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Contents of the 2nd lecture
n Resonances and the path to chaos

q  Topology of 3rd and 4th order resonance
q  Path to chaos and resonance overlap
q  Dynamic aperture simulations

n Frequency map analysis
q  NAFF algorithm
q  Aspects of frequency maps
q  Frequency and diffusion maps for the LHC
q  Frequency map for lepton rings
q  Working point choice
q  Beam-beam effect

n Experiments
q  Experimental frequency maps
q  Beam loss frequency maps
q  Space-charge frequency scan
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n  Record the particle coordinates at one 
location (BPM) 
n  Unperturbed motion lies on a circle in 
normalized coordinates (simple rotation) 
 
 
 
 
 
 
 
n  Resonance condition  corresponds to a 
periodic orbit or in fixed points in phase 
space  
n  For a sextupole 

n  The particle does not lie on a circle! 
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Fixed points for 3rd order resonance
n  In the vicinity of a third order 

resonance, three fixed points 
can be found at

n  For   all three points are 
unstable

n  Close to the elliptic one at          
      the motion in phase 

space is described by circles 
that they get more and more 
distorted to end up in the 
“triangular” separatrix uniting 
the unstable fixed points 

n  The tune separation from the 
resonance (stop-band width) is 
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Topology of an octupole resonance
n  Regular motion near the 
center, with curves getting 
more deformed towards a 
rectangular shape  
n  The separatrix passes 
through 4 unstable fixed points, 
but motion seems well 
contained 
n  Four stable fixed points exist 
and they are surrounded by 
stable motion (islands of 
stability) 
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Path to chaos
n  When perturbation becomes higher, motion around the separatrix 
becomes chaotic (producing tongues or splitting of the separatrix) 
n  Unstable fixed points are indeed the source of chaos when a 
perturbation is added 
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Chaotic motion
n  Poincare-Birkhoff theorem states that 
under perturbation of a resonance only an 
even number of fixed points survives (half 
stable and the other half unstable)
n  Themselves get destroyed when 
perturbation gets higher, etc. (self-similar 
fixed points)
n  Resonance islands grow and resonances 
can overlap allowing diffusion of particles



N
on

-li
ne

ar
 e

ffe
ct

s, 
JU

A
S,

 F
eb

ru
ar

y 
20

16

9

Resonance overlap criterion
n   When perturbation grows, the resonance island width grows
n  Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

n  The distance between two resonances is
n  The simple overlap criterion is

n  Considering the width of chaotic layer and secondary islands, the “two 
thirds” rule apply

n  The main limitation is the geometrical nature of the criterion (difficulty to 
be extended for > 2 degrees of freedom)

�Ĵ1 n,n0 =
2
⇣

1
n1+n2

� 1
n0
1+n0

2

⌘

�����
@2H̄0(Ĵ)
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n

0
max

� �Ĵ
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Beam Dynamics: Dynamic Aperture
n  Dynamic aperture plots often show the maximum initial values of 

stable trajectories in x-y coordinate space at a particular point in the 
lattice, for a range of energy errors.
q  The beam size (injected or equilibrium) can be shown on the same plot.
q  Generally, the goal is to allow some significant margin in the design - 

the measured dynamic aperture is often significantly smaller than the 
predicted dynamic aperture.

n  This is often useful for comparison, but is not a complete 
characterization of the dynamic aperture: a more thorough analysis 
is needed for full optimization.

5σinj

5σinj

OCS: Circular TME TESLA: Dogbone TME
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Example: The ILC DR DA

n  Dynamic aperture for  lattice with specified misalignments, 
multipole errors, and wiggler nonlinearities

n  Specification for the phase space distribution of the injected 
positron bunch is an amplitude of Ax + Ay = 0.07m rad 
(normalized) and an energy spread of E/E  0.75%

n  DA is larger then the specified beam acceptance
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Dynamic aperture including damping 
0.12 ms 0.6 ms 1.2 ms 

1.8 ms 2.4 ms 3 ms 

3.6 ms 4.2 ms 4.8 ms 

E. Levichev et al. PAC2009 

n  Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping 

n  Certain particles seem to damp away 
from the beam core, on resonance 
islands 
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Contents of the 2nd lecture
n Resonances and the path to chaos

q  Topology of 3rd and 4th order resonance
q  Path to chaos and resonance overlap
q  Dynamic aperture simulations

n Frequency map analysis
q  NAFF algorithm
q  Aspects of frequency maps
q  Frequency and diffusion maps for the LHC
q  Frequency map for lepton rings
q  Working point choice
q  Beam-beam effect

n Experiments
q  Experimental frequency maps
q  Beam loss frequency maps
q  Space-charge frequency scan
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Frequency map analysis
n Frequency Map Analysis (FMA) is a numerical method 

which springs from the studies of J. Laskar (Paris 
Observatory) putting in evidence the chaotic motion in 
the Solar Systems 

n FMA was successively applied to several dynamical 
systems
q   Stability of Earth Obliquity and climate stabilization (Laskar, 

Robutel, 1993)
q  4D maps (Laskar 1993)
q  Galactic Dynamics (Y.P and Laskar, 1996 and 1998)
q  Accelerator beam dynamics: lepton and hadron rings (Dumas, 

Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and 
Laskar 2001)
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 NAFF algorithm 
n When a quasi-periodic function in 

the complex domain is given numerically, it is 
possible to recover a quasi-periodic approximation 

                            
    

in a very precise way over a finite time span      
several orders of magnitude more precisely than 
simple Fourier techniques

n This approximation is provided by the Numerical 
Analysis of Fundamental Frequencies – NAFF 
algorithm

n The frequencies and complex amplitudes        are 
computed through an iterative scheme. 

f(t) = q(t) + ip(t)

[�T, T ]

f 0(t) =
NX

k=1

a0ke
i!0

kt

!0
k a0k
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Aspects of the frequency map 
n  In the vicinity of a resonance the system behaves like a 

pendulum
n  Passing through the elliptic point for a fixed angle, a fixed 

frequency (or rotation number) is observed
n  Passing through the hyperbolic point, a frequency jump is 

oberved 
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Building the frequency map
n  Choose coordinates (xi, yi) with px and py=0
n  Numerically integrate the phase trajectories through the lattice for 
sufficient number of turns
n  Compute through NAFF Qx and Qy after sufficient number of turns
n  Plot them in the tune diagram

F⌧ :
Rn �! Rn

p|q=q0
�! ⌫ .
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Frequency maps for the LHC 

Frequency maps for the target error table (left) and an increased random 
skew octupole error in the super-conducting dipoles (right)
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Diffusion Maps 
J. Laskar, PhysicaD, 1993 

§  Calculate frequencies for two equal and successive time 
spans and compute frequency diffusion vector:

§  Plot the initial condition space color-coded with the norm 
of the diffusion vector
§  Compute a diffusion quality factor by averaging all 
diffusion coefficients normalized with the initial conditions 
radius

D|t=� = �|t�(0,�/2] � �|t�(�/2,� ]

DQF =
� |D|

(I2
x0 + I2

y0)1/2

⇥
R
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Diffusion maps for the LHC 

Diffusion maps for the target error table (left) and an increased random 
skew octupole error in the super-conducting dipoles (right)
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Resonance free lattice for CLIC PDR 
n  Non linear 

optimization based 
on phase advance 
scan for minimization 
of resonance driving 
terms and tune-shift 
with amplitude

eip(nxµx ,c+nyµy,c )
p=0

Nc−1

∑ =
1− cos Nc (nxµx,c + nyµy,c )#$ %&
1− cos(nxµx,c + nyµy,c )

= 0

Nc (nxµx,c + nyµy,c ) = 2kπ
nxµx,c + nyµy,c ≠ 2 "k π
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Dynamic aperture for CLIC DR

n  Dynamic aperture and diffusion map
n  Very comfortable DA especially in the vertical plane

q  Vertical beam size very small, to be reviewed especially for 
removing electron PDR

n Need to include non-linear fields of magnets and 
wigglers



N
on

-li
ne

ar
 e

ffe
ct

s, 
JU

A
S,

 F
eb

ru
ar

y 
20

16

23

Frequency maps for the ILC DR

n  Frequency maps enabled the comparison and steering of 
different lattice designs with respect to non-linear dynamics 
q  Working point optimisation, on and off-momentum dynamics, effect 

of multi-pole errors in wigglers



N
on

-li
ne

ar
 e

ffe
ct

s, 
JU

A
S,

 F
eb

ru
ar

y 
20

16

24

Frequency Map for the ESRF
n All dynamics represented in 
these two plots
n  Regular motion represented 
by blue colors (close to zero 
amplitude particles or working 
point)

n  Resonances appear as 
distorted lines in frequency 
space (or curves in initial 
condition space
n  Chaotic motion is represented 
by red scattered particles and 
defines dynamic aperture of the 
machine
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Example for the SNS ring: Working point (6.4,6.3)
n  Integrate a large number of particles
n  Calculate the tune with refined Fourier 

analysis
n  Plot points to tune space
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SNS Working point (6.23,5.24)
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Working Point Comparison

Tune Diffusion quality factor
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Working point choice for SUPERB 

S. Liuzzo et al., IPAC 2012 
n  Figure of merit for 

choosing best working 
point is sum of diffusion 
rates with a constant 
added for every lost 
particle

n  Each point is produced 
after tracking 100 
particles

n  Nominal working point 
had to be moved 
towards “blue” area
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n  Long range beam-beam interaction 
represented by a 4D kick-map  

 
 
 
with 

Beam-Beam interaction 
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Head-on vs Long range interaction 
YP and F. Zimmermann, PRSTAB 1999, 2002 

n  Proved dominant effect of long range beam-beam effect 
n  Dynamic Aperture (around 6σ) located at the folding of the map 

(indefinite torsion) 
n  Dynamics dominated by the 1/r part of the force, reproduced by 

electrical wire, which was proposed for correcting the effect 
n  Experimental verification in SPS and installation to the LHC IPs 

Head-on Long range 
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Contents of the 2nd lecture
n Resonances and the path to chaos

q  Topology of 3rd and 4th order resonance
q  Path to chaos and resonance overlap
q  Dynamic aperture simulations

n Frequency map analysis
q  NAFF algorithm
q  Aspects of frequency maps
q  Frequency and diffusion maps for the LHC
q  Frequency map for lepton rings
q  Working point choice
q  Beam-beam effect

n Experiments
q  Experimental frequency maps
q  Beam loss frequency maps
q  Space-charge frequency scan
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n  Frequency analysis of turn-
by-turn data of beam 
oscillations produced by a 
fast kicker magnet and 
recorded on a Beam Position 
Monitors

n  Reproduction of the non-
linear model of the 
Advanced Light Source 
storage ring and working 
point optimization for 
increasing beam lifetime

Experimental frequency maps 
D. Robin, C. Steier, J. Laskar, and L. 
Nadolski, PRL 2000
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Experimental Methods – Tune scans
q  Study the resonance behavior around different working points in SPS
q  Strength of individual resonance lines can be identified from the beam 

loss rate, i.e. the derivative of the beam intensity at the moment of 
crossing the resonance

q  Vertical tune is scanned from about 0.45 down to 0.05 during a period of 
3s along the flat bottom

q  Low intensity 4-5e10 p/b single bunches with small emittance injected 
q  Horizontal tune is constant during the same period
q  Tunes are continuously monitored using tune monitor (tune post-

processed with NAFF) and the beam intensity is recorded with a beam 
current transformer
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Tune Scans – Results from the SPS
q Resonances in low γt optics 

q  Normal sextupole Qx+2Qy is 
the strongest 

q  Skew sextupole 2Qx+Qy 
quite strong  

q  Normal sextupole Qx-2Qy, 
skew sextupole at 3Qy and 
2Qx+2Qy fourth order 
visible 
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q Resonances in the nominal optics 
q  Normal sextupole resonance Qx+2Qy is the 

strongest 
q  Coupling resonance (diagonal, either Qx-Qy 

or some higher order of this), Qx-2Qy normal 
sextupole  

q  Skew sextupole resonance 2Qx+Qy weak 
compared to Q20 case 

q  Stop-band width of the vertical integer is 
stronger (predicted by simulations) 
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Summary
n Appearance of fixed points (periodic orbits) 
determine topology of the phase space
n Perturbation of unstable (hyperbolic points) opens 
the path to chaotic motion 
n Resonance can overlap enabling the rapid diffusion 
of orbits
n  Need numerical integration for understanding 
impact of non-linear effects on particle motion 
(dynamic aperture)
n  Frequency map analysis is a powerful technique for 
analyzing particle motion in simulations but also in 
real accelerator experiments
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Problems 
1)  A ring has super-periodicity of 4. Find a relationship for the 

integer tune that avoids systematic 3rd  and 4th order 
resonances. Generalize this for any super-periodicity.

2)  Compute the tune-spread at leading order in perturbation 
theory for a periodic octupole perturbation in one plane.

3)  Extend the previous approach to a general multi-pole.
4)  Do skew multi-poles provide 1st order tune-shift with 

amplitude?


