{SW} = 0.33$ to 0.2

for B2212 mat = 3.0 to 4.0 ie $\lambda_{sw} = 0.25$ to 0.2

For Nb₃Sn and B2212 the area of superconductor is not well defined, so often define J_{sup} over 'non matrix' or 'non Cu' area, which is greater than superconductor area.

 λ_{wu} fraction of wire in unit cell taking account of space occupied by insulation, cooling channels, reinforcement etc: typically $\lambda_{wu} \sim 0.7$ to 0.8

So typically J_{eng} is only 15% to 30% of $J_{supercon}$

A century of critical temperatures

Martin Wilson Lecture 1 slide 22

JUAS February 2015

Wonderful materials for magnets

Martin Wilson Lecture 1 slide 23

JUAS February 2015

Martin Wilson Lecture 1 slide 24

JUAS February 2015

Accessible fields for magnets

so here's the parameter space for future magnets

and we still
need to
work on the
current
density

Martin Wilson Lecture 1 slide 25

JUAS February 2015

2) Grain boundary mismatch

- crystal planes in grains point in different directions
- critical currents are high within the grains
- J_c across the grain boundary depends on the misorientation angle
- For good J_c must align the grains to within a few degrees

Martin Wilson Lecture 1 slide 26

JUAS February 2015

BSCCO conductors

- BSCCO powder in silver matrix
- silver is transparent to oxygen
- grains tend to line up during processing in contact with silver
- but low irreversibilty field

- $\theta_c \sim 110 \text{ K} \Rightarrow 77 \text{ K use}$
- complex thermo-mechanical fabrication route to produce uniaxial texture
- reaction of 2212 + stuff to 2223 occurs primarily in the solid state at ~840°C
- texture requires pressing to a large aspect ratio tape (4 x 0.2 mm)
- anisotropic J_c
- mature conductor semi commercial production for > 10 years

Bi₂Sr₂CaCu₂O₈ B2212

- $\theta_c \sim 85 \text{ K}$
- produced by <u>melting</u> B2212 powder inside silver matrix
- round filaments in round wires
- Isotropic and high J_c, but originally only in short length
- recently achieved high J_c in long lengths by heat treatment under high pressure O₂
- engineers like round wire
- can make Rutherford cables

Martin Wilson Lecture 1 slide 27

JUAS February 2015

Coated YBCO tape

- YBCO has the best irreversibility field, but it is very sensitive to grain boundary misalignment
- the grains do not line up naturally they must be persuaded
- deposit YBCO on a substrate where the grains are aligned and the lattice roughly matches YBCO

Martin Wilson Lecture 1 slide 28

JUAS February 2015

YBCO coated tape at

Martin Wilson Lecture 1 slide 29

JUAS February 2015

Lecture 1: concluding remarks

- superconductors allow us to build magnets which burn no power (except refrigeration)
- ampere turns are cheap, so don't need iron
 - ⇒ fields higher than iron saturation (but still use iron for shielding)
- performance of all superconductors described by the critical surface in $\mathbf{B} \mathbf{J} \boldsymbol{\theta}$ space,
- three kinds of superconductor
 - type 1: low temperature, unsuitable for high field
 - type 2: low temperature, good for high field but must create flux pinning to get current density
 - HTS: high temperature, high field but current density is still a problem
 - accelerators will probably settle for low temperature to get high field and current density
- NbTi is still the most common superconductor standard commercial product
- Nb₃Sn has higher critical field & temperature specialized commercial production
- BSCO high temperature or high field, but not both prototype commercial production
- YBCO high temperature and high field, but must align the grains prototype commercial production
- measure I_c to check specification, the index n indicates quality
- Accelerators to date are (almost) all NbTi, usually in Rutherford cables

Martin Wilson Lecture 1 slide 30

JUAS February 2015

Superconducting Magnets

- Superconducting Accelerator Magnets: KH Mess, P Schmuser, S Wolf., pub World Scientific, (1996) ISBN 981-02-2790-6
- Case Studies in Superconducting Magnets, Second edition: Y lwasa, pub Springer (2009), ISBN 978-0-387-09799-2.
- High Field Superconducting Magnets: FM Asner, pub Oxford University Press (1999) ISBN 0 19 851764 5
- Superconducting Magnets: MN Wilson, pub Oxford University Press (1983) ISBN 0-019-854805-2
- Proc Applied Superconductivity Conference: pub as IEEE Trans Applied Superconductivity, Mar 93 to 2015, and as IEEE Trans Magnetics Mar 75 to 91
- Handbook of Applied Superconductivity ed B Seeber, pub UK Institute Physics 1998
- Applied Superconductivity: ed P Seidel, pub Wiley 2015

Superconducting Materials

- Superconductor Science and Technology, published monthly by Institute of Physics (UK).
- Superconductivity of metals and Cuprates, JR Waldram, Institute of Physics Publishing (1996) ISBN 0 85274 337 8
- High Temperature Superconductors: Processing and Science, A Bourdillon and NX Tan Bourdillon, Academic Press, ISBN 0 12 117680 0
- Superconductivity: A Very Short Introduction by Stephen J.
 Blundell: Oxford University Press (2009) ISBN978-0-19-954090-7

Some useful references

Materials Mechanical

- Materials at Low Temperature: Ed RP Reed & AF Clark, pub Am. Soc. Metals 1983. ISBN 0-87170-146-4
- Handbook on Materials for Superconducting Machinery pub Batelle Columbus Laboratories 1977.
- Nonmetallic materials and composites at low temperatures: Ed AF Clark, RP Reed, G Hartwig pub Plenum
- Nonmetallic materials and composites at low temperatures
 2, Ed G Hartwig, D Evans, pub Plenum 1982
- Austenitic Steels at low temperatures Editors R.P.Reed and T.Horiuchi, pub Plenum1983

Cryogenics

- •Experimental Techniques for Low-temperature Measurements: J. W. Ekin Pub. Oxford University Press, ISBN 978-0-19-857054-7
- •Helium Cryogenics Van Sciver SW, pub Plenum 86 ISBN 0-0306-42335-9
- Cryogenic Engineering, Hands BA, pub Academic Press 86 ISBN 0-012-322991-X
- Cryogenics: published monthly by Butterworths
- Cryogenie: Ses Applications en Supraconductivite, pub IIR
 177 Boulevard Malesherbes F5017 Paris France

Martin Wilson Lecture 1 slide 31

JUAS February 2015

on the Web

- Lectures on Superconductivity http://www.msm.cam.ac.uk/ascg/lectures.

 A series of lectures produced for SCENET by Cambridge University: fundamentals, materials, electronics, applications. Also available as a DVD
- Superconducting Accelerator Magnets http://www.mjb-plus.com.

 A course developed from SSC experience, available from website for \$20
- <u>www.superconductors.org</u> website run by an enthusiast; gives some basic info and links
- Superconductivity Course at the (UK) Open University. http://openlearn.open.ac.uk/course/view.php?id=2397 Good coverage of basics.
- **Wikipedia** on Superconductivity http://en.wikipedia.org/wiki/Superconductivity Good on basics with lots of references and links.
- European Society for Applied Superconductivity http://www.esas.org/
 News, events and people in the area of applied superconductivity
- **CONECTUS** Consortium of European Companies determined to use Superconductivity http://www.conectus.org/
- **IEEE Council on Superconductivity** http://www.ewh.ieee.org/tc/csc/
 News, events and people in the area of applied superconductivity (US based)

Martin Wilson Lecture 1 slide 32

JUAS February 2015

Materials data on the Web

- Cryogenic properties (1-300 K) of many solids, including thermal conductivity, specific heat, and thermal expansion, have been empirically fitted and the equation parameters are available free on the web at www.cryogenics.nist.gov
- Thermodynamic properties of gases (and liquids) available free as a programme which you can interrogate for your own temperature interval etc. http://webbook.nist.gov/chemistry/fluid/
- Plots and automated data-look-up using the NIST equations are available on the web for a fee from www.cpia.jhu.edu
- Other fee web sites that use their own fitting equations for a number of cryogenic material properties include: www. cryodata.com (cryogenic properties of about 100 materials), and www.jahm.com (temperature dependent properties of about 1000 materials, many at cryogenic temperatures).
- Commercially supplied room-temperature data are available free online for about 10 to 20 properties of about 24,000 materials at www.matweb.com

thanks to Jack Ekin of NIST and Charles Monroe for this information

Cryodata Software Products

GASPAK

properties of pure fluids from the triple point to high temperatures.

HEPAK

properties of helium including superfluid above 0.8 K, up to 1500 K.

STEAMPAK

properties of water from the triple point to 2000 K and 200 MPa

METALPAK, CPPACK, EXPAK

reference properties of metals and other solids, 1 - 300 K.

CRYOCOMP

properties and thermal design calculations for solid materials, 1 - 300 K

SUPERMAGNET

four unique engineering design codes for superconducting magnet systems.

KRYOM

numerical modelling calculations on radiation-shielded cryogenic enclosures.

Martin Wilson Lecture 1 slide 33

JUAS February 2015