

Medical applications at CERN

Alberto Degiovanni alberto.degiovanni@cern.ch from a presentation of M. Cirilli / CERN-KT

So Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

The mission of CERN

Research

Push forward the frontiers of knowledge

Innovation

Develop new technologies for accelerators, detectors, computing

Education

Train the scientists and engineers of tomorrow

Uniting people

From different countries and cultures

Technology transfer

 The case of x-rays
 8 November1895: Röntgen discovers x-rays
 22 December1895: first radiography of his wife's hand

Nobel prize in 1901

Magnetic resonance

Felix Bloch, physicist

Nobel prize in Physics, 1952

Edward M. Purcell, physicist

Nobel prize in medicine, 2003

Sir Peter Mansfield, physicist

Paul C. Lauterbur, chemist

The tools of the trade

ER

5

CERN technologies

Detect particles

Medical imaging

Large scale **Computing** (Grid)

Grid computing for medical data management and analysis

Medical Imaging

Medical imaging and particle physics: the same challenge?

Antimatter

PET: antimatter for clinical use

Not only science-fiction

Positrons are used daily in oncology
PET = Positron Emission Tomography

How does it work

- Drug is labeled with positron (e+) emitting radionuclide.
- Drug localizes in patient according to metabolic properties of that drug.
- Trace (pico-molar) quantities of drug are sufficient.
- Radiation dose fairly small (<1 rem = 0.01 Sv).

PET: detection

PET vs photon detection in HEP: same challenges

- New scintillating crystals and detection materials
- Compact photo-detectors
- Highly integrated and low noise electronics
- High level of parallelism and event filtering algorithms in DAQ
- Modern and modular simulation software using worldwide recognized standards

Crystal Clear

- New scintillating materials

 - Other crystals
- New photodetectors (Avalanche PhotoDiodes)
- New low noise electronics
- New intelligent DAQ systems with pipeline and parallel architectures
- better simulation GEANT
 4
- better reconstruction algorithms

Clear PEM

- PET detector dedicated to breast cancer screening
 - Extremely sensitive to small tumour masses
- Spatial resolution1-2 mm

High counting sensitivity

Short PET exam

Coupled to ultrasound

Scanners

Multimodal imaging

PET/CT

Towards digital imaging

CERN

♦ Today ♦ Limited contrast ♦ High dose Consequences \diamond restricted screening ♦ limited access to preventive healthcare

Digital ♦ high contrast \diamond low dose Consequences \diamond screening opportunities \diamond access to preventive healthcare

MEDIPIX

High Energy Physics original development:

♦ Particle track detectors

 Allows counting of single photons in contrast to traditional charge integrating devices like film or CCD

Main properties:

- ♦ Fully digital device
- $\diamond\,$ Very high space resolution
- \diamond Very fast photon counting
- Good conversion efficiency of low energy X-rays

What is Medipix

- an electronic chip similar to the electronic imaging chip in a digital camera
- it can create the first true colour images with x-rays.
 - it permits us to move from black and white x-ray images to full colour x-ray images.
- can be read out very rapidly.
 - allows the use of the chip for colour x-ray digital movies or for fast colour x-ray CT scans

Beautiful resolution

Accelerators for cancer treatment

Birth of medical physics

1896: discovery of natural radioactivity

- 1898: discovery of radium
- Used for "brachitherapy"

Pierre and Marie Curie

Pioneers

+ First radiobiology experiment: Pierre Curie

Today: cancer incidence

- Every year millions of new cases globally
- The number of patients needing treatment is increasing in the years to come
- The main cause of death between the ages of 45 and 65 in Europe, Canada and the US
- Second most common cause of death in Europe, Canada, US

Treatment options

The 3 Cs of radiotherapy

Cheap:

 the least expensive cancer treatment method (around 5% of total cost)

Cure:

♦ Good cure rate (30-40%)

Conservative:

 ♦ generally non-invasive, fewer side effects

The ideal treatment

eliminate all tumour cells without affecting normal cells

Physics :

- 100% of the dose on target
- 0% of the dose in surrounding healthy tissues or critical organs

Biology :

- ♦ differential effect
- \diamond kill 100% of cancer cells
- \diamond "protect" normal cells

Conventional radiotherapy: dominated by linear accelerators Courtesy of Elekta

20 000 patients per year every 10 million inhabitants

1 linac every <250,000 inhabitants

Conventional radiotherapy

- RT is the least expensive cancer treatment method
- ✦ RT is the most effective
- There is no substitute for RT in the near future
- The rate of patients treated with RT is increasing

30% of patients still fail locally after RT

Alternatives

+ 1946: article by Robert Wilson \diamond Protons can be used clinically Aaximum radiation dose can be deposited into the tumour ♦ Healthy tissues are not damaged Birth of hadron therapy + 1954: first patients treated in Berkeley

Cyclotron

✦ E. O. Lawrence, Nobel Prize in 1939

Protons vs X-rays

Image courtesy MedAustron

Alternatives: hadron therapy

Hadron therapy vs classical radiotherapy

Photons and electrons

- Physical dose high near surface
- DNA damage easily repaired
- Biological effect lower
- Need presence of oxygen
- Effect not localised

Hadrons

- Dose highest at Bragg Peak
- DNA damage not repaired
- Biological effect high
- Do not need oxygen
- Effect is localised

- ♦ Tu or
 - Tumours close to critical organs
 - ♦ Tumours in children
 - ♦ Radio-resistant tumours

Protons are qualitatively different from X-rays

Carbon ions deposit in a cell 20 times more energy than a proton

producing not reparable multiple close-by double strand breaks

Carbon ions can control radio-resistant tumours

Raster scanning

Real-time monitoring

- In-beam PET @ GSI (Germany)
- MonteCarlo simulations
- Prompt photons detection
- Time-of-flight
- Organ motion

MC simulated

Carbon ions: pilot project in Europe

◆ GSI – Darmstadt (1997 – 2008)
 ◆ G. Kraft (GSI) & J. Debus (Heidelberg)
 ◇ 450 patients treated with carbon ions

PIMMS at CERN (1996-2000)

CERN

Proton Ion Medical Machine Study

CNAO – Italia (Pavia)

E-health Computing grids

www and grid

WWW: sharing information GRID: sharing computing power

LHC: the data challenge

40 M collisions per second

After several selections, we record 100 collisions per second

~10 Petabytes/year of data
~10 000 the world books' production
~20 Km CD stack!

A grid mammography database

Health e-child

Hadrontherapy Information Sharing Platform (HISP)

+Connect: ♦Users ♦Data sources by **♦**Grid core **♦**Security ♦Integration ♦Portals ♦Interfaces

CERN

Simulation

Put everything together

ENV SION

European NoVel Imaging Systems for ION therapy

What can CERN do for medical applications

Provider of Know-how and Technologies

- ♦ Design studies for Hadron Therapy facilities
- ♦ Scintillating crystals for PET scanners
- $\diamond\,$ Fast detector readout electronics for counting mode CT
- ♦ Grid middleware for Mammogrid, Health-e-Child

Training centre

 Coordinator of large multidisciplinary EC-ITN funded programmes, e.g. Particle Training Network for European Radiotherapy (PARTNER), ENTERVISION, EndoTOFPET-US...

Driving force for collaboration

 Coordinator of the European Network for Light Ion Hadron Therapy (ENLIGHT) Platform

A biomedical facility at CERN

CERN's Accelerator Complex

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

© CERN 2013

A biomedical facility at CERN

Collisions and collaborations

References

- cern.ch/crystalclear
- cern.ch/enlight
- cern.ch/knowledgetransfer
- cern.ch/medipix
- cern.ch/twiki/bin/view/AXIALPET
- cern.ch/medaustron
- cern.ch/fluka/heart/rh.html
- www.fluka.org/fluka.php
- cern.ch/wwwasd/geant
- cern.ch/wwwasd/geant/tutorial/tutstart.html