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What is synchrotron radiation
Electromagnetic radiation is emitted by charged particles when accelerated

The electromagnetic radiation emitted when the charged particles are 

accelerated radially (v  a) is called synchrotron radiation

It is produced in the synchrotron radiation sources using bending magnets 

undulators and wigglers



Synchrotron radiation sources properties (I)

Broad Spectrum which covers from microwaves to hard X-rays: 

the user can select the wavelength required for experiment;

either with a monochromator 

or adjusting the emission wavelength of insertion devices

synchrotron light



Synchrotron radiation sources properties (II)

High Flux: high intensity photon beam, allows rapid experiments or use of 
weakly scattering crystals;

High Brilliance (Spectral Brightness): highly collimated photon beam 
generated by a small divergence and small size source

Polarisation: both linear and circular (with IDs)

Pulsed Time Structure: pulsed length down to

High Stability: submicron source stability in SR

… and it can be computed!

Flux = Photons / ( s  BW)

Brilliance = Photons / ( s  mm2  mrad2  BW )
Partial coherence in SRs

Full T coherence in FELs

10s ps in SRs

10s fs in FELs



Peak Brilliance
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X-rays from Diamond 

will be 1012 times 

brighter than from 

an X-ray tube, 

105 times brighter 

than the SRS !

diamond



X-ray sources

Courtesy K. Wille



Layout of a synchrotron radiation source (I)

Electrons are generated and 

accelerated in a linac, further 

accelerated to the required energy in 

a booster and injected and stored in 

the storage ring

The circulating electrons emit an 

intense beam of synchrotron radiation 

which is sent down the beamline



Layout of a synchrotron radiation source (II)



Evolution of synchrotron radiation sources (I)

• First observation: 

1947, General Electric, 70 MeV synchrotron

• First user experiments:

1956, Cornell, 320 MeV synchrotron

• 1st generation light sources: machine built for High 

Energy Physics or other purposes used parasitically for 

synchrotron radiation

• 2nd generation light sources: purpose built synchrotron 

light sources, SRS at Daresbury was the first dedicated 

machine (1981 – 2008)

• 3rd generation light sources: optimised for high brilliance 

with low emittance and Insertion Devices; ESRF, Diamond, 

…



Evolution of synchrotron radiation sources (II)

• 4th generation light sources: photoinjectors LINAC based Free Electron 

Laser sources; 

FLASH (DESY) 2007

LCLS (SLAC) 2009

SACLA (Japan) 2011

Elettra (Italy) 2012

and in the near(?) future

• 4th generation light sources storage ring based: diffraction limited storage 

rings 

• …and even a  5th generation with more compact and advanced accelerator 

technologies e.g. based on laser plasma wakefield accelerators



1992 ESRF, France (EU) 6 GeV
ALS, US 1.5-1.9 GeV

1993 TLS, Taiwan 1.5 GeV
1994 ELETTRA, Italy 2.4 GeV

PLS, Korea 2 GeV
MAX II, Sweden 1.5 GeV 

1996 APS, US 7 GeV
LNLS, Brazil 1.35 GeV 

1997 Spring-8, Japan 8 GeV
1998 BESSY II, Germany 1.9 GeV
2000 ANKA, Germany 2.5 GeV

SLS, Switzerland 2.4 GeV
2004 SPEAR3, US 3 GeV

CLS, Canada 2.9 GeV
2006: SOLEIL, France 2.8 GeV 

DIAMOND, UK 3 GeV 
ASP, Australia3 GeV
MAX III, Sweden 700 MeV
Indus-II, India 2.5 GeV 

2008 SSRF, China 3.4 GeV
2009 PETRA-III, Germany 6 GeV
2011 ALBA, Spain 3 GeV

3rd generation storage ring light sources

ESRF

SSRF



> 2016 MAX-IV, Sweden 1.5-3 GeV
SOLARIS, Poland 1.5 GeV

And then
SESAME, Jordan 2.5 GeV 
CANDLE, Armenia 3 GeV

3rd generation storage ring light sources

under commissioning

NLSL-II

Max-IV

in commissioning

2014 NSLS-II, US 3 GeV
2014 TPS, Taiwan 3 GeV  

major upgrades

2019 ESRF-II, France 6 GeV

> 2020 Spring8-II, Japan 6 GeV
APSU, US 6 GeV



Diamond aerial views

June 2003

Oct 2006



Main components of a storage ring

Dipole magnets to bend the electrons Quadrupole magnets to focus the electrons

Sextupole magnets to focus off-energy 

electrons (mainly)

RF cavities to replace energy losses due to 

the emission of  synchrotron radiation



Main components of a storage ring

Insertion devices (undulators) to 

generate high brilliance radiation
Insertion devices (wiggler) to 

reach high photon energies



Photon energy

Brilliance

Flux

Stability

Polarisation

Time structure

Ring energy

Small Emittance

Insertion Devices 

High Current; Feedbacks

Vibrations; Orbit Feedbacks; Top-Up 

Short bunches; Short pulses

Accelerator physics and technology challenges



The brilliance of the photon beam is determined (mostly) by the electron beam 

emittance that defines the source size and divergence

Brilliance and low emittance
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Brilliance with IDs

Medium energy storage rings with In-vacuum undulators operated at low gaps (e.g. 

5-7 mm) can reach 10 keV with a brilliance of 1020 ph/s/0.1%BW/mm2/mrad2

Thanks to the progress with IDs technology storage ring light sources can cover 

a photon range from few tens of eV to tens 10 keV or more with high brilliance



Many ways to use x-rays

scattering SAXS

& imaging

diffraction
crystallography

& imaging

photo-emission

(electrons)

electronic structure

& imaging

from the synchrotron

fluorescence EXAFS

XRF imaging

absorption

Spectroscopy

EXAFS

XANES 

& imaging

to the detector



Applications

X-ray fluorescence imaging revealed the hidden 
text by revealing the iron contained in the ink used 
by a 10th century scribe. This x-ray image shows 

the lower left corner of the page.

Biology

Medicine, Biology, Chemistry, Material Science, Environmental Science and more

A synchrotron X-ray beam at the SSRL facility 

illuminated an obscured work erased, written over 

and even painted over of the ancient mathematical 

genius Archimedes, born 287 B.C. in Sicily. 

Archeology

Reconstruction of the 3D structure of a nucleosome 

with a resolution of 0.2 nm

The collection of precise information on the molecular 

structure of chromosomes and their components can 

improve the knowledge of how the genetic code of 

DNA is maintained and reproduced



Life science examples: DNA and myoglobin 

Photograph 51 

Franklin-Gosling

DNA (form B)

1952

Franklin and Gosling used a X-ray tube:

Brilliance was 108 (ph/sec/mm2/mrad2/0.1BW)

Exposure times of 1 day were typical (105 sec)

e.g. Diamond provides a brilliance of 1020

100 ns exposure would be sufficient

Nowadays pump probe experiment in life science are 

performed using 100 ps pulses from storage ring light 

sources: e.g. ESRF myoglobin in action



Lienard-Wiechert potentials (I)

We want to compute the em field generated by a charged particle in 
motion on a given trajectory
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The charge density and current distribution of a single particle read
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)( trxtvqtxJ 3 

We have to solve Maxwell equations driven by such time varying charge 
density and current distribution.

The general expression for the wave equation for the em potentials (in the 
Lorentz gauge) reads
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Lienard-Wiechert potentials (II)

The general solutions for the wave equation driven by a time varying 
charge and current density read (in the Lorentz gauge) [ Jackson Chap. 6 ]
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Integrating the Dirac delta in time we are left with 



Lienard-Wiechert potentials (III)

Using again the properties of the Dirac deltas we can integrate and obtain 
the Lienard-Wiechert potentials
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These are the potentials of the em fields generated by the charged particle 
in motion. 

The trajectory itself is determined by external electric and magnetic fields

 






V

3ret
)3(

0

'xd
|'xx|

)]t(r'x[

4

q
)t,x(  








V

3retret0 'xd
|'xx|

)]t(r'x)[t(v

4

q
)t,x(A

Substituting we get



Lienard-Wiechert Potentials (IV)
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Potentials and fields at position x at time t are determined by the characteristic 
of the electron motion at a time t’

t – t’ is the time it takes for the em radiation to travel the distance R(t’)

i.e. grey is the position of the electron at time t



The Lienard-Wiechert fields

The computation has to be done carefully since the potentials depend on t via 

t’. The factor dt/dt’ represents the Doppler factor. We get

The electric and magnetic fields are computed from the potentials using

velocity field
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and the correct dependence as 1/R as for radiation field



Power radiated

Power radiated by a particle on a surface is the flux of the Poynting vector
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radiation emitted by the particle

We will analyse two cases:

acceleration orthogonal to the velocity → synchrotron radiation

acceleration parallel to the velocity → bremmstrahlung



Assuming and substituting the acceleration field0
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Synchrotron radiation: non relativistic motion (I)

The angular distribution of the power radiated is 

given by

Working out the double cross product

We have
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where  is the angle between the acceleration and the observation 

direction, we finally get

Synchrotron radiation: non relativistic motion (II)

The angular distribution of power reads

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Integrating over the angles gives the total radiated power
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Synchrotron radiation: non relativistic motion  (III)

This integral gives the total instantaneous power radiated

It shows that radiation is emitted when the particle is accelerated.

Using 
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we have (to be used later for the generalisation to the relativistic case)



In the relativistic case the total radiated power is computed in the same way. 

Using only the acceleration field (large R)
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The emission is peaked in the direction of the velocity

The pattern depends on the details of velocity and acceleration but it is 

dominated by the denominator

Synchrotron radiation: relativistic motion (I)
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velocity  acceleration: synchrotron radiation (I)

Assuming and substituting the acceleration field 
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When the electron velocity approaches the speed of light, the emission 

pattern is sharply collimated forward

cone aperture

 1/

we have the angular distribution of the radiated power



Courtesy K. Wille

velocity  acceleration: synchrotron radiation (II)



Total radiated power via synchrotron radiation
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Integrating over the whole solid angle we obtain the total instantaneous 

power radiated by one electron

• Strong dependence 1/m4 on the rest mass

• proportional to 1/2 ( is the bending radius)

• proportional to B2 (B is the magnetic field of the bending dipole)

The radiation power emitted by an electron beam in a storage ring is very high. 

The surface of the vacuum chamber hit by synchrotron radiation must be 

cooled.



Radiation from a bending magnet

Assuming that the total 

power is radiated in one turn 

(in a uniform distribution) in 

the angle 



Do not mix up  and …

The angular distribution of 

the power emitted in 
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velocity || acceleration: bremsstrahlung

Assuming  
|| and substituting the acceleration field
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Integrating over the angles as before gives the total radiated power



Back to the general expression for the acceleration field, integrating over 
the angles gives the total radiated power

The total radiated power can also be computed by relativistic transformation 
of the 4-acceleration in Larmor’s formula

Relativistic generalization of 

Larmor’s formula
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Comparison of radiation from linear and 

circular trajectories (I) 



Comparison of radiation from linear and 

circular trajectories (II)
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Comparison of radiation from linear and 

circular trajectories (III) 
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The particle energy is now constant
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Inserting in the formula we get the total radiated power in a circular 
trajectory
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This is 2 larger than 

the linear case



Comparison of radiation from linear and 

circular trajectories (IV) 
In the case of linear acceleration

P is very small!!

P(v || a)  1/2 P(v  a)
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Energy loss via synchrotron radiation emission 

in a storage ring

i.e. Energy Loss per turn (per electron)
)(

)(
46.88

3
)(

4

0

42

0
m

GeVEe
keVU












 4

0

2

0
3

2 e

c
PPTPdtU b  

Power radiated by a beam of average 

current Ib: this power loss has to be 

compensated by the RF system

Power radiated by a beam of average 

current Ib in a dipole of length L

(energy loss per second)

In the time Tb spent in the bendings 

the particle loses the energy U0

e

TI
N revb

tot




)(

)()(
46.88

3
)(

4

0

4

m

AIGeVE
I

e
kWP b






2

4

2

0

4

)(

)()()(
08.14

6
)(

m

GeVEAImL
LI

e
kWP b








Spectrum: the radiation integral (I)

Angular and frequency distribution of the energy received by an observer
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Using the Fourier Transform we move to the frequency space



The radiation integral (II)
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 determine the particle motion 

 compute the cross products and the phase factor

 integrate each component and take the vector square modulus
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The radiation integral can be simplified to [see Jackson]

How to solve it?

Calculations are generally quite lengthy: even for simple cases as for the 

radiation emitted by an electron in a bending magnet they require Airy 

integrals or the modified Bessel functions (available in MATLAB)



Radiation integral for synchrotron radiation

Trajectory of the arc of circumference [see Jackson]
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Critical frequency and critical angle

Using the properties of the modified Bessel function we observe that the 

radiation intensity is negligible for  >> 1 
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For frequencies much larger than the critical frequency and angles much 

larger than the critical angle the synchrotron radiation emission is negligible



Frequency distribution of radiated energy

Integrating on all angles we get the frequency distribution of the energy 

radiated 
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Frequency distribution of radiated energy

It is possible to verify that the integral over the frequencies agrees with 

the previous expression for the total power radiated [Hubner]
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It is also convenient to define the critical 

photon energy as



Heuristic derivation of critical frequency

Synchrotron radiation is emitted in an arc of circumference with radius , Angle of 

emission of radiation is 1/ (relativistic argument), therefore
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Polarisation of synchrotron radiation

In the orbit plane  = 0, the polarisation is purely horizontal

Polarisation in 

the orbit plane

Polarisation orthogonal 

to the orbit plane

Integrating on all the angles we get a polarization on the plan of the orbit 7 

times larger than on the plan perpendicular to the orbit
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Integrating on all frequencies we get the angular distribution of the energy 

radiated

  





















)(

1
)(1

3

2

16

2

3/122

22
2

3/2

222

2

2

0

3

23












KK

cc

e

dd

Wd



Synchrotron radiation emission as a  

function of beam the energy

Dependence of the frequency distribution of the energy radiated via synchrotron 

emission on the electron beam energy

No dependence on 

the energy at longer 

wavelengths
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Brilliance with IDs (medium energy light sources)

Medium energy storage rings with in-vacuum undulators operated at low gaps 

(e.g. 5-7 mm) can reach 10 keV with a brilliance of 1020 ph/s/0.1%BW/mm2/mrad2

Brilliance dependence 

with current

with energy

with emittance



Radiation from undulators and wigglers

Radiation emitted by undulators and wigglers

Types of undulators and wigglers

53/80R. Bartolini, JUAS, 1-5 February 2016



Undulators and wigglers

Periodic array of magnetic 

poles providing a sinusoidal 

magnetic field on axis:
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The undulator parameter K
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Emission from an undulator (I)

Case 1: K << 1

The max angular deflection is

much less than the cone opening

angle. The observes sees the

radiation form the whole

undulator length

Case 2: K ~ 1 or K >> 1

The max angular deflection is

larger than the cone opening

angle. The observer misses part

of the radiation as the radiation

fan sweeps right/left



Emission from an undulator (II)

Case 1: K << 1

The max angular deflection is

much less than the cone opening

angle. The observes sees the

radiation form the whole

undulator length

Case 2: K ~ 1 or K >> 1

The max angular deflection is

larger than the cone opening

angle. The observer misses part

of the radiation as the radiation

fan sweeps right/left



Comparison of angular distribution of 

radiated power

Continuous spectrum characterized by c

= critical energy

c(keV) = 0.665 B(T)E2(GeV)

eg: for B = 1.4T  E = 3GeV  c = 8.4 keV

(bending magnet fields are usually lower 

~ 1 – 1.5T)

Quasi-monochromatic spectrum with 

peaks at lower energy than a wiggler

undulator - coherent interference K < 1

Max. angle of trajectory < 1/

wiggler - incoherent superposition K > 1

Max. angle of trajectory > 1/

bending magnet - a “sweeping searchlight”
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Spectrum of undulator radiation

Courtesy J.M Filhol



Angular dependence of undulator radiation

Courtesy J.M Filhol



Tunability of undulator radiation

Courtesy J.M Filhol



Radiation integral for a linear undulator (I)

The angular and frequency distribution of the energy emitted by a wiggler is 

computed again with the radiation integral:
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Radiation integral for a linear undulator (II)

),,(
)(4 0

2223











KFNL

c

Ne

dd

Wd
n

res









 




2
2/

2/

)/ˆ(
0

0

)ˆ(ˆ),,( 




c

c

crnti

n dtennKF







 =  - n res()

))(/(sin

))(/(sin

)( 22

2









res

res

res N

N
NL














 

The sum on  generates a series of sharp 

peaks in the frequency spectrum harmonics 

of the fundamental wavelength

The radiation integral in an undulator or a wiggler can be written as

The integral over one undulator period generates 

a modulation term Fn which depends on the 

angles of observations and K



Radiation integral for a linear undulator (II)

e.g. on axis ( = 0,  = 0): )0,0,(
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Only odd harmonic are radiated on-axis; 

as K increases the higher harmonic becomes stronger

Off-axis radiation 

contains many 

harmonics



Angular patterns of the radiation emitted on 

harmonics
Angular spectral flux as a function of frequency for a linear undulator; linear 

polarisation solid, vertical polarisation dashed (K = 2)
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Synchrotron radiation emission from a 

bending magnet

Dependence of the frequency distribution of the energy radiated via synchrotron 

emission on the electron beam energy

No dependence on 

the energy at longer 

wavelengths
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Undulators and wigglers (large K)

For large K the wiggler spectrum 

becomes similar to the bending magnet 

spectrum, 2Nu times larger.

Fixed B0,  to reach the bending magnet 

critical wavelength we need:

Radiated intensity emitted vs K

K 1 2 10 20

n 1 5 383 3015



Undulator tuning curve (with K)

Brightness of a 5 m undulator 42 mm period with maximum K = 2.42 (ESRF) 

Varying K one varies the wavelength emitted at various harmonics (not all 

wavelengths of this graph are emitted at a single time)

high K

low K
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parameter

K decreases by 

opening the gap

of the undulator 

(reducing B)



Spectral brightness of undulators of wiggler

Comparison of undulators for a 1.5 GeV ring for three harmonics (solid dashed 
and dotted) compared with a wiggler and a bending magnet (ALS)



Diamond undulators and wiggler

Spectral brightness for undulators and wigglers in state-of-the-art 3rd

generation light sources



Summary of radiation characteristics of 

undulators or wiggler

Undulators have weaker field or shorter periods (K< 1)

Produce narrow band radiation and harmonics / ~1/nNu

Intensity is proportional to Nu
2

Wigglers have higher magnetic field (K >1)

Produce a broadband radiation

Intensity is proportional to Nu



Type of undulators and wigglers

Electromagnetic undulators: the field is generated by current carrying coils; 

they may have iron poles;

Permanent magnet undulators: the field is generated by permanent magnets 

Samarium Cobalt (SmCo; 1T) and Neodymium Iron Boron (NdFeB; 1.4T); they 

may have iron poles (hybrid undulators);

APPLE-II: permanent magnets arrays which can slide allowing the polarisation 

of the magnetic field to be changed from linear to circular

In-vacuum: permanent magnets arrays which are located in-vacuum and 

whose gap can be closed to very small values (< 5 mm gap!)

Superconducting wigglers: the field is generated by superconducting coils and 

can reach very high peak fields (several T, 3.5 T at Diamond)



Electromagnetic undulators (I)

Period 64 mm 

14 periods

Min gap 19 mm

Photon energy < 40 eV (1 keV with EM undulators)

HU64 at SOLEIL: 

variable polarisation electromagnetic 

undulator 



Electromagnetic undulators (II)

Depending on the way the coil power supplies are powered it can generate 

linear H, linear  V or circular polarisations



Permanent magnet undulators

Halback 

configuration

hybrid 

configuration with 

steel poles



In-vacuum undulators

U27 at Diamond

27 mm, 73 periods 7 mm gap, B 

= 0.79 T; K = 2



Apple-II type undulators (I)

HU64 at Diamond; 33 period of 64 mm; B = 0.96 T; 

gap 15 mm; Kmax = 5.3

Advanced Planar Polarized Light Emitter



Apple-II type undulators (II)

Four independent arrays of permanent magnets 

Diagonally opposite arrays move longitudinal, all arrays move vertically

Sliding the arrays of magnetic pole it is possible to control the polarisation of the 

radiation emitted



Superconducting Wigglers

Superconducting wigglers 

are used when a high 

magnetic field is required

3 - 10 T

They need a cryogenic 

system to keep the coil 

superconductive

Nb3Sn and NbTi wires

SCMPW60 at Diamond

3.5 T coils cooled at 4 K

24 period of 64 mm

gap 10 mm

Undulator K = 21
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