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Luminosity run of a typical storage ring

In a storage ring: the protons are accelerated and stored for ~ 12 hours

The distance traveled by particles running at nearly the speed of light, v = ¢, for
12 hours is

distance ~ 12 x 10! km

— this is about 100 times the distance from Sun to Pluto and back !
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Introduction and basic ideas

It's a circular machine: we need a transverse deflecting force—the Lorentz force
F—gq. (E FTA B>

where, in high energy machines, |V| ~ c ~ 3- 108 m/s. Usually there is no electric
field, and the transverse deflection is given by a magnetic field only.

Example

F=gqg-3-10° maT Notice that there is a technical limit
S v for an electric field:
B=1T— =g¢-3-10°2.1 2
S m Mv
MV ESl—

m
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Therefore | in an accelerator, use magnetic fields wherever it's possible

Lorentz force F| = qu2 P = myyv = mv " momentum”
Centrifugal force  Feentr = % 2 —Bp
q
amgd ayB Bp = "beam ridigity"
p

Accelerating cavity
It accelerates particles with high
Beam is sent to synchrotron frequency by applying an elecfric
accelerator from the pre-accelerator field at the right timing of the

(Tandem or Linac, etc.). particles passing through.

Beam is sent to the
beam utilizing course

Charged particles travel
s after acceleration.

around the track in a fixed
orbit by electromagnet.
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Dipole magnets: the magnetic guide

» Dipole magnets:

» define the ideal orbit N ?-IZ
> in a homogeneous field created by B T
two flat pole shoes, B = ”OT”' 5
» Normalise magnetic field to momentum:
P 1 gB [ GeV 1V-1s
=B = = — B=[T]; P= ;7 1 T=———
q p p P 7] e } 1 m?
» Example: the LHC, accelerating protons (g=1 €)
1 8.3 % 8.3s -3-10%
—=e = =
B =83T p  7000-10% €&  7000-10° m"2
p =7000 ¢ fagy. B3 1_ 1 1
YT 7000 m o 2,53 km
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Dipole magnets: the magnetic guide

Very important rule of thumb:

1 BT
o Tml =~ O PGev/d

In the LHC, p = 2.53 km. The circumference 2mp = 15.9 km = 60% of the entire
LHC.

The field Bis~1...8T

which is a sort of “normalised bending strength”, normalised to the momentum of
the particles.
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The focusing force

ﬁ:q-(E+VAI§)

Linear Accelerator Circular Accelerator

Remember the 1d harmonic oscillator: F = —k x
7/141 A. Latina - Introduction to beam dynamics - JUAS 2016



Quadrupole magnets: the focusing force
Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly increasing Lorentz force, thru a linearly increasing magnetic field:

B« =gy Fx = —qvzgx A
=
By = gx Fy = qvz:gy

Gradient of a quadrupole magnet:

L
@)

2,[,L0nl T Bpoles T
g§="75 - = ™
r m Faperture m
» LHC main quadrupole magnets:
g~25...235 T/m

S

the arrows show the force exerted

on a particle
Divide by p/q to find the nornalised focusing strength, k:

Y-S S T PO L L O
e [ N e N R
. . -2 g [T/m]

A simple rule: k [m } = 0.3W.
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Focal length of a quadrupole

The focal length of a quadrupole is f = ﬁ [m], where L is the quadrupole length:
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Towards the equation of motion

Linear approximation:
> the ideal particle = stays on the design
orbit (i.e. x,y,Ps,P, =0; P = Py)
> any other particle = has coordinates x, y

> which are small quantities: x,y < p
> P, P, are small, and P # P,

» only linear terms in x and y of B are taken
into account

Let’s recall some useful relativistic formula and definitions:

Po =myw reference momentum

P =P (1+59) total momentum

§ =(P—-"Py)/Po relative momentum offset
E =VPZ+mc*=myc®=K+mc® | total energy

K =E-md kinetic energy

B =t=F v = 1%52 =5 relativistic beta and gamma
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Phase-space coordinates

The state of a particle is represented with a 6-dimensional phase-space vector:

(x, X', y, ¥, 2, 6)

where x” and y’ are the transverse angles:

with
x [m]
, dx dxdt Ve Po Py
x' = =——="="x = [rad]
ds dt ds V, P, P
y (m]
d dy dt V, P, P,
y’:fy:fyi:—y:—yz—y [rad]
ds dt ds V., P, P
z [m]

5=4P [#]

Po
11/141 A. Latina - Introduction to beam dynamics - JUAS 2016



Exercise: Phase space representations

1. Consider a source at position sy with radius w emitting particles. Make a drawing of this
setup in configuration space and in phase space. Which part of phase space can be
occupied by the emitted particles?

Hint: the particle source in the configuration space

particle source

2. Any real beam emerging from a source like the one above will be clipped by aperture
limitations of the vacuum chamber. This can be modelled by assuming that a distance d
away from the source there is an iris with an opening with radius R = w. Make a drawing
of this setup in configuration and phase space. Which part of phase space is occupied by
the beam at a location after the iris?
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Towards the equation of motion
Taylor expansion of the B, field:

0B, 10°B 1 9°B,
B, (x) = Byo + o X+§8 5y x> TR Y33 .

Now we drop the suffix 'y' and normalise to the magnetic rigidity p/q = Bp

B(x)_Bo, & 1& - 1¢g

= — 4 X X
P/lq By P/g  2P/q 31P/q

Lkt It Emi
=~ + kx mx? + —=nx3
p 2 3!

In the linear approximation, only the terms linear in x and y are taken into account
» dipole fields, 1/p
» quadrupole fields, k
It is more practical to use “separate function” magnets, rather than combined ones:
> split the magnets and optimise them regarding their function
> bending

» focusing, etc.
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The equation of motion in radial coordinates

Let's consider a local segment of one particle’s trajectory:

y

d%p do\> d%p )
and recall the radial centrifugal acceleration: a, = — — — ) = — — pw-.
! e T de2 dt dez "
» For an ideal orbit: p = const = i—f =0
Feentri = —mpw?® = —mv?
=the force is centrifugal p /p g =B,p
FLorentz = quV = _Fcentrifugal
» For a general trajectory: p — p+ x :
d? v2
Fcentrifugal =ma, = —Florentz = m @ (p + X) - T x = *quV
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d? v2
F=m—(p+ = —qB,v
dt2 (p+) P+ X 9By
——
term 1 term 2
» Term 1: As p =const...
d2 &

> Term 2: Remember: x =~ mm whereas p ~ m — we develop for small x

remember Taylor expansion:
L 1(1 X) F(x) = f (x0) +
~N-1-= x) = f (%o
ptx p P

+(x — x0) F (x0) + uf (x0) + -

2 2
I XM X) By
HrT p
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T T . oB
The guide field in linear approximation B, = By + x5

d?x  mv? X 0B, e
mdtQ(l)_qv{Bo+an} let's divide by m

P P
d?x 2 X qvBy qvg
-l 12y =420 _ 7%
dt2  p p m m
Independent variable: t — s
dx dxds Wy
dt  dsdt
Fx_ddc_dfdxds | d 0
dt2  dtdt dt | ds dt | dt
~— =~
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Equation for the vertical motion
1
» =0
> k+— —k

y//_ky:()
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usually there are not vertical bends

quadrupole field changes sign

Remember:
mv=p

Normalise to the momentum of
the particle:

1 Bo -1 g -2
—=—-Im7]; k=-22-[m
P P/q[ ] P/q ]

=0



Remarks

> “Weak” focusing:

there is a focusing force, 1

p21

k

1
x”+(2+k>x_0
P

even without a quadrupole gradient,

=0 = x'=-=x

even without quadrupoles there is retrieving force (focusing) in the bending

plane of the dipole magnets

> In large machine this effect is very weak...

180° spectrometer
magnet \

lon source
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Mass spectrometer: particles are separated
according to their energy and focused due to
the 1/p effect of the dipole



Fringe fields
» Hard-edge model:

1
x"+(2+k>x:0
p

this equation is not really correct
» Bending and focusing forces -even inside a magnet- depend on the position s

Fringe field of a dipole magnet (in this case:
a combined dipole + quadrupole magnet, no-
tice the slope of the field along the x axis)

But still: inside the magnet the focusing
properties hold:
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Effective length

/ mag

B- Leff: Bds
0

Field or mulhpole component

Hard edge model
True field shape B Vi
A ¥

/ \ *(entrm value
Y N

* —— — -

Lens

B3

Steel length

= |
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Multipolar moments

Taylor expansion of the B field:

0B, 18°B, , 10°B,
By () =Byt 5 Xt 552X t 3 a0

x*+...  divide by Byg

s Dipoles Multipole coefficients:

» divide by the main field to get the
relative error contribution

N Y [N N I N
0 2 4 6 B W 12 W 16
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Solution of the trajectory equations: focusing quadrupole

Definition:

horizontal plane K =102+ k

" o
vertical plane K = —k } X"+ Kx=0

This is the differential equation of a harmonic oscillator ... with spring constant
K. We make an ansatz:

x (s) = a1 cos (ws) + az sin (ws)
General solution: a linear combination of two independent solutions:

x' (s) = —aywsin (ws) + axw cos (ws)

X" (s) = —aw? cos (ws) + aw?sin (ws) = —w?x(s) — w=VK

General solution, for K > 0:

x (s) = ay cos (ﬁs) + axsin <\/RS>
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We determine ai, a2 by imposing the following boundary conditions:

x (0) = xo, a1 = xo
s=0 / o _ %
X(O)—Xo7 32—W

Horizontal focusing quadrupole, K > 0:
x (s) = xo cos (\/Rs) + xé# sin (\/Rs)
x'(s) = —xoV K sin (\/Rs) + xp cos (\/Rs)

For convenience we can use a matrix formalism:

For a quadrupole of length L:

cos (\/RL) # sin (\/RL)
—VKsin (\/RL) cos (\/RL)
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Defocusing quadrupole

The equation of motion is

X"+ Kx=0

with K <0

f (s) = cosh (s)

Remember:
f'(s) = sinh (s)

The solution is in the form:
x (s) = a1 cosh (ws) + ap sinh (ws)

with w = 4/|K|. For a quadrupole of length L the transfer matrix reads:

cosh (v/[KIL) e sinh (VIKIL)
VIKIsinh ((/KIL)  cosh (/KIL)

Mdefoc =

Notice that for a drift space, i.e. when K =0 — My, = ( (1) i )
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Summary of the transfer matrices
» Focusing quad, K >0
cos (\/RL) # sin (\/RL)

Mroe = —VKsin (\/?L) cos (\/RL)

» Defocusing quad, K < 0

cosh (\/WL) \/T7I sinh <ML)
\/Wsinh <ML) cosh (\/WL)

1 L
Mdrift:<0 1)

With the assumptions we have made, the motion in the horizontal and vertical
planes is independent: “... the particle motion in x and y is uncoupled”

25/141 A. Latina - Introduction to beam dynamics - JUAS 2016

Mdefoc =

» Drift space, K =0



Thin-lens approximation of a quadrupole magnet

When the focal length f of the quadrupolar lens is much bigger than the length of

the magnet itself, Lg
1

T kL
we can derive the limit for L — 0 while keeping constant f, i.e. k- Lg = const.

f > Lo

The transfer matrices are

1 0
e (5 0) e

focusing, and defocusing respectively.

= =
= o
N——

This approximation (yet quite accurate, in large machines) is useful for fast
calculations... (e.g. for the guided studies!)
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Transformation through a system of lattice elements

One can compute the solution of a system of elements, by multiplying the

matrices of each single element:

focusing lens

%(’,Ea“ff‘f!";j’s‘:\)& N )'\/ .
Miotal = MqF - Mp - Mgend - Mp - Mqp - & T [ el et
i ! )
0{ N 5: o defocusing lens
X % s, Se,
/ = Ms s, - Mgy—ss, - / S Ll 54 o,
X 5 X s 85008 * court. K. Wille

In each accelerator element the particle trajectory corresponds to the movement of

a harmonic oscillator.
...typical values are:

x(s)
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Orbit and tune

Tune: the number of oscillations per turn.

Example:
= YASP DV LHCRING / TNJ-TEST-WB / beam 1 11
Gvews| =@ n/8/m) G C8 vor | 38
FT - P450.12 GeV/c - Fill # 827 INJDUMP - 10/09/08 10-41-34 L1

64.31

W Pas (mum]

59.32

[ i

300 400 500

Monitor H
1 - PAS.02 GeVjc - Fill R 827 INJDUMP - 10/09/08 10-41- 34 L

 Pos (men)

fiGesn) o)
[} 100 ] 0 400 500

Relevant for beam stability studies is : the non-integer part
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Exercise

The following plot represents the trajectories of three particles traveling in a transfer line with
constant focusing strength.

25
20
15
10

X [um]
o

s [m]

Among the three particles, one is significantly off-momentum. Which one is it (full, small-dot or
large-dot line)? Is its rigidity higher or lower than the on-momentum particles?

29/141 A. Latina - Introduction to beam dynamics - JUAS 2016



Summary

beam rigidity:  Bp=

bending strength of a dipole: % [m™1] = %&W

k [m72] __ 0.2998-g

focusing strength of a quadruple: = Ficevig

focal length of a quadrupole: f = ﬁ

equation of motion:  x” 4+ (% + k) x=0
C

solution of the eq. of motion: x5, = M - xg ...with M = ( c’
cos (\/RL) ﬁ sin (\/RL)
—VKsin (\/RL) cos (\/RL) ’
Mop = cosh (\/WL) \/Tﬂsinh (\/WL)  My= ( 1
\/Wsinh (\/WL) cosh (\/WL) 0

30/141 A. Latina - Introduction to beam dynamics - JUAS 2016

eg.. Mg =




Extra: Summary of momenta and angles definitions

P="Py(1+9) total momentu w.r.t. reference momentum

P=,/P2+ Pf + P2 total momentum

e General convention: lower-case momenta: normalised to

p=——=1+4+90

Px = —

Py = 5

P. P2 — p2 _ p?

y
Yy = — =+~ = (1462 —p2—p2
P:= 5 Py (@ +8) —p;—p}

2 2

1 p; +p,
~(1+6)1—- 22"V ) =
wia (1= 3000

1p2+p:

&2 14 ¢ for small p, and p,
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dx
ds
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ds

NI

J|> P2

~ PX
T Py (1+6)

Q

Py (14 9)



Extra: From a Cartesian to a curved reference system

We use a Curved Reference System: the Frenet—Serret rotating frame

Curvilinear — Cartesian Cartesian — Curvilinear X
(x,y,2) = (X, Y, 2) (X, Y, Z) = (x5, 2)
z=5— fct s:parctanxiﬂj

s
X:(p+x)cos;7p x = /(X+p)2+22—p

Y=y y=Y
z=s5— fBct

Z:(p+><)sini
P

s . S S . S
P, = Px cos — + Pzsin = Px = Pxcos — — P;sin —
P P

P, =Py Py =P,

The y and Y axes are parallel and ortogonal to this page.
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Envelope

We have studied the motion of a particle.
Question: what will happen, if the particle performs a second turn ?

> ... or a third one or ... 1010 turns ...

Lo i

Telchenbonnen ung Enveloppe

100
T

¥jmm ~——%

~100
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The Hill's equation

In 19th century George William Hill, one of the greatest master of celestial
mechanics of his time, studied the differential equation for “motions with periodic
focusing properties”: the “Hill‘'s equation”

x"(s)+ K(s)x(s)=0

with:
> a restoring force # const
> K (s) depends on the position s
> K(s+ L) = K(s) periodic function, where L is the “lattice period”

We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s in the ring.
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The beta function

General solution of Hill's equation:

x(s) = Ve B(s)cos (u(s) + o) (1)

€, Mo =integration constants determined by initial conditions
B (s) is a periodic function given by the focusing properties of the lattice <>

quadrupoles
B(s+L)=p5(s)
Inserting Eq. (1) in the equation of motion, we get (Floquet's theorem) the

following result
p(s) = / .
(s)

1 (s) is the “phase advance” of the oscillation between the points 0 and s along
the lattice. For one complete revolution, p (s) is the number of oscillations per
turn, or “tune” when normalised to 27

1 ds
RS 5

.£.isthe Courant-Snyder, invariant,



The beam ellipse

General solution of the Hill's equation

= VEVFeos(1(5) + o) )
:—m{a()COS(N()+uo)+sin(u(5)+uo)} 2

—_——
XX
—~
“n un
SN N

|

From Eq. (1) we get

1,
cos (4 (s) + o) = —EL__ "=,
VeV B (s) v (s) = 1+als) JFBO(‘ ()5)

Insert into Eq. (2) and solve for &
e =7(s)x ()" +2a(s) x (s)x' () + B (s) X’ (s)°

> ¢ is a constant of the motion, independent of s, i.e. the Courant-Snyder invariant
> it is a parametric representation of an ellipse in the xx’ space

> the shape and the orientation of the ellipse are given by «, 3, and v = these are
the Twiss parameters
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Learning from the phase-space ellipse

e =1(5)x ()" + 20 (s)x () X (s) + B (5) X (s)’

Liouville: in an ideal storage .
ring, if there is no beam energy * -a, %

change, the area of the ellipse in :
the phase space x —x’ is constant NE : \/5_

-
A= &= const //>
X1 °f C//@ x

The area of ellipse, 7 - € , is an intrinsic beam parameter and cannot be changed
by the focal properties.
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Learning from the phase-space ellipse
Given the particle trajectory:

= /e\/B(s) cos (11 (s) + o)

» the max. amplitude is:
X(s) =+/eB
> the corresponding angle, in X (s), can be found putting X (s) = v/¢f in Eq.

e =7 (s)x ()2 +2a(s) x (s) X (5) + B (5) X' (s)°

and solving for x’:

e=r-€f+2a\/ef - x + x>
R = —a\/? —
B

> A large pB-function corresponds to a large beam size and a small beam
divergence

Important remarks:

> wherever g reaches a maxno'rllum or a minimum, o = 0 (and x’ = 0)
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Particle tracking in a storage ring

Computation of x and x’ for each linear el-
ement, according to matrix formalism. We
plot x and x’ as a function of s

Wy T T 1 "
n
X
1oL I 1 1
n an 2n 60 an 1nn
N T T T
x’ /
o / -
L L L
1 0 20 o 60 &0 100
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Particle tracking and beam ellipse

For each turn x, x’ at a given position s; and plot in the phase-space diagram

10 T T T

-10 =5 0 5 10

Plane: x — x’
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Evolution of the phase-space ellipse
Let's repeat the remarks:

> A large -function corresponds to a large beam size and a small beam divergence
» In the middle of a quadrupole, 3 is maximum, and a =0 = x' =0

Y ¥, ¥ ¥,
@y % §y %
a b c d

10 20 30 40 50 60
S—»m

[VIDEOS!]
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Patricles distribution, beam matrix, and emittance

To track a beam of particles, let's assume with Gaussian distribution, the beam ellipse can be
characterised by a “beam matrix” X

The equation of an ellipse can be written in ma- X!
trix form: %
X" X =¢ ‘
WithX:(X,)andQ:( B o ) B =
X —Q Yy | .y

. . News
For many particles we can define ¥ as: vy

2 ’
s ( ou o1 _ <X, > <X>/<2> —eQ
021 o (xX'xy  ({x?)
the covariance matrix of the particles distribution
represents an ellipse.

b

. —

» Given a particles distribution, we define the geometric emittance € as a function of the
ellipse area:

€= VdetX = /det (cov(x, x')) = Area of the ellipse/m
with slope r1 = 021/+/011022

» The emittance ¢ is the area covered by the particles in the transverse x-x’ phase-space, and
it is preserved along the beam line (Liouville’s theorem)
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Geometric and Normalised Emittance

Example: LHC 0.02 — -

beam parameters in the arc )
s 0F -
B(x)~180m * {m

e=5*10"rad-m  (<10)

o= \/E =~0.3 mm .4

€ is the geometric emittance. It's a constant of motion only if there is no acceleration,
i.e. P, = constant. If P, — P, + AP;,
/ PX / PX

“Th T X TP.iAPR

. . def
The normalised emittance, ey =

in case of acceleration.

€geom * Brelativistic * Vrelativistic is a constant of motion even
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Emittance of an ensemble of particles

x(5) = e B(s) - cos(W(5) + $) #(s) = Ve JB(s)

Gauss Particle 2
Distribtion: plx)=—r—e™
istribtion: 2o,
single particle trajectories, N~ 10! per bunch particle at distance 1 o from centre < 68.3 % of all beam particles

vertical: ov gy =24.376 um

LHC: = 5*107""m*180m = 0.3 mm aperture requirements: r ,> 10 * o
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The transfer matrix M

As we have already seen, a general solution of the Hill's equation is:

x(s) = VeB (s) cos (p(s) + po)

X'(s) = - /31) [ax (s) cos (1 (s) + 110) + sin (1.(s) + 110)]

Let's remember some trigonometric formulae:

sin(a £ b) = sina cos b + cos a sin b,
cos(at b)=cosacosbFsinasinb, ...

then,

x(5) = v/25 (5) (cos 1 (s) cos jio — sin 1 (s) sin o)

X' (s) = \/7[04 (s) (cos 11 (s) cos g — sin . (s) sin pg) +

+sin p(s) cos g + cos p (s) sin fi]
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At the starting point, s(0) = sp, we put 1 (0) = 0. Therefore we have

X0

efo

If we replace this in the formulae, we obtain:

COS fig =

= &{cos#s+aosin Hs}t X0 + {\/Bsﬁosinps}xé
V Bo —

X

/ (s) = ﬁ {(cv0 — as) cos s — (1 + cvpaxs) sin pus } xo + 1/% {cos s — assin ,us}xié

The linear map follows easily,

< « ) y < x ) y £/ gs (cos s + oy sin ps) V/BsBo sin ps
/ = / - = 1+ .
X . X 0 ("‘0 as cos;:/s%aoas)sm Ks %2 (COSN; — aesin /,Ls)

We can compute the single particle trajectories between two locations in the ring, if
we know the «, 3, and ~y at these positions!

> Exercise: prove that det(M) =1
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Periodic lattices

The transfer matrix for a particle trajectory

2 (cos pts + ao'sin ) V/BsBo sin s
(QO_QS)COS#SB_S(;UJF%%)Sin s /% (cos jus — a sin pis)

simplifies considerably if we consider one complete turn...

M:

M= cos i + as sin g Bssin pg
- —s Sin g COS fup — Qs Sin Uy

where p; is the phase advance per period

st ds
P =
s (s)
Remember: the tune is the phase advance in
units of 27:
Q= 1 ds e

2 f B(s) 2«
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Stability condition

Question: Given a periodic lattice with generic transport map M,
a b
M =
(23)

under which condition the matrix M provides stable motion after N turns (with
N — 00)?

The answer is simple: the motion is stable when all elements of M" are finite.

But... what does this imply, for M 7
Remember:

> det(M)=ad —bc=1
> trace(M)=a+d
If we diagonalize M, we can rewrite it as:

B MO .
M_U(O )xz)U

where U is some unitary matrix, A1 and A, are the eigenvalues.
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Stability condition (cont.)
What happens if we consider N turns?

N
MN:U-()\Ol Q")'UT

Notice that A; and A2 can be complex numbers. Given that det (M) = 1, then

1 .

AM-A=1 — A1 = — —>)\172=eilx
A2

= to have a stable motion, x must be real: x € R.

Now we can find the eigenvalues through the characteristic equation:

a—A\ b
det(M—)\I):det( i d_A):o
X —(a+d)A+(ad — bc) =0
A —trace (M)A +1=0
trace(M) =A+1/A =

=e" 4+ e ™ =2cosx

From which derives the stability condition:

sincex e R —  |trace(M)| <2
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Stability condition (example)
Matrix for 1 turn:
M= cos pu; + asin g Bsin g

- —~ysin COSs ju; — asin up
The condition is satisfied: [tr (M) =2 cos u; | < 2.

Demonstration for N turns:
_ 1 0 . « B
M—cos,u,L( 0 1 )+S|np,L( Y —a

—_———
1 J

Given that:

Jz,( o ] )( o ] ), o2 — 48 af - fa |\ _
- -y —a -y N —va+ay a?—~B B

one can compute that:
MM = Tcos(Nu) + Isin (Npug)

which indeeds provides stable motion:
tr (MN) =2cosNu;| <2
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Exercise: stability condition

Consider a lattice composed by a single defocusing quadrupole, with f =1 m, and
Lquad =2 m.

» Prove that such a lattice is not stable

» Prove that if the quadrupole is focusing, then the lattice is stable
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The transformation for «, 3, and

Consider two positions in the storage ring: sp, s

M = Mg - Mp
(X,):M<X,> with
X' ) X )

* Mgend © Mp - Mqp -
C _ !
u-(& s) w-(%

Since the Liouville theorem holds, € = const:

£ = Bx? + 20xx + yx?

£ = Boxi? + 200x0%4 + 10x¢



We express xp and xj as a function of x and x”:
U !
X 1 X X0 = S'x — Sx
4 =M 4 = / ’ /
X S X ) X =—Cx+ Cx

Inserting into € we obtain:

£ = 6X/2 + 2axx’ + 'yx2
e = fo (—C,X + Cx’)2 + 20 (S'x — Sx') (—C'x + Cx’) + 7 (S'x — Sx')2

We need to sort by x and x’:

B(s) = C?*Bo — 25Cao + S0
a(s)=—CC'Bo+ (SC" +S'C) ao — S50
v(s) = C"?Bo—25'C' oo + "0
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The transformation for «, (3, and ~

The beam ellipse transformation in matrix notation:

C? -25C s?
Toms=| —CC" SC'+S'C -S§
C/2 _2slcl 5/2
B B
« = 7—0~>s «
v s v 0

This expression is important, and useful:

1. given the twiss parameters «, [3, v at any point in the lattice we can
transform them and compute their values at any other point in the ring

2. the transfer matrix is given by the focusing properties of the lattice elements,
the elements of M are just those that we used to compute single particle
trajectories
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Beam ellipse transformation (another approach)

Let's start from the equation of ¥ seen before, now for xp:

X/ o' Xo=¢  with: ZO:( Bo a0 )
—Qo Yo

At a later point if the lattice the coordinates of an individual particle are given using the

transfer matrix M from sy to si:
X1=M-Xp

Solving for Xy , i.e. Xo = M~t. Xy, and inserting in the first equation above, one obtains:

Which gives:

Yi=M- -5 -MT
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Beam matrix and Twiss parameters

The beam matrix is the covariance matrix of the particle distribution
s oun o) _ (x2) (')
“\ o1 o - (x'x) <X/2>
this matrix can be also expressed in terms of Twiss parameters «, 3, v and of the emittance e:
CONCS B -
X XX «a
Z‘(<x’x> <x’2>>‘6(—a g )
c S

Given M = ( c s ) , we can transport the beam matrix, or the twiss parameters, from
0—s

0 to s in two equivalent ways:

> Twiss 3 X 3 transport matrix:

8 c? —25C s2 8
a = —-CcCc’ sCc’'+Ss'c -SS§ «a
o . C/2 _2s'c! 5/2 ~

» Recalling that Y3 = M Xy MT:
T s a7 Jo
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Exercise: Twiss transport matrix, T

Compute the Twiss transport matrix, T,

c? —25C s?
T=| -CC SsC'+S5C -S55

C/2 —_25'C’! 512

B B

e} =T| «

v s v 0

for:

1. the identity matrix: M = +I

2. a thin quadrupole with focal length £f
3. a drift of length L
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Summary

Hill's equation:  x"" (s) + K(s)x(s) =0, K(s)=K(s+1L)

general solution of the

Hill's equation:  x (s) = y/&f (s) cos (1 (s) + po)

phase advance & tune: iy = f512 %, Q==¢ ﬁd(‘s)

E

beam ellipse: & = 7 (s) x ()2 + 2a (s) x (s) X" (5) + B (s) X' (s)?

beam emittance: e = Area of the ellipse/m = y/det (cov(x7 x'))
) \/%g(cosus+aosin Hs) V/BsBosin us
transfer matrix sy = 20 M= | (ag—as) cos ps— (1+agas) sin s 20 (cos 15 — s sin pis)

v/ BsBo

stability criterion:  |trace (M)| < 2
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The transfer matrix M

» Transformation of particle coordinates:

X X
( x! ) = M2 < N )
s 0

» using matrix notation in terms of the focusing strength K:

B cos (\/?L) L sin (\/?L) B I S
v —VKsin (\/RL) \/cRos (\/RL) B ( >

» in Twiss form, and for a periodic lattice (over a period):

\/ j (cos i+ axg sin ) BsBo sin

M (5) - (ap—as) cos p—(1+apas) sin p Bo (COS L~ o-sin l)
\/BsBo Bs ! s SN

for a period: (1) phase advance: cosp = %trace(M); (2) stability condition:
[trace (M)| < 2

» Transport of Twiss parameters:

B C2 —25C s2? &
o = —-cc’ sc’'+s'c -ss a
- 2 2 ~
v ). c’ —28'Cc’ s’ v /)
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Lattice design in particle accelerators

Or..." how to build a storage ring"”

High energy accelerators are mostly circular machines
we need to juxtapose a number of dipole magnets,
to bend the design orbit to a closed ring, then add
quadrupole magnets (FODO cells) to focus the beam
transversely

The geometry of the system is determined by the following equality

centrifugal force = Lorentz force

— B
g : w %ﬁ\ Lorentz force Fi = evB
z/‘a'é" p ; ﬁa' Centrifugal force  Feentr = ﬂpvz
B \.' “ﬁa }_k

1 ot =eyB

P

__@ Al wx@ =Bp

r =0 1

o

=

Bp is the well known beam ridigity
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Lattice design: the magnetic guide

Bp=P/q o £l
Circular orbit: the dipole magnets E 05 .
define the geometry E"
,_ds _BL :
p  Bp

field map of a storage ring dipole magnet

The angle spanned in one revolution must be 27, so, for a full circle:

[ Bdl

P
0 =21 — /Bd/ ~ NLgendB = 2m—
Bp q

this defines the integrated dipole field around the machine.

Note that usually §2 ~ 10~ is required!
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7000 GeV proton storage ring / Bdl ~NLgena B = 27p/e

N = 1232 dipole magnets 27 - 7000 - 10° eV
! : B = ﬂ—m =83T
Lgend = 15 m 1232-15m -3 - 1082
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Focusing forces for single particles

X"+ Kx=0

K =1/p>+k hor. plane

K=—k vert. plane
Example: the LHC ring
dipole magnet T _ B Bending radius: p = 2.53 km
P Pla Quad gradient: g£=220T/m
- &
quadrupole magnet k = Prg k—04.10-3 m-2

1/p?=1.3-10"7 m2

For estimates, in large accelerators, the weak focusing term 1/p? can in general

be neglected
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The FODO lattice

» Most high energy accelerators or storage rings have a periodic sequence of
quadrupole magnets of alternating polarity in the arcs

D 0 F somp\e trajectory

ﬁ ‘‘‘‘‘ =
w/ /[& \M

cell Iergm

» A magnet structure consisting of focusing and defocusing quadrupole lenses in
alternating order with “nothing” in between

»> Nota bene: “nothing” here means the elements that can be neglected on first sight:
drift, bending magnet, RF structures ... and experiments...
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Periodic solution in a FODO Cell

e e wos

) N
- v B, e \
. e N
- ~
. — g S~
f
v
NN N
g 0
H 1

Output of MAD-X

1

Nr Type Length  Strength B, a, . B, a, 0,
m 1/m2 m 1/2n m 1/2n

0 /4 0,000 0,000 11,611 0,000 0,000 5,295 0,000 0,000
1 OFH 0,250 -0,541 11,228 1,514 0,004 5,488 -0,781 0,007
2 oD 3,251 0,541 5,488 -0,781 0,070 11,228 1,514 0,066
3 OFH 6,002 -0,541 11,611 0,000 0,125 5,295 0,000 0,125
4 P 6,002 0,000 11,611 0,000 0,125 5,295 0,000 0,125

0125 @ 0125 _— 0.125 * 2w =450
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The FODO cell

The transfer matrix gives all the information we need.

F 0 D 0 F sample trajectory
/ ﬂ\\\"\'\xxﬂ////:ﬂ\—$
o e et | s = s { 1 .. 57
‘ J \envelope
L 2t e e x

cell length

In thin-lens approximation, we have:
. 1 0. (1 Lj2\. . 1 0
(4 1) w0 ) (1)
the transformation matrix of the cell is:

Mrobo = MF - Mo - Mpb - Mo

(notice that you can also write M = Mg, - Mo - Mp - Mo - Mg, or other permutations),

which corresponds to
2
1+ 5 L+ %
Mropo = ( 2sz L 4f 2

7 l-ox—up
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The FODO cell (cont.)

If we compare the previous matrix with the Twiss representation over one period,

2
1+ 4 L+ &
Mropo = ( 2L2f 1L 4f 2

My — cos,u—i—_ozsm,u ﬁsm,u. — cosp 1 0 +sin g « B8
—ysinp CoSs [t — asin it 0 1 -y —«

N——— ——
| J

we can derive interesting properties.
> Phase advance
cos i = 1trace(M) =1- L—2
=3 T e

remembering that cos = 1 — 2sin® 5

(-n,' _ L
Mol T 4

This equation allows to compute the phase advance per cell from the cell length
and the focal length of the quadrupoles.
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The FODO cell (cont.)

» Example: compute the focal length in order to have a phase advance of 90° per cell

1
f=—
V2

N~

e.g. an emittance measurement station

» Stability requires that |cos | < 1, that is

L

a7 < 1 —  stability is for:  f > L/4 (or L < 4f)

» Compute the phase advance per cell from the transfer matrix: From
cos 1 = Ltrace (M)
1
[ = arccos <§trace (M))
» Compute S-function and o parameter

Mo
sin

B:

M1 —
o= 11. COSs [
sin p
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The FODO cell: useful formulae

For a FODO cell like in figure, with two thin quads separated by length L/2

cell length

one has:
L
4sin §
gt = L(lj:sin%)
sin
ot = Fl—sink
n
cos 5
Dt — Lo (1+ $sink)
N 4sin2%

0 is the total bending angle of the whole cell.
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Bmax and Bmin as a function of u

a0l

Bm"\/L

o )} MU S NS N (I NS S B SR TR
20 40 60 80 100 12C

Phose Advonce
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The FODO cell (example 1)

Stability condition 4f > L, has a simple interpretation:

> It is well known from optics that an object at a distance a = 2f from a
focusing lens has its image at b = 2f

A A V
/A\ ' 2&\ _ J\jL

» The defocusing lenses have no effect if a point-like object is located exactly
on the axis at distance 2f from a focusing lens, because they are traversed on
the axis

> If however the lens system is moved further apart (L > 4f), this is no more
true and the divergence of the light or particle beam is increased by every
defocusing lens
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The FODO cell (example 2)

» Phase space dynamics in a simple circular
accelerator consisting of one FODO cell
with two 180° bending magnets located in
the drift spaces (the O's)

» The periodicity of «, 3, and ~ is reflected
by the fact that the phase-space ellipse is
transformed into itself after each turn

» An individual particle trajectory, however,
which starts, for instance, somewhere on
the ellipse at the exit of the focusing
quadrupole (small circle), is seen to move
on the ellipse from turn to turn as
determined by the phase angle p

» Thus, an individual particle trajectory is
not periodic, while the envelope of a whole
beam is
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Exercise: phase-advance of a transfer line

We have seen that the phase advance of a periodic system is given by:

1
[ = arccos <2trace (/\/I))

Question: given the transfer matrix M of an arbitrary lattice, and knowing the
initial Twiss parameters g and [3o; compute the phase advance p:

=7

Hint: M can be written as:

,/%(cos;ﬂ—aosinu) V/BsBosin u

M (s) = .
(ag—axs) cos p—(1+agas) sin p Bo . .
A \/ 5 (cos pu — s sin p)
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Non-periodic beam optics

> In the previous sections the Twiss parameters «, 3, v, and p have been
derived for a periodic, circular accelerator. The condition of periodicity was
essential for the definition of the beta function (Hill's equation)

» Often, however, a particle beam moves only once along a beam transfer
line, but one is nonetheless interested in quantities like beam envelopes and
beam divergence

> In a circular accelerator «, (3, and 7 are completely determined by the
magnet optics and the condition of periodicity (beam properties are not
involved - only the beam emittance is chosen to match the beam size)

> In a transfer line, «, B, and ~y are no longer uniquely determined by the
transfer matrix, but they also depend on initial conditions which have to be
specified in an adequate way
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Non-periodic optics: ILC bunch compressor (EX1)

Optics of a non-periodic system including non-periodic optics. “Matching”
sections connect parts with different periodic conditions.

250.

200.
175.
150.
125.
100.
75.
50.
25.
0.0

B (m), B (m)

75/141 A. Latina -

225.

single stage bunch compressoMAD-X 3.04.67 28/01/10 15.55.19

i B,

150. 200.  250.

s(m)

0.0 50.  100.

Introduction to beam dynamics - JUAS 2016

300.

350.

4

The matrix
a = Msx3 | «
v s v 0
with
c? —2sCc 52
Msy3 = —cc’ sc’+s'c —ss!
cr? _2s’ ¢’ 572

allows to compute the magnets
parameters for the matching
sections

Note: even if the 3 functions are very large, the beam
size keeps small: o = \/Be, with

o= N 5x 10 9m
Yrel 5 GeV/ 0.5 MeV

1078y




Non-periodic optics: final focus of a HEP experiment
(EX2)

HERA PoRing. Lumi=A=Opid. 7/0.3 m. p/es 970 Gav. 1999, qdBR7r, haB206 48, Al Nosren

40

A A

AA
VA

J j.ﬂv
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Introducing dispersion: D (s)

So far we have studied monochromatic beams of particles, but this is slightly unrealistic:
We always have some (small?) momentum spread among all particles:

AP =P — Py #0.

Consider three particles with P respectively: less than, greater than, and equal to Py ,
traveling through a dipole. Remembering Bp = g:

The system introduces a correlation of momentum with transverse position. This
Jcorrelation is known as dispersion (an intrinsic property of the dipole magnets).
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Orbit of off-momentum particles

» in a circular particle accelerator, a particle with P = Py and
x=y=x"=y =0 (i.e. zero displacement and zero slope) moves on the
design orbit for an arbitrary number of revolutions

» particles with P = Py but non-zero displacement and slope perform betatron
oscillations, with a certain tune Q

» what happens to particles with momentum P # Py 7 they no longer move on
the design orbit

~7/—closed orbit
for pep,

Closed orbit for particles with momentum P # Py in a weakly (a) and strongly (b) focusing

circular accelerator.
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The Inhomogeneous Hill's equation
P—Py

Let's go back to the magnetic rigidity. If P # Py (define § = Po
the bending radius p depends on the particle momentum, w.r.t. pg:

= %) we can work out how
0

P Py(143)

= Bp=— = Bpo (1 +9) = p=po(1+4).

When we derived the equation of motion at some point we had (slide 15):

1 B 1
x" - = ——2  that later became: x"' + (—2 + k) x=0
~~ p+x P/q p
term 1 N —
term 2
" . 1 1 x
On the way we had " Taylor expanded” term 2: ~-—(1—-=]).
ptx p p
1 1 1
Now we need to redo it for p as pg (1 + §): = - ~— (1 — i—é)
ptx  po(L+d)+x  po o

and the equation of motion becomes:

1 1)
X"+ (—2 +k> x—— =0.
o 0
If we drop the suffix 0 and explicit 4, this is "the inhomogeneous Hill's equation”:

X”—I—(# + k)x:
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Solution of the inhomogeneous Hill’s equation

A particle with AP = P — Py # 0 satisfies the inhomogeneous Hill equation for the

horizontal motion:
_1AP

p Po
the total deviation of the particle from the reference orbit can be written as

X" (s) + K (s)x(s)

x(s) = xa (s) + xo (s)
where:

> xp (s) describes the deviation of the closed orbit for an off-momentum particle with
P = Po+ AP . Itis rewritten as xp (s) = D (s) % , where D (s) is the solution of
the equation

1
D" (s)+K(s)D(s) = p
> x3 (s) describes the betatron oscillation around the new closed orbit, and it's the
solution of the homogeneous equation xj (s) + K (s) x3 (s) = 0

D (s) is the dispersion function.
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Dispersion function and orbit

The dispersion function D (s) is the solution of the inhomogeneous Hill's equation:
" 1
D (s)—l—K(s)D(s):;

D(s):

> is that special orbit that an ideal particle would have for AP/Py =1

» It can be proved that the solution is:

D(s) = s)/ ok C(s)/osﬁS(t)dt

Once one knows D (s), the orbit x (s) = xg (s) + xp (s), with xp (s) = D (s) AP—(’;, can be
rewritten as

X(S) = X3 (S)+XD (5)
— (0t 5%+ D(5) AT
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Dispersion function and orbit
The equation of motion:
x(s) = xg (s) + xp (s)

=C(s)x+S(s)x;+ D(s) =
can be written in matrix form:
X _( C S X n AP (D
X/ N - C/ 5/ X/ 0 PO D/ 0

Or, in a more compact way:

X c S D X
X/ — C/ S/ D/ X/
AP/p, 0 0 1 AP/py 0
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Summary

integrated dipole field over a turn [ Bd/ ~ NLgend B = QTF?

L L2
transfer matrix of a FODO cell Mropo = ( 1 +2L2f LL+ 4f 2 )
7 l-%-up

stability in a FODO cell f > L/4

phase advance in a FODO cell = arccos (3trace (M))

B B
there exist matching sections «@ =Msxs | «
v s v 0

inhomogeneous Hill's equation  x”" + K (s) x = %M
...and its solution  x(s) = xg (s) + D (s) AT(’:

dispersion function D (s)
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Dispersion function and orbit

We need to study the motion for particles with AP =P — Py #0:

1 AP
X" (s)+ K(s)x(s) = ==
() +K()x(s) =
The general solution of this equation is:
x5 (s) + K (s)xs (s) =

x(s) = x5 (5) + %0 (5) {DWQ+MQD@=

0
1
p
with xp (s) = D (s %5.

Remarks

> D (s) is that special orbit that a particle would have for AP/Py =1

> xp (s) describes the deviation from the new closed orbit for an
off-momentum particle with a certain AP

> the orbit of a generic particle is the sum of the well known xz (s) and xp (s)
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Understanding the solution x (s) = x3(s) + xp (5)

with xp (s) = D (s) &2

PU °
:] /‘/‘__‘\\
P
/ \
\
\—Cclosed orbit
\\ for p=po
\
| xp=Dis) B2
- = Po

“A—closed orbit
for p<p,

- e central 'ceswgn orbit IS e i pay OB
b PR =closed orbit for p=p, Xplsl=Dls

Closed orbit for particles with momentum P # Py in

a weakly (a) and strongly (b) focusing circular accelerator.

> xp (s) describes the deviation from the reference orbit of an off-momentum particle
with P = Py + AP

> x3 (s) describes the betatron oscillation around the orbit xp (s)
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Dispersion and orbit propagation
The dispersion orbit is solution of D" (s) + K (s) D (s) = % :

s 1 * 1
D(s):5(s)/0 mC(t)dt—C(s)/o S (e

Now the orbit:
x(s) =xg (s) + xp (s)
AP

x(s) = C(s)xo—&—S(s)xé—i-D(s)P—o

(2)=0e s)(2) % (),

We can rewrite the solution in matrix form:

X c S D X
X/ — C/ S/ D/ X/
AP/p, s 0 0 1 AP/p, o

Exercise: show that D (s) is a solution for the equation of motion, with the initial

. /
conditions Dy = Dy = 0.
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Examples of dispersion function

Let's study, for different magnetic elements, the solution of:
D(s) = 5(5)/5 L cyde- C(s)/s L ()t
o P(t) o p(t)
at the exit of the element: that is, D (s) with s = Lmagnet
» Drift space:

1 L
MDrift:(O 1>

C(t)=1, S(t)=L, p(t) =occ = the integrals cancel
1 L O
Mpie =1 0 1 0
0 0 1
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Dispersion function in a sector dipole

» Sector dipole:

K= ﬁ:
M Ccos (\/RL) # sin (\/RL) coS L
Dipole — = H
i ~VKsin (VKL)  cos (VKL) ~Lsint
which gives
D(L)=p (1 fcosé)
p
L
D’ (L) = sin =
(L) p
therefore
cos% psin% p(l—cos ﬁ)
Mbipotle = | —lsint cost sin £
p ) P p
0 0 1

Notice: % = ¢ is the beding angle.
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Dispersion function in a quadrupole

» Focusing quadrupole, K > 0:

cos (\/RL) ﬁ sin (\/RL) 0
Mar = —VKsin (\/RL) cos (\/RL) 0
0 0 1

» Defocusing quadrupole, K < 0:

cosh (\/WL) \/17‘ sinh (\/WL) 0
Mao = | /IKTsinh (VIKIL)  cosh (V/IKIL) 0
0 0 1
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Dispersion propagation through the lattice

» The equation:

1 1
D(s):S(s)/O p(t)C(t)dtC(s)/O mS(t)dt

allows to compute the dispersion inside a magnet, which does not depend
on the dispersion that might have been generated by the upstreams magnets.

> At the exit of a magnet of length L,, the dispersion reaches the value D (L)

> The dispersion (also indicated as 7, with its derivative n’ ) propagates from
there, through the rest of the machine, just like any other particle:

n c S D n
77/ — C/ 5/ D/ ,rI/
1 0 0 1 1

s 0
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Periodic dispersion

In a periodic lattice, also the dispersion must be periodic.

n
That is, for ( n ) we need to have:

1
n c S D n
77/ — C/ S/ D/ 77/
1 0o 0 1 1

The solution is:

(Z}):(1_@(1;,)_05(12/5/ 15(-‘)(5’)
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Dispersion function in a FODO lattice

The dispersion function in a FODO cell is a periodic function with maxima at the

focusing quadrupoles and minima at the defocusing quadrupoles

Lo (1+3

4 sin?

in%)

D* =

I\Jlt m

where:

» L is the total length of the cell
> ¢ is the total bending angle of the cell

> 4 is the phase advance of the cell
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Example of dispersion function in a FODO lattice

25 meter 180° Arc based on 90%-FODO lattice

o T T T T T -
| p=3.8 GeVic 1<
= 1=
= 1&
el >
2 N P . WA ]
<
fat 18
o o
T
=) L L L L L L N
0 BETA_X BETA_Y DISP_X DISP_Y 24.8792
i | T ) e O ) N s, e, D s, e, N v, ) e, B | [ ]
. J\ J\_ J
Y
2 ‘half -empty ' cells 4 90°-FODO cells 2 'half-empty " cells
Aperture radius: r = 15 cm
12 < Dipoles: field: 3.9 Tesla length: 85 cm
15 < Quads: gradient: 25 Tesla/m (3.8 Tesla at the pole) length: 50 cm
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Impact of dispersion on the beam size

In this example from the HERA storage ring
(DESY) we see the Twiss parameters and the dis- $
persion near the interaction point. In the periodic ﬁ‘

R PR, Lomi=A~Op6R. 2/03 m. 8/e+ 920 Gov. 1995, 0997, Ps900+8, 28 Noman

region,
xg(s)=1...2mm
D(s)=1...2m

AP/py 11073

Remember:

x(s):Xﬁ(s)+D(s)AP—:

Beware: the dispersion contributes to the beam size:

AP\ o2
Ox = \/0')%5 + std (D . T()) = \/egeometric . /B+ D2 . Fg

» We need to suppress the dispersion at the IP !

» We need a special insertion section: a dispersion suppressor

€normalised

BreI'YreI
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The momentum compaction factor

The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

AP
x(s) =xs(s) + D(s) -
Po
The dispersion changes also the length of the off-
energy orbit.

p /X_\ particle with offset x w.r.t. the design orbit:

/h/d‘ , ds’ p+x , X
S| 1ds'=ds(1+%) = = — ds=(14=])ds

] P ds p P

The circumference change is AC, that is C' = ¢ (1 + %) ds=C+ AC

We define the “momentum compaction factor” ap, such that:

AC_ AP
c p
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Magnetic imperfections

High-order multipolar components and misalignments
Taylor expansion of the B field:

0B, 1 8B, 2ol 2*B, 3

B, (x) = + —=x+ = — x4+ ... divide by B
v (%) 2T ox 2 Ox? 31 ox3 Y By
dipole
quad sextupole octupole
There can be undesired multipolar compo-
s — nents, due to small fabrication defects

x10°

Or also errors in the windings, in the gap h,
ponl

a44| ... remember: B =

h

Ll
0 2 & 6 8 W 12 W 16

Moreover: “feed-down” effect = a misalign magnet of order n, behaves like a magnet
oof.order.n, plus.a magnet. of orders — 1 overlapped



Dipole magnet errors
Let's imagine to have a magnet with B = By + AB. This will give an additional kick to
each particle, and will distort the ideal design orbit

Fx=ev(Bo+ AB); Ax" = ABds/Bp

A dipole error will cause a distortion of the closed orbit, that will ,,run around" the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error {9

0
( )):/ )5 = Mlattice ( Ax’ >0

In order to have bounded motion the tune @ must be non-integer, Q@ # 1. We see that
even for particles with reference momentum Py an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

X0 dipole kick 1/p*4s

We consider a single thin dipole field error at the location s = sp, with a kick angle Ax’.

_ X0 _ (X0
X**(xswx')’ X“(xs)

are the phase space coordinates before and after the kick located at sp. The closed-orbit

condition becomes
X0 X0
M attice (Xé) = (Xé + AX’)
The resulting closed orbit at s is

BoAx’ , Ax!

Xp = ———=cosTQ; Xy = m (sinTQ — ap cos Q)

T 2sin7wQ

where Q is the tune. The orbit at any other location s is

s BoAx
x(s) = %cos(w@ — |ps — pol)

o(see the references, for.a, demenstration)



Orbit distortion for distributed dipole field errors
One single dipole field error

sBoAx
x(s) = %cos(ﬂ? — |ps — pol)

Distributed dipole field errors

x(s) = % z’: \/EAX,-’COS(WQ — s — pil)

> orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point sy

> the S function describes the sensitivity of the beam to external fields

» the S function acts as amplification factor for the orbit amplitude at the
given observation point

> there is a singularity at the denominator when Q integer = it's called
resonance
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

M _ 1 0 oS (o + asin pig B'sin o
Perturbed =\ " Akds 1 —~y'sin o €os o — asin fig
perturbation ideal ring

Let's see how the tunes changes: one-turn map

M . cos o + asin g B sin Lo
Perturbed =\ * A kds (cos po + arsin pio) — ysin o Akdsf sin o + cos p1o — asin o

Remember the rule for computing the tune:

2 cos pu = trace (M) = 2 cos o + AkdsgBsin po
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Quadrupole errors: tune shift (cont.)
We rewrite cos it = cos (o + Ap)

cos (po + Ap) = cos po + %Akdsﬁ sin o

from which we can compute that

Akd
Ap = 755 shift in the phase advance
AQ— y§ Ak(s)B(s)ds e shife
quads 4w

Important remarks:

» the tune shift if proportional to the S-function at the location of the
quadrupole

> field quality, power supply tolerances etc. are much tighter at places where §
is large

» [ is a measurement of the sensitivity of the beam
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102

Quadrupole errors: tune shift example

Deliberate change of a quadrupole strength in a synchrotron:

AQ =

AK(s)B(s)ds = AK(s) Lquad B

quads 4

=

The tune is measured permanently

4

We change the strength of "trim” quads to

fix Q
Horizontal axis is a scan of K1 (quad in-
i y=-6.7861x + 03803
tegrated focusing strength): 03050
. i 0.3000 S
» tune shift is proportional to 3 o \\
through AQ x AK - 8 g . -.;.,,. s
» En passant, we use this to 12650
measure (3. e - —
001250 0.01300 0.01350 not400 0.01450
ki
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Tune shift correction

Errors in the quadrupole fields induce tune shift:

AQ =

J quads

47

Cure: we compensate the quad errors using other (correcting) quadrupoles

Ak (s)B(s)ds

> If you use only one correcting quadrupole, with 1/f = AkL

> it changes both Qx and Qy:

le
Ath

AQX =

and AQ, =

> We need to use two independent correcting quadrupoles:

_ le /BZX
AQx = Amf + Attty AQx . i
_ _ By _ Bay AQy 4w
AQ = 4nf  Anh

»> Solve by inversion:

( 1/f1 ) _ Am ( By
1/f2 B ﬂleZy - BZX/Bly 7/81}/
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( ﬁlx
By

_,82><
le

_ By
4h

BZX
ﬁ2y

)

)

AQx
AQ,

1/
1/f

)

)



Quadrupole errors: beta beat

A quadrupole error at s causes distortion of 3-function at s: AB(s) due to the errors of
all quadrupoles:

Aps
ﬂf = 2sin 277Q Zﬂ’Ak cos (27 Q — 2 (i — ps))

Note: Unstable betatron motion if tune is half integer!

orbit is not affected to
first order !

This imperfection can be corrected with an appropriate distribution of tuneable
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Tunes and resonances

The particles — oscillating under the influence of the external magnetic fields — can be
excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

<

ZN

9 y

vy = integer

The cure:
1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m-Q«+n-Q, #p

with m, n, p integer numbers
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Resonance diagram

—
=
o

Vertical Tune
—
—

N
/

10.6

L — T AN/
28.6 28.8 29 29.2 29.4
Horizontal Tune

m-Qx+n-Q, #p where |m|+]|n| is the order of the resonance

A resonance diagram for the Diamond light source. The lines shown are the resonances

and the black dot shows a suitable place where the machine could be operated.
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Quadrupole errors: chromaticity, &
Is an error (optical aberration) that happens in quadrupoles when AP /Py # 0:

The chromaticity £ is the variation of tune AQ with the relative momentum error:

AP AQ
A — —_— _ -
O=85 T ST ap/R
Remember the quadrupole strength:

k=2 with P=Py+ AP = Py(1+96)

P/q
then
q8 ko q AP
k= - ~ L (120 g =k + Ak
Pot AP 140 P0< P(,)g o
Ak =—BPy
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Quadrupole errors: chromaticity (cont.)

Ak =20k
Py °

= Chromaticity acts like a quadrupole error and leads to a tune spread:

1 AP 1 AP
A one qua = ———K A all quads — — 7~ 7 k
Qone quad 4 Py 0B (s)ds = AQall quad 4 Py ¢ (s)B(s)ds
Therefore the definition of chromaticity & is
1
= - k
£ Am quads (S) 6 (S) ds

The peculiarity of chromaticity is that it isn't due to external agents, it is generated by
the lattice itself!

Remarks:
» ¢ is a number indicating the size of the tune spot in the working diagram
» ¢ is always created by the focusing strength k of all quadrupoles
»> natural chromaticity is always negative

In other words, because of chromaticity the tune is not a sharp point, but is a spot
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Example: Chromaticity of the FODO cell

Consider a FODO cells like in figure, with two thin quads, each with focal length £,
separated by length L/2, and total phase advance u:

sample trajectory

cell length

The natural chromaticity &y of the cell is:

£N——4}§I§B(s)k(s)ds _ 1 KL L2)1_(L L?);}

_47rsin,u +E f Taf)f
T PO LDE [t ]
1 drsinp | f f 0 2f2
. S S Y
an | f f 8msinp 2 ™

For N cells, the total chromaticity is Ne times the chromaticity of each cell

éNl — _ Neell s
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Quadrupole errors: chromaticity

Tune signal for a nearly
uncompensated cromaticity
(Q'~20)

Ideal situation: cromaticity well corrected,
(Q' ~1)
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Chromaticity correction

Remember what is chromaticity: the quadrupole focusing experienced by particles
changes with energy

» it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional, energy-dependent, focusing. This is given by sextupoles

Ap/p >0 focal length —— ‘
{' |
—
Aplp =0| | | ‘ _—
- H—
N N

> The sextupole magnetic field rises quadratically:

Bx=&xy 0B, 0B,
1. = — = = gx a "gradient”
By — 5g (X —y ) ay 8X

it provides a linearly increasing quadrupole gradient
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Chromaticity correction (cont.)

Now remember:

» Normalised quadrupole strength is

g -2
k= ——[m
P/q ]

> Sextupoles are characterised by a normalised sextupole strength ky, which
carries a focusing quadrupolar component ki:

g -3 ~ gx . 2
ky = = [m°]; k m
2= prg M )

' Pa
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in
order to increase the focusing strength for particles with larger energy

> A sextupole at a location with dispersion does the trick: x =D - AP—[’:

£(o%)
~ Pla

» for x = 0 it corresponds to an energy-dependent focal length

/;1 = [m72]

k;
1 g 1AP AP
7 g
7:kLsex:7D7'Lsex:kD'i'Lsex
fsext ! * P/q PO ¢ 2 PO *
N~
ko [m]

Now the formula for the chromaticity rewrites:

1 1
E= —— Pk(s)B(s)ds + —%kz(s)DB(s)ds
47 47
chromaticity due to quadrupoles chromaticity due to sextupoles
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Design rules for sextupole scheme

» Chromatic aberrations must be corrected in both planes = you need at least
two sextupoles, Sg and Sp (sextupole strengths)

> In each plane the sextupole fields contribute with different signs to the
chromaticity & and &,:

£ = _% %ﬁx (s)[ k(s)— SeDy (s) + SpDy (s)]ds

& = 4= P By (K () + 5eDs (5) ~ SoDi (5) ds

» To minimise chromatic sextupoles strengths, sextupoles should be located
near quadrupoles where 8D, and 3, D, are large

» For optimal independent chromatic correction Sg should be located where
the ratio 5./B, is large, Sp where 3, /B is large.
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Example of chromaticity correction scheme

» Chromatic aberrations introduced by a quadrupole are locally cancelled by a
sextupole, placed near the quadrupole itself in a dispersive region (in straght
sections dispersion is generated using an upstream bending magnet)

»> Notice that the sextupoles affect also the on-momentum particles: they intriduce
geometric aberrations. These can be cancelled by adding one additional sextupole
at Au=m

H\ sextupoles —

The phase advance between the two sextupoles S; and S, must be 7, so that:

Ap=m

(%), *M:(—fl o) (),

-1

S1—>S2
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Summary of imperfections

Error Effect Cure
L . unwanted multipolar better fabrication /
fabrication imperfections . .
components multipolar corrector coils
better alignment /

transverse offsets

“feed-down" effect

corrector kickers

roll effects

couplings x — y

skew quads

dipole kicks along
the ring

orbit distortion o< SBkick location,

residual dispersion

corrector kickers

quad field errors

tune shift

trim special quadrupoles

chromaticity

tune spread

design / sextupoles

power supplies

116/141 A. Latina - Introduction to beam dynamics

closed orbit distortion
tune shift / spread
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try to correct /
improve power supplies



Summary

orbit for an off-momentum particle

dispersion trajectory
equations of motion with dispersion

definition of momentum compaction, ap
stability condition
tune shift

beta beat

chromaticity
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x(s):xlg(s)—l—D(s)%

D(s)=S(s) fOpt (t)ydt—C 5)fop: (t)dt
X C S D X
Xl — CI S/ Dl Xl
aP/p, ) | 0 o0 1 ap/py )
AC _ AP
c — PP,

with n, m, p integers

m-Qx+n-Qy#p

AQ = uads DK (s)B(s)ds
e Y
B(s) 2sin 2w Q
B(t) Ak (t)cos(2mrQ — 2 (p(t) —
§ = Ag/QPO = 4171' Jquads (S) ’6 (5) ds

1 (s))



Insertions

HERA P-fing. Lumi=A-Optd. 7/053 m. p/es 970 Cov. 1099, qd@Q7r. hB200 48, Al Nosren

40

F3957F9039 5S9035 B0 B8P 3% LBLR336 37T 05 F590¢
D | FE3Edia i R A Lt T T M E i T
L , . . .
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Dispersion suppressor

In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often
want to have n =7’ =0. = for instance to keep small the beam size at the interaction point.

We can “match” between these two conditions with a “dispersion suppressor’: a non-periodic
set of magnets that transforms FODO 7, 1’ to zero

(0

Ly /2 ey/2 o 6/2 62 -

Consider two FODO cells with length L and different total bend angles: 61, 0>: we want to have
P )= (8) e ()= (0)
( 77/ entrance 0 77/ exit 0

» the two cells have the same quadrupole strengths, so that they have also the same 3, and
1 (phase advance per cell)

» remember that o = 0 at both ends, and that, if the incoming beam comes from a FODO
cell with the same length L, phase advance p, and with a total bending angle 8, then the
initial dispersion is

Note:

ot
0 = Mrobo

2 . . . .
n;ODO =~ % 1+ %) 0, in thin-lens approximation
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Dispersion suppressor (cont.)

Transport for the dispersion:

0 c S D 1o

0o |=( ¢ s D 0

1 0 0 1 1
suppressor

In 2 x 2 form reads

which has solution

(5)=-(c 5)(%)

The transfer matrix for the suppressor is

Msuppressor = MFODO 2 MFODO 1

For each FODO ceII, MFODO = M1/2|: . Mdipole . MD . Mdipole . M1/2|:, in thin-lens
approximation:

1- L L(1+ L1+ L)
_87 +ar 2 +5r )0
M S = L L 12 L L2 .
Fobo T (1—3) -3 (“5‘@)91
0 0 1

Wwhere j = 1,2 (1=first cell, 2=second cell)



Dispersion suppressor (cont.)

If we do the math, we find the expressions that we have to set to zero:

oL (1+5)[(- L)ool

' L 12 L2
9o [ )0

From lecture 3, we remember that the phase advance p for a FODO cell, in terms of the
length L and the focal length f, is

L
af

. M‘
sin | =
‘ 2
Thus, one can write the solution as a function of the phase advance u, and of

0 =0+ 6>
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Dispersion suppressor (summary)
Dispersion suppressor, a non-periodic set of magnets that transforms FODO 7, 1’ to zero:
)
b B2

)
/“ / / \ \ \\//
/2 62 02/2

One possibility: two FODO cells with length L, phase advance u, and different total

bend angles: 61, 0>:
0, =

0, =
4sin? 5
An interesting solution is for = 60°: in this case

» then 0; =0, and 6, = 0 = we just leave out two dipole magnets in the first FODO

cell insertion
> this is called the “missing-magnet” scheme
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Optics functions in the dispersion suppressor, with 1 = 60°

} Arc } Dispersion suppressor } Slra\ghtseclion%{

This is the " missing-magnet” scheme.
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Often the insertions are bigger than few meters...




The most problematic insertion: the drift space

The most problematic insertion is the drift space !

Let's see what happens to the Twiss parameters «, 3, and ~ if we stop focusing
for a while

B c? —-25C s2 8
o =| -CC" SC'+S5C -85 a
ol . C/2 _25/C/ 5/2 v o

for a drift:

B(s) = Bo — 2a05 + 70S5°

c S 1
Mdrift = < C/ S/ ) = ( 0 i ) = o (S) = Qo — Y0S
7(s) =10

125/141 A. Latina - Introduction to beam dynamics - JUAS 2016



Let's find the location of the waist: a« =0

» the location of the point of smallest beam size, 8*

beam waist: o.= 0

> s
l
Beam waist: o
Oé(S):Oéo—’YOSZO — Szi:lwaist
Yo
Beam size at that point
)= 2

v() =" (/):M:i =5 Boin = —
a(l)=0 A1) () Yo

This beta, at | = laist, is also called “beta star”:
= /B* - Bmin

s at ] = haiss, that the interaction point (IP) is located.



A drift space with L = /it : the Low [-insertion

We can assume we have a symmetry point at a distance hyaist:

B(s) = fBo—20s+7s>, at a(s) =0 — % = o
0
On each side of the symmetry point

U 5 U

we have

= [ grows quadratically with s.

A drift space at the interaction point, with length L = lyist, is called “low-3 insertion”:

Dispersion

supressor
,/ cells

@@WWWWHWWPWW@

Collision pot
B4,
a= {)
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Phase advance in a low-£ insertion

We have:
2

6@=W+%

The phase advance across the straight section is:

L .
waist ds L .
Ap = / —— = 2arctan ———
— Luaist B* + ET B

which is close to Ap = 7 for Lyaist > 5*.

In other words: in the interaction region the tune increases by half an integer!
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Achromatic insertions

There exist insertions (arcs) that don't introduce dispersion: they are called
achromatic arcs
> In principle, dispersion can be suppressed by one focusing quadrupole and one
bending magnet
» With one focusing quad in between two dipoles, one can get achromat
condition: In between two bends, we call it arc section. Outside the arc
section, we can match dispersion to zero. This is called "Double Bend
Achromat” (DBA) structure

» We need quads outside the arc section to match the betatron functions,
tunes, etc.

» Similarly, one can design “Triple Bend Achromat” (TBA), “Quadruple Bend
Achromat” (QBA), and “Multi Bend Achromat” (MBA or nBA) structure

» For FODO cells structure, dispersion suppression section at both ends of the
standard cells (see previous slides)
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The Double Bend Achromat lattice (DBA)

Consider a simple DBA cell with a single quadrupole in the middle (plus external
quadrupoles for matching).

Mpea = Mg - Mysife - Myyor - Mhjor - Mariee - Mg
—_——

Mg

In thin-lens approximation, the dispersion matching condition:

Deenter 1 00 1 L 0 1 L Lo)2 0
0 =| - 10 0 1 0 01 6 0
1 0 01 0 0 1 00 1 1

where f is the focal length of the quad, 6 and L are the bend angle and the length of the
dipole, and L; is the distance between the dipole and the centre of the quad.

1 1 1
f*i (L1+§L)v Dcenter* (L1+§L>6
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DBA optical functions

B (m

131/141 A. Latina -
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Triple Bend Achromat (TBA)

TLS OPTICAL FUNCTIONS
T T
0 L X0 0250
/\ S 25 L0225
Q
£ 2001 L0.200
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i n 1501 L0150
&= \rh LAl S
- i 5] L0.025
g ,\ ! / }\ 100 L 0.100
\
INY.Y A Yol A i 75 0075
\ \\/ / 509 .- - 0.050
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Combined function dipoles

132/141 A. Latina - Introduction to beam dynamics - JUAS 2016

n (m)



QBA, OBA, and nBA

B2 B1 B1 B2

B1=8.823"

: B1=8.57°
B2=6.176"

B2=4.28°

£

A B1=7.5
| B2=3.75°

Optical Functions (m)
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Completing the picture: 6-D phase space

In the real life the state vector is six-dimensional:
’ ’ T
( x x y y z AP/P )

and the transfer matrix is typically

X R11 R12 0 0 0 R16 X

X/ R21 R22 0 0 0 R26 X/

y . 0 0 R Rw 0 O y

y' o 0 0 Rizs Rw 0 O y'

AZP Rsi Rs2 O 0 1 Rse AZP
/. 0 0 0 0 O 1 P /o

in bold the elements that would couple the x — y motion.

Nota bene: this matrix can still represent only linear elements.

> if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. = we
need computer simulations ! “particle tracking” or "maps” (MAD-X, for instance)

» because such elements introduce non-linear motion, which is too difficult to treat
analytically
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Coupled motion

Certain elements might be used to intentionally couple horizontal and vertical motions,
for example: skew quadrupoles, and solenoids:

Msew quad — Riot (d’) X Mquad X Riot (7¢) =

cos ¢ 0 sin ¢ 0
_ 0 cos ¢ 0 sin ¢ %
- —sin¢ 0 cos ¢ 0
0 —sin¢ 0 cos ¢
cos VKL ﬁsin VKL 0 0
—VKsin VKL cos VKL 0 0 X
x 0 0 cosh /[K[L \/Tﬂsinh\/|K\L
0 0 v/ |K|sinh \/|K|L cosh /|K|L
cos ¢ 0 —sin¢ 0
« 0 cos ¢ 0 —sin¢
sin ¢ 0 cos ¢ 0
0 sin ¢ 0 cos ¢

(typically ¢ = 45°)

Notice: coupling can be induced even by normal elements, including quadrupoles and
dipoles, just because of alignment errors (“roll error”’, i.e. small angles about the optical
axis).
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Coupled motion: solenoid magnets

Solenoids are magnets with only B, # 0. Their transfer matrix reads

sc s?

¢ % SC %

M . —KSC C? —KS?2 sC
solenoid — 52 > sc
-SC -+ C =

K
KS? -SC —KSC ¢?

with: L = effective length of the solenoid, K = B,/ (2Bp) = B/ (2P/q), C = cos KL,
S =sinKL.

Notice: a rotation of the transverse coordinates x and y about the optical axis at the exit of the
solenoid, by an angle —KL, decouples the x and y first order terms, and allows to write,

c 3 0 0

-KS C 0 0

Msolenoid = Rrot (_KL) X 0 0 C %
0 0 —-KS C

= a solenoid behaves like a rotating quadrupole that focuses in both xand y.
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Non-linear dynamics

+ Q=0.2516

* linear motion near center
(circles)

oS * More and more square

* Non-linear tuneshift

] + lIslands

i * Limit of stability

05+

* Dynamic Aperture

. «  Crucial if strong quads and
chromaticity correction in s.r.
light sources

( T ) N ( cos(2mQ)  sin(27Q) ) ( T, ) + many non-linearities in LHC

z! —sin(27Q) cos(27Q) x4 22 due to s.c. magnet and finite
manufacturing tolerances

[NEW VIDEO!]
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Particle tracking and dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable
motion of particles. Numerical simulations of particle tracking aim at determining the
“dynamic aperture”.

Dynamic aperture for hadrons
> in the case of protons or heavy ion accelerators, (or synchrotrons, or storage rings),
there is minimal radiation, and hence the dynamics is symplectic

» for long term stability, a tiny dynamical diffusion can lead an initially stable orbit
slowly into an unstable region

> this makes the dynamic aperture problem particularly challenging: One may need to
consider the stability over billions of turns

For the case of electrons
> in bending magnetic fields, the electrons radiate which causes a damping effect.

> this means that one typically only cares about stability over few (“thousands) of
turns
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Dynamic Aperture and tracking simulations

L i
=02 =y L] wl L

a beam of four particles in a storage ring
composed by only linear elements
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a beam of four particles in a storage ring
where there is a strong sextupole: it's a
catastrophe!



The end!

I'd like to thank you all

for your attention!
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Some Excellent References

1. The CERN Accelerator School (CAS) Proceedings: e.g. 1992, Jyvaskyl3,
Finland; or 2013, Trondheim, Norway

2. Shyh-Yuan Lee: Accelerator Physics, World Scientific, 2004

3. Mario Conte, William W. MacKay, An Introduction to the Physics of Particle
Accelerators, Second Edition, World Scientific, 2008

4. Andrzej Wokski, Beam Dynamics in High Energy Particle Accelerators,
Imperial College Press, 2014
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