Joint Universities Accelerator School JUAS 2016 Archamps, France, 22nd -26th February 2016

Analytical & numerical design of a normalconducting, iron-dominated electro-magnet

Case study – Tutorial – Mini Workshop

Th. Zickler, CERN

Introduction

- The goal is to practice elements learned during the lectures
- Students are invited to design and specify a ,real' magnet
- Sample case: Bending magnet for the MedAustron mediumenergy beam transfer line
- Work in groups of 3 persons during 2 half-days
- At the end, students are expected to deliver a short written report

- Short introduction to MedAustron
- Magnet input parameters, requirements and constraints
- Excercise 1:
 - Analytical design (paper & pencil) to derive the main parameters
 - Expected results: detailed parameter list, magnet cross-section (yoke & coils) ready for entering the model in FE-code
- Excercise 2:
 - Numerical field computations and optimization of the pole profile
 - Expected results: optimized magnet cross-section (pole profile)

Students are expected to deliver a short written report which should include at least:

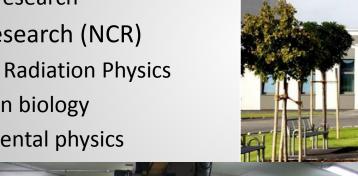
- detailed magnet parameter list summarizing the outcome of the analytical design
- explanation for your design choice
- magnet cross-section based on analytical calculations with yoke and coil shape
- optimized cross-section (pole profile) based on numerical computations fullfilling the field quality requirements
- <u>Note</u>: the reports will be evaluated and contribute (3 points out of 20) to the total score together with the results of the exam

Normal-conducting accelerator magnets

0

Introduction to MedAustron

A SUMAN ST

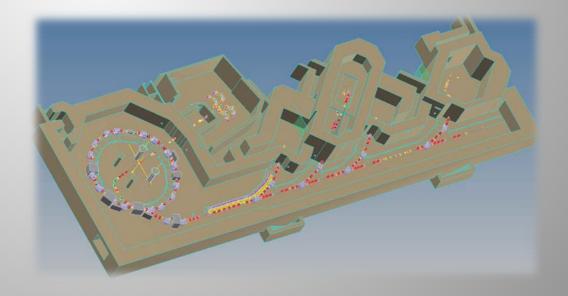

MedAustron is located in Wiener Neustadt (50 km south of Vienna) next to the future site of the new hospital

Medical Treatment

- Tumour treatment
- **Clinical research**

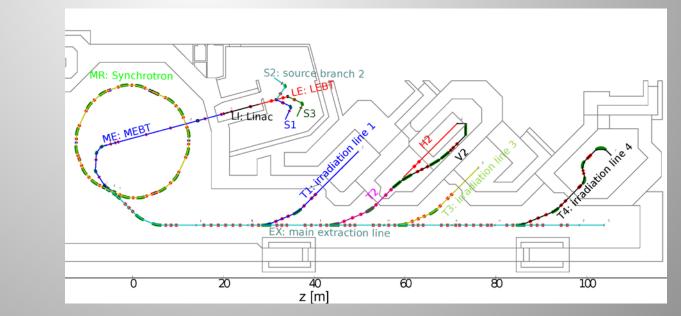
Non-clinical Research (NCR)

- **Medical Radiation Physics**
- **Radiation biology**
- **Experimental** physics



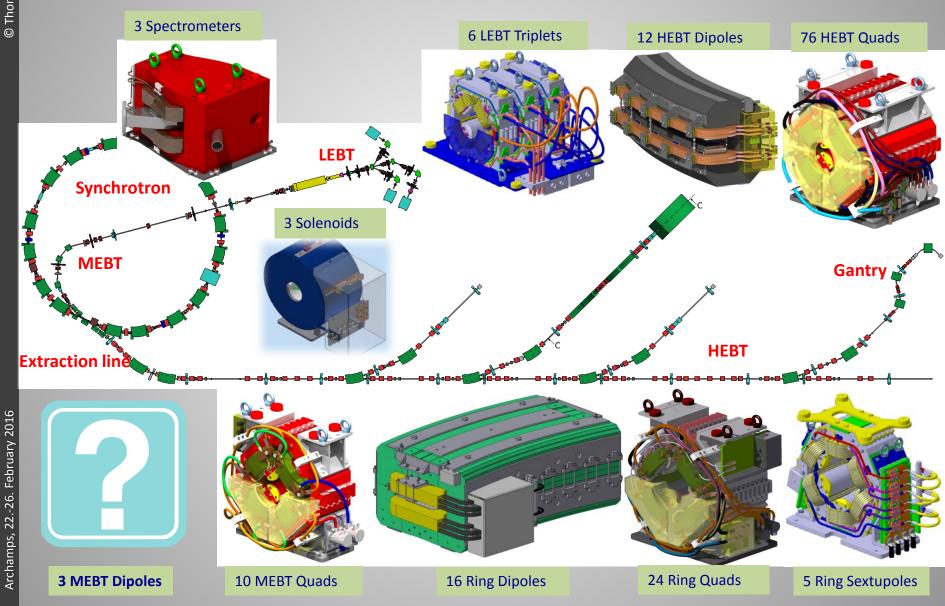
- Synchrotron based (circumference 76 m)
- Ion species: protons and carbon ions
 - Optionally and at a later stage other ions with q/m>1/3 are possible
- Energy range
 - Proton: 60-250 MeV (medical)
 - Higher proton energy provided for experimental physics: up to 800 MeV
 - Carbon: 120-400 MeV/n
- Cycle time > 1 second

Irradiation rooms



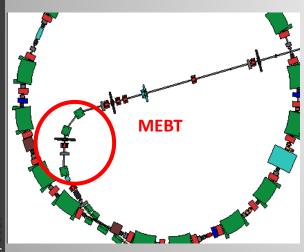
Medical facility:

- IR2
 - Horizontal and vertical beam
 - Protons and carbon ions
- IR3
 - Horizontal beam
 - Protons and carbon ions
- IR4
 - Gantry
 - Protons



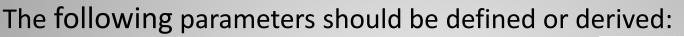
- IR1
 - Horizontal beam line
 - Protons (up to 800 MeV) and carbon ions

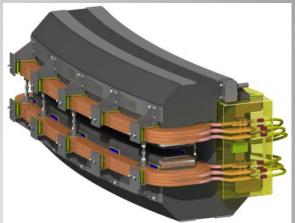
JUAS 2016


FR

<u>Required</u>: Three C-shape bending magnets for the medium-energy beam transfer line between the Linac and the Synchrotron

Parameter	Value	Unit
Particle type	Protons, C ⁶⁺	
Beam energy	7	MeV/u
Operation mode	quasi DC	
Length of beam line	40.9	m
Beta function β_x , β_y	~10	m
Beam size σ_x , σ_y	+/- 10	mm
Margin for closed orbit distortions	+/- 10	mm

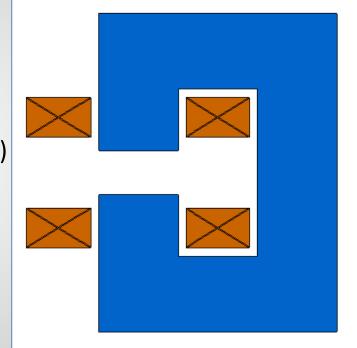




Parameter	Value	Unit
Number of magnets	3	
Bending angle	36	deg
Beam entry/exit angle	18	deg
Operation mode	quasi DC	
Ramp rate	0.3	T/s
Horizontal good field region	+/- 20	mm
Vertical good field region	+/- 23	mm
Field quality inside GFR $\Delta B/B_0$	< +/- 1·10 ⁻³	
Max. <u>overall</u> magnet length	0.8	m
Max. available water pressure drop	0.8	MPa
Inlet water temperature	25	°C
Max. converter current	650	А
Max. converter voltage	160	V

Exercise 1: Analytical design

- Magnet shape (straight/curved)
- Flux density *B*
- Aperture height *h*
- Excitation current NI (ampere-turns)
- Magnetic length I_{mag} and iron length I_{iron} (k = 0.55)
- Pole width and yoke thickness
- Current density *j*, nominal current *I* and number of turns *N*
- Dissipated power *P*, coil resistance *R*, dc voltage *V*
- Coil size (width, height) and conductor material
- Pressure drop Δp , Temperature rise ΔT
- Conductor size (height, width, cooling hole diameter) and insulation thickness
- Coolant flow Q and flow velocity u_{avg} Reynolds number Re



Exercise 1: Analytical design

For the computer work with FEMM, you will need the following magnet parameters:

- Aperture height
- Pole width
- Yoke dimensions (horizontal and vertical)
- Coil window width and height
- Coil dimensions (width and height)
- Coil position wrt to beam axis
- Coil excitation (ampere-turns)

Hint: prepare a sketch with key-point coordinates

2D Numerical calculations with FEMM:

- FEMM: 2D FE code for magnetics, electrostatic, heat flow and current flow problems with graphical pre- and post-processors
- Licensed under the terms of the <u>Aladdin Free Public License</u>
- Input via GUI or scripts (LUA scripting engine)
- More info (wiki) and download from the web:
- <u>http://www.femm.info/wiki/HomePage</u>

The goal of this exercise is:

- Download, install and get familiar with FEMM (
 homework)
- Enter a simple dipole geometry (yoke + coils) using nodes, segments and block labels
- Define and set the neccessary material parameters
- Apply the correct boundary conditions
- Analyze the results:
 - field lines, flux distribution, central field, field along the axis and the GFR, current density, etc...
- Optimize the pole profile to improve the field quality