

UPPSALA

UNIVERSITET

European Spallation Source (ESS)

Roger Ruber

FREIA Laboratory Dept. of Physics and Astronomy Uppsala University 1 November 2016

European Spallation Source (ESS)

2025 Construction project completed

2019

First beam on target First neutrons

Construction starts

Design update completed

2014

Decision that ESS will be build in Lund

2012

2003

First European design effort completed

2009

1993 Proposal fo

Proposal for a European spallation source

Aerial view 26 August 2016

I ATTAL MANAGERS

Why Neutron Imaging?

- charge neutral:
 - deeply penetrating except for some isotopes
- nuclear interaction:
 - cross section depending on isotope (not Z), sensitive to light elements.
- spin S = 1/2:
 - probing magnetism
 - unstable n \rightarrow p + e + <u>v</u>_e with life time t ~ 900s , I = I₀ e^{- t/t}
- thermal energies result in non-relativistic velocities
 - mass: n ~p; E = 293 K = 25 meV, v = 2196 m/s , λ = 1.8 Å

Details/Resolution

ESS Philosophy and Parameters

- · User facility to replace aging research reactors
 - Lund, Sweden, next to MAX IV
 - 2019 first neutrons
 - 2019 2025 consolidation and operation
 - 2025 2040 operation
- 5 MW pulsed cold neutron source, long pulse
 - 14 Hz rep. rate, 4% duty factor
 - high availability of <u>scheduled</u> operation time (>95%)
 - short pulse (requires ring) user demand satisfied by existing facilities (ISIS, SNS, J-PARC)
- Proton beam on tungsten target
 - 2 GeV, 2.89 ms, 62.5 mA beam pulse
 - peak power 125 MW
- · High intensity allows studies of
 - complex materials, weak signals, time dependent phenomena

Roger Ruber - The European Spallation Source (ESS)

EUROPEAN

Roger Ruber - The European Spallation Source (ESS)

What is 5 MW?

At 5 MegaWatt,

- one beam pulse has the same energy as
 - a 16 lb (7.2kg) shot traveling at 1100 km/h (Mach 0.93)
 - a 1000 kg car traveling at 96 km/hour

- with 14 beam pulses per second
 - you boil 1000 kg of ice in 83 seconds
 - A ton of tea!!!

The Organization

Host Countries of Sweden and Denmark 47,5% Construction 15% Operations In-kind Deliverables ~ 3% Cash Investment ~ 97%

Non Host Member Countries 52,5% Construction 85% Operations In-kind Deliverables ~ 70% Cash Investment ~ 30%

How it Works

The ESS Target

The ESS Accelerator

Design Drivers:

- High Average Beam Power
 5 MW
- High Peak Beam Power
 125 MW
- High Availability

Key parameters:

- 2.86 ms pulses
- 2 GeV
- 62.5 mA peak
- 14 Hz
- Protons (H+)
- Low losses
- Minimize energy use
- Flexible design for mitigation and future upgrades

The ESS Accelerator

352.21 MHz 704.42 MHz								
$ \begin{array}{c} \leftarrow 2.4 \text{ m} \rightarrow \ \leftarrow 4.6 \text{ m} \rightarrow \ \leftarrow 3.8 \text{ m} \rightarrow \ \leftarrow 39 \text{ m} \rightarrow \ \leftarrow 56 \text{ m} \rightarrow \ \leftarrow 77 \text{ m} \rightarrow \ \leftarrow 179 \text{ m} \rightarrow \ \leftarrow 241 \text{ m} \rightarrow \end{array} $								
Source 🔸 LEB	T 🔸 RFQ	MEBT +	DIL 🔶 S	pokes 🔸 Medium β 🔶	High β 🔶 F	IEBT & Contingene	y 🔶 Target	
Ŷ		Û	- C	$\hat{\mathbf{c}}$	Ŷ			
75 keV 3.6 MeV			90 MeV 216 MeV 561 MeV 2000 MeV					
	Lenath	No.	ß	No. Magnets	No.	No.	Power	
	[m]	Cavities	P	groce	Steerers	Sections	[kW]	
	• •							
LEBT	2.38			2 Solenoid	2 x 2	1		
RFQ	4.6	1				1	1600	
MEBT	3.83	3		11 Quad	10 x 2	1	15	
DTL	38.9	5		PM-Quads	15 x 2	5	2200	
LEBT + Spoke	55.9	26	0.50	26 Quad	26	13	330	
Medium Beta	76.7	36	0.67	18 Quad	18	9	870	
High Beta	178.9	84	0.86	42 Quad	42	21	1100	
HEBT	130.4		(0.86)	32 Quad	32	15		
DogLeg	66.2			12 Quad + 2D	14			
A2T	46.4			6 Quad + 8 Raster				
	604.21	155						

Ion Source

Parameters	Value		
Nominal proton peak current	74 mA		
Proton fraction	> 80 %		
Stable operation current range	60-74 mA		
Current stability(over 50us period)	±2%		
Pulse to pulse variation	± 3.5 %		
Beam Energy	75 keV (±0.01)		
Distance between pulses	1 Hz< f <14 Hz		
Restart after vacuum break Restart after cold start	<32 h <16 h		

Parameters	Value
Beam current change (2 mA step, ±1 mA res.)	2-74 mA
Nominal pulse length	2.86 ms
Pulse length range (±0.001 ms)	0.005-2.88 ms
99 % rms norm. emit. at RFQ input	< 2.25 pi.mm.mrad
Twiss parameter: α	α= 1.02 ±20%
Twiss parameter: β	β= 0.11 ±10%
Rise and fall time	<20 us
Maximum LEBT pressure	6e-5 mbar

RF Quadrupole (RFQ)

- electric quadrupole mode high field quality
- RF electric field concentrated near the vane tips, hence strong transverse focusing
- acceleration through longitudinal modulation pattern, hence effective array of accelerating cells

Drift Tube Linac (DTL)

- drift tube shields particle while field direction is reversed
- drift tube length adapted to particle velocity
- permanent magnet included for focusing

Superconducting Cavities (SRF)

Horizontal SRF Test Stand

Three main subsystems:

FREIA Laboratory: Test Facility in Uppsala

Facility for Research Instrumentation and Accelerator Development

<u>Competent and motivated staff</u> collaboration of physics (IFA) and engineering (Teknikum).

Funded by KAWS, Government, Uppsala Univ.

FREIA Laboratory Overview of Activities

ESS SRF Linac

ESS Neutrino Super-beam

THz Coherent Light Source

Cryo Distribution

Cryo Test Stands

Controls & Data Acquisition

High Power RF

CLIC / CTF3

HiLumi LHC

Roger Ruber - The Gersemi Vertical Test Stand - SCMTS Workshop, June 2016, CERN

HNOSS Horizontal Cryostat

HNOSS: Horizontal Nugget for Operation of Superconducting Systems

- Main Vacuum Vessel
 - 3240 x ø1200mm inner volume
 - "beam" axis at 1600mm
- Valve box (on top of main vessel)
 - distribute cryogens
 - 4K and 2K pots, JT-valve, heat exchanger
 - 5K supercritical helium
- LN2 and LHe transfer lines
 - interconnection box to distribute cryogens to HNOSS and CM
- Cold gas re-heater
- Control system

Roger Ruber - The Gersemi Vertical Test Stand - SCMTS Workshop, June 2016, CERN

Gersemi Vertical Cryostat

Under construction

- Operation modes
 - vacuum
 - sub-atmospheric liquid bath
 - pressurized liquid bath
- Main Vacuum Vessel
 - 4436 x ø1100mm inner volume
 - 2869 mm below lambda plate
- Valve box
 - distribute cryogens
 - 4K pot, JT-valve, heat exchanger
 - 5K supercritical helium
- LN2 and LHe transfer lines
- Cold gas re-heater
- Control system

High Power RF Amplifiers

352 MHz, 400 kW, 3.5 ms, 14-28 Hz

- Uppsala design
- tetrode tube TH595
- prototype for ESS SRF spoke linac
- industrial manufacturing
 - Itelco-Electrosys (Orvieto, IT)
 - DB Elettronica (Padua, IT)

352 & 400 MHz, 50 kW, CW

- CERN (loan since Feb.2015)
- tetrode tube TH571b

Controls

Controls and interlock systems

- EPICS interface, data archiver
- connecting different sub-systems
 - Linde, Cryo Diffusion, Leybold
- different hardware
 - Siemens PLC, Nat.Instr. cRIO

Radiation monitoring system

- Rotem MediSmart
- 2 inside, 3 outside bunker

In-house development LLRF

- Nat. Instr. PXI and LabVIEW
- self-excited loop with digital phase control
- extended RF measurements

High Power Radio Frequency Amplifiers

RF Power Profile

155 cavities, 133 MW peak power (4% duty factor), 5 MW average

Overview Power Sources

Courtesy Erk Jensen (CERN)

Grid Tube Microwave Amplifiers

- Diode
 - first vacuum tube (1904)
 - used as radio receiver detector
- Triode
 - three electrodes, "gridded" tube (1908)
- Tetrode
 - four electrodes (1920) adds the screen grid
 - shields the control grid from the anode
 - decreases signal feedback at high frequency
 - disadvantage: secondary emission
 - from cathode, absorbed by screen grid
 - decreases current, hence amplification
 - uses external resonant cavity

 $R \ge$

Grid

plate supply'

DC power solurce

Klystron Microwave Amplifier

- vacuum tube amplifier by electron density bunching
- 200 MHz 20 GHz
- <1.5 MW ave.; <150 MW peak

Main Principles of Klystron and IOT

Inductive Output Tube

- IOT is a cross over between klystron and gridded tube
 - Reduced velocity spread compared to klystrons
 - Higher efficiency
 - Lower gain
 - No pulsed high voltage (but still pulsed current)
- Typical gain factor
 - tetrode: 14 dB
 - IOT: 20 dB
 - Klystron: 50 dB

FREIA – Uppsala University

FREIA – Uppsala University

Summary and Info

Acknowledgements

With material from many colleagues

Sebastien Bousson, Erk Jensen, Mats Lindroos, Frank Peauger and Volker Ziemann

Some illustrations and photos courtesy

• CERN, ESS and KEK