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Recommended literature
Literature
W. Buckel and R. Kleiner, « Superconductivity: 

Fundamentals and applications, Wiley VCH 2004
V. V. Schmidt «The physics of superconductors », Springer 

1997
M. Tinkham, « Introduction to superconductivity », 

McGraw-Hill 1996, and many others
Nobel lectures (http://nobelprize.org/nobel_prizes/physics/laureates/)
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Historical remarks 1/4

 1908 Liquefaction of helium (4.2 K)
 1911 Zero resistance 
 1933 Meissner effect
 1935 Phenomenological theory of H & 

F. London
 1950 Ginzburg – Landau theory
 1951 – 2 TYPE II superconductors 

(Abrikosov)
 1957 Bardeen – Cooper – Schrieffer 

theory
 1960 Magnetic flux quantisation
 1962 Josephson effect
 1986 High temperature superconductors 

(Bednorz – Müller)

Bardeen – Cooper – Schrieffer (BCS)

AbrikosovGinzburg

Bednorz Müller
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Historical remarks 2/4

Nobel prize for « his 
investigations on the properties 
of matter at low temperatures 
which led, inter alia, to the 
production of liquid helium »

6

H. Kamerling – Onnes in his 
laboratory at Leiden (NL)
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Historical remarks 3/4

 Zero resistivity
 Meissner effect
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Historical remarks 4/4

Development of the superconducting transition 
temperatures after the discovery of the
phenomenon in 1911. The materials listed are 
metals or inter-metallic compounds and reflect the
respective highest Tc’s - Adapted from G. Bednorz –
Nobel lecture

NbC

NbC
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Meissner effect 1/3
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Meissner effect 2/3
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Meissner effect 3/3
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1. Magnetic lines of force outside a 
superconductor are always 
tangential to its surface

2. A superconductor in an 
external magnetic field always 
carries an electric current near 
its surface

→→→

×=⇒ 0surf Hnj

21surf0d −
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⋅=⋅∫ ljlB µ Thus, the surface current          
is completely defined by the 
magnetic field at the surface of 
a superconductor.
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Two kinds of superconductors 1/3

 

B
→

= µ0 ⋅ H
→

0+ M
→ 

 
  

 

 
  

Magnetization curve

Hcm … critical field

Magnetic properties of a type I 
superconductor
Magnetic properties of a superconductor 
can be derived from ρ = 0 and B = 0

Type I superconductors are all elemental 
superconductors (except niobium)

→

MThe magnetization
compensates the external
field      , thus the SC bulk is
field free.

→

0H
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Two kinds of superconductors 2/3

Type II superconductor 
Magnetic properties of a type II superconductor
Above the 1st critical field Hc1 magnetic flux penetrates into the bulk
Above the 2nd critical field Hc2 the material is normal conducting 

(except for a thin surface layer that remains superconducting until 
the 3rd critical field Hc3)
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Two kinds of superconductors 3/3
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Surface tension at nc-sc interface 1/2

Fig. 1: Interface between normal
to superconducting metal for a
type II superconductor with λ > ξ.
b denotes the (microscopic)
magnetic field and ψ describes
the wave function of the
superconducting condensate.

Inspecting Fig. 1, the energy balance DE between the 
condensation energy Ec and the diamagnetic energy EB for a 
planar interface area A and an applied magnetic field B, is
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Surface tension at nc-sc interface 2/2

For a type II superconductor, as the penetration of magnetic fields starts from small filaments of 
cylindrical shape located parallel to the interface, a more realistic way to describe the energy balance 
is based on a small half-cylinder of radius r instead of a plane, which will become normal: 
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from which the threshold B*
c1 of the magnetic field for penetration is defined as 
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In a type II superconductor, the lowest value of the applied magnetic field B which induces penetration 
as filaments of magnetic field into the bulk is called the lower critical field Bc1, for which the 
microscopic theory gives as exact result: 
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very close to the previous one. In a type I superconductor, the lowest value of the applied magnetic 
field B which induces bulk penetration of magnetic field is called the thermodynamic critical field Bth 
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Materials 1/2
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Materials 2/2

Resistivity of a single-phase  

YBa2Cu307 sample as a 

function of temperature.
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Two fluid model

Basic assumptions of two fluid model
 all free electrons of the superconductor are 

divided into two groups
 superconducting electrons of density ns
 normal electrons of density nn

The total density of the free electrons is
n = ns + nn.

As the temperature increases from 0 to Tc, the 
density ns decreases from n to 0.

( )41 cs TTnn −=

Basic ingredients for RF 
superconductivity

Two fluid model (Gorter-Casimir)
Maxwell electrodynamics

el
ec

tro
n 

de
ns

ity

temperature (K)

Tc

n
ns
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RF Superconductivity

2nd London equation (Meissner effect)

1st London equation (Newton’s force law without friction)

In the stationary state djs/dt = 0 and hence E = 0 everywhere in 
the superconductor.

0=×∇⋅Λ−×∇ sjdt
dE


0=×∇⋅Λ+⇒−=×∇ sjdt
dB

dt
dB

dt
dE



sjB


×∇⋅Λ−=⇒

After integration and taking the integration constant = 0
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Penetration depth 
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On introducing the vector potential  A via
one obtains a relationship between the supercurrent and 

the vector potential, very similar to Ohm’s law 

London penetration depth: 
Starting from the 2nd London equation

( ) ( ) exp0 00 LxBBBB λµ


=⇒=∆Λ−

  

 

with the London penetration depth λL
2 = Λ µ0 = m nse2µ0( )

Element Al Nb (crystal) Nb (film) Pb Sn YBCO

λL [nm] 50 47 90 39 51 170

Compare to
NC Cu skin depth:
2 μm @ 2 GHz
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The surface resistance 1/2

The RF magnetic field penetrates this sheet to within the penetration depth λL.

According to the Maxwell equation curl E = – dB/dt, the RF magnetic field is accompanied by an electric field 

Ey = jω λLBz = jω λL µ0Hz = jω λLµ0Hz0 exp(–x/λL).

The electric field interacts with the nc electrons (still present at non-zero temperatures) and gives rise to a 

power dissipation per square meter

with σn = σ0(T/Tc)4, σ0 being the conductivity of the nc electrons just above Tc, By definition, Pc = (1/2) Rs Hz
2 , 

and we obtain for the surface resistance Rs in the two-fluid model approximation, 

which can be approximated for T<Tc/2
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An approximate expression for Niobium:
Developed by Mattis and 
Bardeen, based on the SC 
theory of Bardeen, Cooper and 
Schrieffer (BCS theory).
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The surface resistance 2/2
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Critical field (s)



Influencing 
quantity

Impact quantity Physical 
explanation

Cure

External static 
magnetic field Bext

Residual surface 
resistance

Creation of vortices Shielding of ambient 
magnetic field by Mu-
metal / Cryoperm

Residual resistivity 
ratio RRR

BCS surface resistance Mean free path 
dependence of Rres

Annealing steps during 
ingot production/after 
cavity manufacture

Ratio peak magnetic 
field to accelerating 
gradient Bp/Ea

Max. accelerating 
gradient

Critical magnetic field 
as ultimate gradient 
limitation

Optimization of cavity 
shape

Nb-H precipitate Q-value / acc. gradient 
(Q-disease)

Lowering of  Tc/Bc at 
precipitates of Nb-H

T-control during 
chemical polishing
Degassing @ 700  °C
Fast cool-down

Other deterministic parameters for cavity performance 
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Until till now we discussed the role of the RF frequency, lHe bath temperature, and sc material with 
its characteristic critical field and temperature. There are still other (less important)  parameters that 
determine the performance of the cavity as well:
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Summary

Superconducting materials:
 are characterized by zero resistivity (in DC) and the Meissner 

effect;
 Show the (thermodynamic) phase transition into the 

superconducting state below a critical temperature and below a 
critical field;

 have a non-zero surface resistance for RF which can be 
understood by the two-fluid model and the London theory

 are subdivided into type I and type II, depending on the value of 
the Ginzburg-Landau parameter κ;

 may be alloys or elements, for which they are of type I, except 
Nb, the technically most important one, which is type II and has 
the largest critical temperature and critical field;
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Basics of RF cavities

 Variety of RF cavities (examples)

 Cavity characteristics
 Cavity characteristics (peak fields, stored energy, …)

 Pillbox resonator –basics, field distribution 
 Computer codes to determine the cavity parameters
 Different mode families

 Transmission line

 Response of a sc cavity to RF (determination of Q0, Eacc, …)

 Measuring setup (Q(Eacc) curve, …)

 Pass-band modes

 Typical example of storage ring cavity (LEP)

 Summary
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Examples of RF cavities

(from H. Padamsee, CERN-2004-008)
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LHC - CERN
 fres = 400 MHz

 R/Q = 89 Ω
 Q0 = 2 x 109

 Eacc = 5.33 MV/m
 Pin = 116 kW (CW)  

 Niobium-film on Cu
 1-2 µm thickness

 4 single-cell cavities per 
cryomodule
 Each resonator delivers 

2 MV
 Blade tuner
 «Doorknob» power 

coupler, 75 Ω coaxial

 Total of 8 cavities per 
beam: 16 MV



XFEL – DESY 1/3
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 fres = 1300 MHz
 R/Q = 89 Ω
 Q0 = 2 x 109

 Eacc = 5.33 MV/m
 Pin = 116 kW (CW)  

 Niobium-film on Cu
 1-2 µm thickness

 4 single-cell cavities per 
cryomodule
 Each resonator delivers 

2 MV
 Blade tuner
 «Doorknob» power 

coupler, 75 Ω coaxial

 Total of 8 cavities per 
beam: 16 MV



XFEL - DESY 2/3
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XFEL cryomodule assembly of eight 9-cell cavities, quadrupole and BPM in a cleanroom



XFEL - DESY 3/3
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Cryomodule installation in the tunnel (the XFEL consists out of 101 cryomodules) 



CEBAF - JLAB
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SPL - CERN/ SNS - ORNL
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704 MHz SRF cavity R&D study 
to upgrade the CERN injectors 
with a high intensity 
superconducting RF proton linac
(SPL)



Heavy Ion accelerators ATLAS - ANL
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Shapes of heavy ion accelerator cavities
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Pill box resonator

E
h

r

h E

r
Source: The Feynman 
Lectures on Physics, Vol. II

B

Field distribution TM010 mode:

J0 …. First order Bessel function

405.20 =
⋅

c
Rω

Resonance-condition

J1 ... Second order Bessel function
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Pill box resonator 

Ebeam
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Cavity characteristics

The peak surface electric and magnetic fields constitute the ultimate limit for  
the accelerating gradient => minimize the ratio Ep/Ea and Bp/Ea.
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B
Bp

Ep

π
02EEa =





=
MV/m

mT07.3
a

p

E
B 57.1

2
≈=

π

a

p

E
E

P
VR a

⋅
=

2

2


η

πω
⋅⋅=

⋅
⋅

⋅
=

R
h

U
P

P
V

Q
R

QR

a
3

/1

2 410.7
2 

R/Q measures the interaction of 

the cavity with the beam:

shunt impedance R:
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Cavity characteristics - Summary
Symbol Name Definition

Pillbox cavity
[0.35 GHz, 4.2 K, Nb]

Accelerating cavity
[0.35 GHz, 4.2 K, Nb]

Ep/Ea
Peak normalized 

surface electric field
n/a 1.6 2

Bp/Ea 

[mT/(MV/m)]
Peak normalized 

surface magnetic field
n/a 3.1 4

Rs [nΩ] Surface resistance Ex/Hy 40 40

h [m] Cavity length h=λ/2 0.43 0.43

Ea [MV/m] Accelerating gradient (1/e) ·Energy gain/length 10 10

V [MV] Accelerating voltage V=Ea ·h 4.3 4.3

G [Ω] Geometry factor G=Rs·Q 260 275

Q [109] Quality factor Q=ωU/P 6.5 6.9

R/Q [Ω] (R/Q) factor (R/Q)=V2/(2ωU) 450 280

R [MΩ] Shunt impedance R=V2/(2P) 3·106 2·106

U [J] Stored energy U=V2/[2ω(R/Q)] 9 15

P [W] Dissipated power P=ωU/Q 3 5

h/R
Ratio cavity length to 

radius
n/a 1.3 0.5
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Computer codes for RF cavities
Computer codes to determine the cavity parameters



Cavity characteristics – Summary table
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From W. Weingarten, CERN-1992-03

Cavity Lumped-element circuit
Accelerating voltage V Peak voltage V
Resonant frequency ω0 ω0 = 1/√(LC)
Stored energy U U = (1/2)CV2

Dissipated power Pc Pc = (1/2) V2/R
Radiated power Prad Prad = (1/2) V2/Ri

Shunt impedance R = V2/(2·Pc) R
Unloaded Q - value Q0 = ω0·U/Pc Q0 = ω0·RC
External Q - value Qext = ω0·U/Prad Qext = ω0·RiC = Ri/(R/Q)
(R/Q) value R/Q = V2/(2 ω0·U) R/Q = √(L/C) = 1/(ω0·C)
Coupling factor β = Q0/Qext β = R/Ri

Loaded Q - value QL = Q0/(1+ β)
(because QL

-1 = Q0
-1 + Qext

-1)
QL = ω0·RC/(1+ β)

Turns ratio n = √[(R/Q) ·Qext/Z0] n = √(Ri/Z0)
Wave impedance Z0 = 50 Ω

Table: Equivalence of cavity and lumped-element circuit parameters



Measuring setup

43

 

f 

φ 

p 

vco 

i 

ant 1 ant 2 

r 

φ 

VHF/UHF 

Controls 

signals 

p: power meter 
f: frequency counter 
φ: phase shifter 
i: incident 
r: reflected 
t: transmitted 
ant1: pickup antenna no. 1 
ant2: pickup antenna no. 2 
VCO: voltage controlled oscillator 

• Q determined by measuring the decay time of the cavity response
• Measurement of Q vs Eacc
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Q(Eacc) curve
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Passband modes
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http://de.wikipedia.org/wiki/Gekoppelte_Pendel
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 http://www.youtube.com/watch?v=IAPWpViY19A

http://www.youtube.com/watch?v=IAPWpViY19A





Typical storage ring cavity (LEP)
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Summary
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 The pillbox resonator (TM010 mode) allows – as a paradigm - the analytical 

description of typical accelerator parameters, such as peak surface fields (E and H), 

power loss and Q-value, shunt impedance, geometrical shunt impedance, geometry 

factor, etc.

 « Real » accelerator cavities are designed by making use of computer codes such as 

Microwave Studio, MAFIA, SUPERFISH, etc.

 The response of a cavity to an RF pulse is well described by lumped circuit networks, 

in particular by the transmission and reflection of an electromagnetic wave at a 

discontinuity in the line.

 An algorithm is presented to determine the coupling factor β (or the reflection 

factor ρ), and finally the unloaded Q-value Q0, the accelerating voltage V 

(accelerating gradient Ea)  and the surface resistance Rs.



Interaction of cavity with beam
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 Descriptive introduction
 Analytical introduction
 Transfer of RF power from the cavity to the beam

 The fundamental mode power coupler

 Transfer of RF power from the beam to the cavity
 Higher order modes and their damping

 The frequency tuner
 Summary
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Descriptive Introduction



Particle passing through cavity
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Analytical Introduction
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Transfer of RF power from the cavity to the beam  1/3
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A circulator guarantees that under no 
circumstances there is no reflected wave 
impinging to the RF generator
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Transfer of RF power from the cavity to the beam 2/3



Transfer of RF power from the cavity to the beam 3/3
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cavities scfor 11

0 extQQ


Actions: 1) compensate « reactive beam loading » to zero by detuning ∆ω
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 Minimize reflected power



The fundamental mode power coupler
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Air cooling inlet

Displacement mechanism

RF screen

Capacitor for DC bias

RF input

Antenna (copper)

Short circuit

Bellows
Motor drive

Ceramic window

Air inlet antenna

Air pressure interlock



LHC solution of the power coupler
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Transfer of RF power from the beam to the cavity
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Imagine worst case
1. the cavity resonant frequency is « tuned » to a spectral line of the 

beam
2. Generator switched off, Ig=0.   

This means that the beam is 
decelerated.
Remedy: keep Qext as low as possible.

Output power (reflected):

1st example (LEP); RF Generator trip.
We obtain for the accelerating mode kW 33;mA 6 ;102 ; 232/ 6 ==⋅=Ω= rDCext PIQQR

2nd example; 
We obtain for the higher order mode with (R/Q) = 10 Ω, Qext = 20000

 W4.14kV 4.2 =⇒−= rPV

 Need for Higher Order Mode (HOM) coupler



Higher order modes
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A typical HOM spectrum
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How to deconfine HOMs1

Open beam tube
OK for single cell cavity, but high cryo-load by 

thermal radiation
1http://www.lns.cornell.edu/Events/HOM10/Agenda.html
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Damping HOMs 1/2: Beam tube loads
Ferrites

low power handling 
capacity  if cold
higher power handling 
capacity if warm
mechanical and 
vacuum design not 
easy
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Damping HOMs 2/2: Resonant coaxial transmission line 
dampers

 Compensate internal impedances: The HOM coupler becomes a 
resonator coupled to the cavity resonator. It may have two 
eigenfrequencies.
Obtainable Qext: 50

 Pros:
 Couplers with several resonances possible (HERA, LEP, LHC, ILC are of 

this type)
 Demountability
 Fundamental mode rejection:

 LEP: Fundamental mode E-field rejected by stop-filter in front of HOM coupler
 Fundamental mode H-field rejected by loop plane perpendicular to cavity axis
 Risk of detuning of notch filter

 BUT: High currents request for superconducting material 
prepared under ultra-clean conditions (like the cavity) and lHe 
cooling

 Prone to electron emission from inside cavity
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Resonant coaxial transmission line dampers: 
Technical solution 1/3

LHC HOM coupler
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Resonant coaxial transmission line dampers: 
Technical solution 2/3

SNS HOM coupler
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Resonant coaxial transmission line dampers : 
Technical solution 3/3

TESLA HOM coupler
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The frequency tuner
The frequency of the cavity must be tuned to the harmonic spectral line of the 

bunched beam => need to develop a frequency tuner. Slater’s theorem states 
that

 

∆f
f

=
1

4U
ε0E 2 − µ0H 2( )

∆V
∫ dV

U =
1
4

ε0E 2 + µ0H 2( )
V
∫ dV
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Mechanical oscillations

For example: at LEP, radiation pressure on the cavity walls of about 1000N in total possible  
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The LEP solution
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Integration into LEP cryostat 1/2



Integration into LEP cryostat 2/2
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Comments:

The LEP cryostat could reliably be 
operated under CW conditions 
with beam and in pulsed 
conditions without beam in the 
present LHC tunnel environment 
(1.4 % slope).

It is worth noting that the lHe tank, 
the gas openings, and gHe 
collector were relatively small.

Pulsed operation: The thermal 
diffusivity κ=λ/(c∙ρ) is such that 
it takes ~1 ms before the 
temperature pulse arrives at the 
niobium helium interface => 
advantage compared to CW 
operation.

This cryostat was tested under 
pulsed conditions with beam 
in the CERN SPS. 



Cryomodules 1/2
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Cryomodules  2/2
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 installed in LEP tunnel



Summary
 A lumped network circuit diagram allows an analytical description of 

the interaction of the RF cavity with the beam
 The cavity is designed to minimize the reflected RF power (which 

would be wasted anyhow in a load) by eliminating the « reactive beam 
loading » through tuning the frequency of the cavity and by matching 
the external Q to the nominal beam current.

 The beam consists of bunches passing the cavity in fractions of 
milliseconds1 that may excite higher order modes (HOMs) of the cavity 
to high voltages, if not sufficiently damped by HOM couplers.

 Frequency tuners are in addition needed to damp frequency shifts from 
mechanical resonances excited by external noise sources (microphonics) 
or the interaction of the electromagnetic pressure with the cavity wall 
(Lorentz force detuning). 

1 for large storage rings such as LEP
JUAS lecture 2016: SC RF cavities 
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Technological issues
 Cryogenics
 Anomalous losses:

 Residual losses\magnetic shielding
 Electron field emission
 Electro polishing
 Electron Multipacting (dust free assembly)

 Heat removal (Quench - the role of large thermal conductivity, Coating a copper cavity 
with a thin niobium film)

 Quality assurance and stochastic parameters

 Cavity production
 Improvement of cavity performance
 Summary
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Basic Cryogenics
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First law of thermodynamics: 
The energy of a closed system stays constant.

Second law of thermodynamics: 
The entropy of a closed system can not decrease.

 Heat always flows 
from a warm region 
to a less warm 
region

TdSQ =δ

0=+= WQdU δδ

 The most common 
cooling principle is 
decompression 
(throtteling) 

Schematic of cooling cycle, Kaeltetechnik A, S. Grohmann (ITTK, KIT)



Basic Cryogenics
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Carnot efficiency
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 In the ideal case the ΔT’s are 
zero. 

 With the 1st law of 
thermodynamics the work of 
the compressor is given by

)( 000 TTTLQ UtC −==µ

 The Carnot efficiency mC
for a refrigerator is defined 
as

Schematic of cooling cycle, Kaeltetechnik A, S. Grohmann (ITTK, KIT)
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Basic Cryogenics cont.

JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt79

pT-curve, Material properties

Phase diagram of helium, 
CAS 2002, G. Vandoni

Schematic of a phase diagram, 
http://moodle.zhaw.ch/mod/book/tool/print/index.php?id=63256



Basic Cryogenics cont.
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 One of the few macroscopic quantum 
phenomena

 Special effects
 Extremely low viscosity in thin channels
 Very high heat transport capability
 Can be described by two-fluid theory

He II and superfluidity

All pictures on this slide by: S.V. Van Sciver, Helium Cryogenics
Ratio of normal and superfluid densities of He IISchematic of film flow experiment

Schematic of
fountain
effect 
experiment



Basic Cryogenics cont.
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Thermal conductivity

 At low temperatures many 
material properties can 
change very rapidly with 
temperature .

 e.g. heat capacity, 
electrical conductivity, 
vapour pressure

 The change in thermal 
conductivity in helium 
increases seven orders of 
magnitude at the lambda 
point

M. Murakami, Cryogenics, Volume 52, Issue 11, November 2012



SC vs. NC

JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt82



Anomalous losses

83

So-called « anomalous losses » account for all 
contributions to the RF losses that are not 
described by the intrinsic parameters of the 
superconducting material (critical temperature, 
critical field, BCS (or two fluid ) surface 
resistance Rs, etc.).
These anomalous losses show up as heat and 
are visible in the Rs (T) and Q0(Ea) plots, as 
well as in the « temperature maps ».
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Magnetic shielding 
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 Why do we need a magnetic shielding?



Electron field emission 1/4
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Eon(2nA) =140 MV/m
β= 31, S = 6.8·10-6 µm2

Al Mg Nb

Eon(2nA) = 132 MV/m
β = 27, S = 7·10-5 µm2

Eon(2nA) > 120 MV/m
β = 46, S = 6·10-7 µm2

Al

Si Nb

500 nm2 
µm

2 
µm

Electron field emission 2/4
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 Typical particulate emitters containing impurities
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Electron field emission 3/4
 Fowler Nordheim theory
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Electron field emission 4/4

 Clean room preparation mandatory



Electropolishing: How it works
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 The metal is immersed in an electrolyte and subjected to direct current. The 
metal part to be treated is made anodic and under certain conditions, a 
controlled dissolution of the metal is achieved.

Usually highly corrosive
and toxic 

chemical solutions

DC Power 
supply

C
at

ho
de

Anode
(Part to be 

electropolished)

A
V

+
-

from: L. Ferreira, B2FiftyTwo Seminar, Jan 2014



Electropolishing vs Mechanical based polishing
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 Usually highly corrosive and/or toxic solutions
 Handling;
 Process equipment;
 Installation to process extracted fumes;
 Installation to process waste water. 

Mechanical polishing

D
isadvantages

hu
nd

re
ds

 µ
m

Electropolishing

 Final roughness is function of initial surface finishing and 
removed thickness 

from: L. Ferreira, B2FiftyTwo Seminar, Jan 2014
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Electron multipacting
Localized heating by multiple impact from electron current due to secondary 

emission in resonance with RF field.
Historically this phenomenon was a severe limitation for the performance of sc 

cavities.
The invention of the “circular” shape opened up the avenue for higher gradients. 
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Field limitations – thermal breakdown
• Occurs at sub mm size defects with high resistance
• RF currents flow through the defects
• Defects heat up due to ohmic losses
• Area surrounding the defect is heated as well
• Thermal breakdown occurs if the surrounding area is heated above Tc

From H. Padamsee: CERN -2004 - 008
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Heat removal

Cause for “quench”:

 Thermal Improvement of thermal conductivity for Niobium sheets

RRR…. residual resistance ratio



Thin film Nb coating
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 Coating a copper cavity with a thin Nb film
 Important role of high thermal conductivity substrate (Nb/Cu cavity)



Improvement of quality assurance efforts:
ORNL/JLAB results
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Source: I. E. Campisi and S.–H. Kim, SNS Superconducting Linac 
operating experience and issues,

Accelerator Physics and Technology Workshop for Project X, November 
12-13, 2007

http://projectx.fnal.gov/Workshop/Breakouts/HighEnergyLinac/agenda.
html
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Nevertheless, in spite of all technological efforts, performance of sc 
cavities is often stochastic



Stochastic parameters

JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt96

Influencing quantity Impact quantity Physical 
explanation

Cure

Field emission sites 
(foreign particles 
sticking to the surface, 
size, density)

Q – value / acc. gradient
γ radiation
HOM coupler quench 

Modified Fowler-
Nordheim-theory

Electro-polishing
Assembling in dust-free air
Rinsing with ultrapure water (control of resistivity 
and particulate content  of outlet water) and 
alcohol
High pressure ultrapure water rinsing (ditto)
“He- processing”
Heat treatment @ 800 – 1400 °C

Secondary emission 
coefficient  δ

Electron-multipacting Theory of secondary 
electron emission

Rounded shape of cavity
Rinsing with ultrapure water
Bake-out
RF - Processing

Unknown Q – slope / Q-drop
(Q – value / acc. gradient)

Unknown Annealing 150 °C
Electro-polishing

Metallic normal-
conducting inclusions in 
Nb

Acc. gradient Local heating up till 
critical temperature of 
Nb

Inspection of Nb sheets (eddy current or SQUID 
scanning)
Removal of defects ( ≈ 1 µm)
Sufficiently large thermal conductivity  (30 - 40 
[W/(mK)])

Residual surface 
resistance

Q – value / acc. gradient Unknown to large 
extent

Quality assurance control of a multitude of 
parameters



97 From: C. Antoine, (Practical) Limitations & possible solutions ,CAS 2013

JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt



JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt98

Improvement of cavity performance
Lilje & Schmueser



Summary
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 The choice of the technology (normal conducting vs. superconducting) depends on a 
variety of parameters: mass of accelerated particle, beam energy, beam current, 
mains power consumption, etc.

 If superconducting, the typical interval of RF frequencies is between 300 MHz and 3 
GHz.

 The technically most suitable superconducting material being niobium, choosing 
lower frequencies allows operation at 4.2 – 4.5 K, the boiling temperature of lHe, 
higher frequencies request operation at 1.8 – 2 K. However, the cryogenic 
installation is much more demanding.

 The production of sc cavities requests careful application of quality control measures 
during the whole cycle of assembly in order to avoid the degradation of performance 
by « anomalous losses ».

 The « anomalous losses » contribute to an extra heat load, which is expensive to 
cool and which may limit the performance.
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Diagnostics 1/8

 Many features of the cavity 
can be tested by RF-
measurements.

 But losses, which occur in 
the form of localized heat 
can only be detected by 
additional diagnostics.

 The classical approach is 
temperature mapping.



Diagnostics 2/8
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 Temperature mapping equipment (~ 1980)



Diagnostics 3/8
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From H. Padamsee: CERN -2004 - 008

 Temperature mapping results (today)
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Diagnostics 4/8

 T-mapping for the diagnosis of anomalous losses
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Diagnostics 5/8

 T-mapping for electron field emission diagnosis
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Diagnostics 6/8 an Introduction to OSTs

Mohammed Fouaidy

Hannes Vennekate

 Second sound in superfluid helium
First used by K. Shepard at Argonne NL for detecting the quench location 

in split ring resonator
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Diagnostics 7/8

 Detection and localisation of quenches on superconducting RF 
cavities by the measurement of the second sound with OSTs

 The localisation of a quench can be done with a relatively small 
number of sensors

OST 1

OST 2
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Diagnostics 8/8
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 This measurement was 
done at 1.977 K

 v2(1.977 K)=17.14 m/s

 Signal of the measurement at t=2.52 ms

 Distance to heater v2t=4.32 cm



State of the art SRF research
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 Reaching ultimate performance with bulk Nb cavities
 Maximizing the quality factor Q0

 Reaching high accelerating gradients Eacc

 Beyond Niobium: New materials
 High temperature superconductors
 Low temperature superconductors: Nb based materials



High Q versus high Eacc
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 High Q is crucial for cw applications 
(e.g. light sources)
 moderate Eacc (12 – 20 MV/m)
 Cryogenics is cost driver
 High Q reduces cryogenic load 

(Pdiss ~ �𝐸𝐸2𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄)

 High Eacc is crucial for pulsed 
applications (e.g. particle 
physics)
 Machine size is cost driver.
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Maximizing Q: Ideal and Reality
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 In the ideal case: Is Q constant up to the theoretical limit?

 Recent theoretical calculations yield increasing Q for increasing rf 
field.[See B.P. Xiao et al., Physica C 490 (2013)]



Maximizing Q: Improving treatments 
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 Baking at 800°C with injection 
of N2 degrades cavity 
performance.

 After the removal of several 
µm by EP, the performance 
increases and exceeds baseline.

 Q slope reverses to “anti Q 
slope”.

 Comparison with Argon 
suggest interstitial effect 
instead of NbN formation.

 Experimental data in good 
agreement with B.P. Xiao’s 
field dependent model.
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Maximizing Q: Improving cooling procedures
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 Cooling speed through Tc and 
spatial temperature gradients 
impact the residual resistance.

 Measurements of the ambient 
field suggest that changes in flux 
trapping and the creation of 
thermal currents cause changes 
in Rres.
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Achieving maximal gradients
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 High performing cavities are 
limited by field emission or 
quench

 Avoiding emission sites by
 Centrifugal barrel polishing: 

grinds larger defects
 Improved Electro-polishing: 

smoothens surface on sub-
µm scale

 Cleaner handling: avoid (re-) 
contamination

 World record Eacc = 59 MV/m 
(Q = 4·109)
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Surface Preparation
 Centrifugal barrel polishing:
 Mechanical removal and 

smoothening of the surface with 
abrasive “stones”. 

 Electro-Polishing:
 Best surface finish for cavities
 Final roughness depends on 

initial surface finish

 Produces a new damage layer that 
need to be etched.

 Clean handling:
 Any preparation of the surface 

and the final assembly needs to 
be done in a clean room (ISO 4).

 Re-contamination has to be 
avoided.JUAS lecture 2016: SC RF cavities 
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Materials beyond Nb: Potential Benefits
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 Higher Q due to lower BCS surface resistance:
 Reduces cryogenic dynamic losses (operation costs)
 Allows operation at higher temperature (reduces cryogenic 

static losses)
 Higher accelerating gradients:
 Reduces installation costs due to more compact accelerators

 Reduced materials costs
 Inexpensive materials, well formable, high thermal conductivity

 Simplified fabrication and assembly
 Separating cavity shape from rf surface (Coatings)
 More flexibility in design of cryomodules



Zoo of Superconductors
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Materials beyond Niobium: Requirements
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 High critical temperature Tc: 𝑅𝑅BCS ∝ 𝑒𝑒 − �∆ 𝑘𝑘𝑘𝑘 ; 𝑇𝑇c ∝ ∆
 Small penetration depth λ: 𝑅𝑅BCS ∝ 𝜆𝜆3

 High critical field Hc: Operation at high gradient

 High thermal conductivity: prevent quenches

 Compound phase should be stable over a broad composition range

 Compound phase needs to be stable from 2 – 300 K

 Material should be inert and formable



Classes of superconductors
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Nb Low  Temp. SC MgB2 YBCO

Tc [K] 9.2 10 - 20 39 > 90

λ [nm] 40 60-180 140 150-1000

Hc [mT] 200 200-600 430 1400

κ 0.8 20-130 40 100

remarks 2 sc gaps Ceramic, anisotropic

 High temperature superconductors are not suitable for srf 
applications

 Not all parameters are known for all potential candidates.



LTS: A15 & B1 compounds

A15 structure  A3B

B1 structure  AB
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 A atoms: transition elements

 B atoms: non transition or transition 
elements

 Stable and high Tc: Nb3Sn, V3Ga, V3Si, 
Mo3Re

 A15 compounds are not formable due 
to extreme brittleness

 A atoms: metallic

 B atoms: non-metallic

 Stable and high Tc: NbC, NbN

Phase diagram of the Nb-Sn system
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A15 compounds: Nb3Sn
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 Low thermal conductivity would favor coating a copper 
cavity with Nb3Sn. 

 Only successful fabrication so far: Sn vapor diffusion into Nb 
cavity, alloying Nb3Sn (Wuppertal 1985, Cornell 2013)

Both pictures from: Nb3Sn for SRF Application
M. Liepe (Cornell), WEIOA04, SRF 2013

Typical Q(E) niobium
2 K,1.3 GHz

4.2 K,1.3 GHz



Summary
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 For now, only high Q at moderate Eacc or high Eacc at 
moderate Q can be achieved.

 The high Q research tries to understand loss mechanisms and 
develops new recipes to minimize the residual resistance.

 Maximum Eacc can only be achieved by high-end surface 
preparation. Improving polishing and cleaning procedures is 
mandatory for multicell cavities and serial production.

 New materials have lower BCS surface resistance (higher Q) 
and/or higher critical field (higher Eacc).

 HTS are not suitable for rf applications.
 Nb3Sn is the most promising alternative material so far.
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Different mode families 1/2

Lilje&Schmueser
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Different mode families 2/2

Lilje&Schmueser



Transmission line 1/2

Introduction of the notion of reflection and transmission factors.
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EH E

H

γ1 Z1 γ2 Z2
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Eyi = ˆ E e−γ1xeiωt
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H zt = τ
ˆ E 
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e−γ 2xeiωt

126
JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt

y

x

z



Transmission line 2/2
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Eyi + Eyr = Eyt
H zi + H zr = H zt

 
 
 

  
x = 0

From continuity at the interface:
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Response of a cavity to RF 1/5

 Apply transmission line theory (to a one-port impedance):
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Response of a cavity to RF 2/5

 Reflexion factor Γ depends on position, the coupling factor β does not:



Response of a cavity to RF 3/5
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1 ) Remember

1)

L = nominal cavity length: only cells, cutoff excluded

 Determination of Q0 and accelerating voltage/gradient
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Response of a cavity to RF 4/5

 The response of a two port cavity is equivalent to that of a one-port cavity

Z0
in RL

C

Vt

Z0
out

1:n m:1

Vi

Z0
in R’L

C

Vt
Vi

outRRR
11

'
1

+=

Z0
in RL

C

Vt
Vi

Rout

outout ZmR 0
2=

( )
out

out
ext

Z
QQRm

0

2 / ⋅
=



JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt132

( ) ( ) ( )



iP

in
i

QQR

in
itiit Z

VZVVVVV
0

2

''
02

2
2

2

2
2

2'1
'8

'1
'4

'1
'2

0

⋅⋅
+

=
+

=⇒
+

=⋅=
⋅ β

β
β

β
β

β
βτ

( )
( ) it PQQRV ⋅⋅⋅

+
=⇒ '

'1
'8

02β
β

( )

ωτ

β LQQ ⋅+= '1'0






=
≤

Γ+
Γ−

≥
Γ−
Γ+

1',
1
1

1',
1
1'

β

β
βLVE tacc =

Z0
in R’L

C

Vt
Vi

out
extQQQ
111

'
00

−=
( ) outout

out
ext PQR

V
P

UQ
⋅⋅

==
2

2ω

Response of a cavity to RF 5/5



JUAS lecture 2016: SC RF cavities 
Caspers/Weingarten/Junginger/Aull/Peters/Bartel/Wendt133

Transient Response  1/2

1. Apply Kirchhoff’s current law at node (1)

2. Differentiate and transform lumped circuit 
elements into cavity parameters by using 
preceding “Table 7”

3. Find the general solution of the 
homogeneous differential equation

4. Find the solution of the inhomogeneous 
differential equation
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Transient response 2/2
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Remember:

12

1
2

1

1

1

1
:method2nd

−⋅
=

−⋅
=

=
−+

−−
=

+

−
=

e

iei

e

i

ei

i

ei

i

r

i

r

V
VVV

V

V
VV

V
VV

V
V
V
V

β

 Determination of Q0 and accelerating voltage/gradient (2)

 Oscilloscope signal for voltage measurement
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