Introduction to the Future Circular Collider Study Michael Benedikt CERN Academic Training Filtration Plant, 2 February 2016

> On behalf of the FCC Coordination Group

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

Outline

- Motivation
- FCC Study Scope
- Main Machine Parameters
- Timeline
- FCC Organisation & Collaboration Status

Future Circular Collider Study Michael Benedikt Academic Training. 2 February 2016

1983 first LHC proposal, launch of design study 1994 CERN Council: LHC approval 2010 first collisions at 3.5 TeV beam energy 2015 collisions at ~design energy

now is the time to plan for ~2040!

Future Circular Collider Study Michael Benedikt Academic Training. 2 February 2016

FCC Strategic Motivation

• European Strategy for Particle Physics 2013:

"...to propose an ambitious post-LHC accelerator project...., CERN should undertake design studies for accelerator projects in a global context,...with emphasis on proton-proton and electronpositron high-energy frontier machines....coupled to a vigorous accelerator R&D programme, including high-field magnets and highgradient accelerating structures,...."

• ICFA statement 2014:

".... ICFA supports studies of energy frontier circular colliders and encourages global coordination....."

US P5 recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."

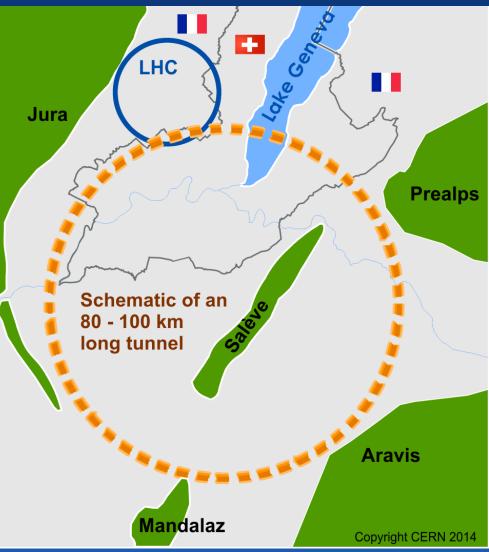
FCC motivation: pushing the energy frontier

- A very large circular hadron collider seems the only approach to reach 100 TeV c.m. collision energy in coming decades
- Access to new particles (direct production) in the few TeV to 30 TeV mass range, far beyond LHC reach.
- Much-increased rates for phenomena in the sub-TeV mass range →increased precision w.r.t. LHC and possibly ILC

The name of the game of a hadron collider is energy reach

$$E \propto B_{dipole} \times \rho_{bending}$$

Cf. LHC: factor ~4 in radius, factor ~2 in field \rightarrow O(10) in E_{cms}


Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

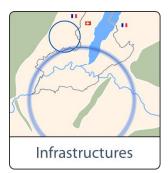
International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area
- e+e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology

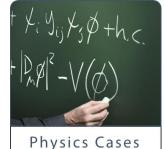
FCC Scope: Accelerator and Infrastructure


FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs
FCC-ee: e⁺e⁻ collider, potential intermediate step
FCC-he: integration aspects of pe collisions

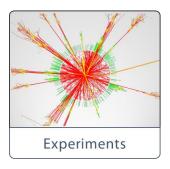
R&D Programs

key technologies

pushed in dedicated R&D programmes, e.g. 16 Tesla magnets for 100 TeV pp in 100 km SRF technologies and RF power sources



tunnel infrastructure in Geneva area, linked to CERN accelerator complex; **site-specific**, as requested by European strategy



FCC Scope: Physics & Experiments

physics opportunities discovery potentials

experiment concepts for hh, ee and he machine Detector Interface studies concepts for **worldwide data services**

overall cost model;

cost scenarios for collider options including infrastructure and injectors ; **implementation and governance** models

CepC/SppC study (CAS-IHEP) 54 km (baseline) e⁺e⁻ collisions ~2028; *pp* collisions ~2042

高能所

2102

Qinhuangdao (秦皇岛)

easy access 300 km east from Beijing 3 h by car 1 h by train

Thage 2013 DigitalGlobe Data SID, NOAA, U.S. Navy, NGA, GEBCO Constant SID, NOAA, U.S. Navy, NGA, GEBCO Stor 2013 Mapabe.com Image © 2013 TerraMetrice Chinese Toscana Yifang Wang

50 km

526

100 km

Future Circular Collider Study Michael Benedikt Academic Training 2 February 2016

\$363

抚宁县。

CepC, SppC

山海关区

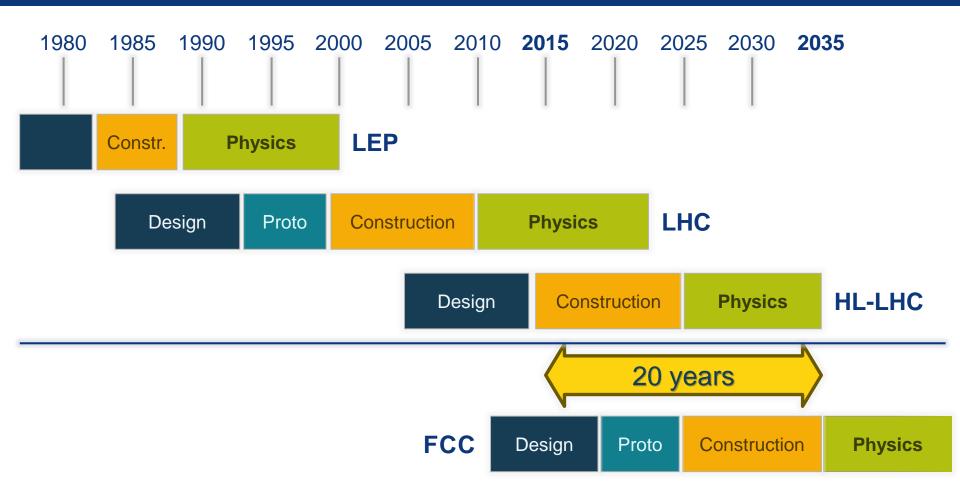
hadron collider parameters

Parameter	FCC-hh		SPPC	LHC	HL LHC
collision energy cms [TeV]	100		71.2	14	
dipole field [T]	16		20	8.3	
# IP	2 main & 2		2	2 main & 2	
bunch intensity [10 ¹¹]	1	1 (0.2)	2	1.1	2.2
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/lp [10 ³⁴ cm ⁻² s ⁻¹]	5	~25	12	1	5
events/bunch crossing	170	~850 (170)	400	27	135
stored energy/beam [GJ]	8.4		6.6	0.36	0.7
synchrotron radiation [W/m/aperture]		30	58	0.2	0.35

h ee he

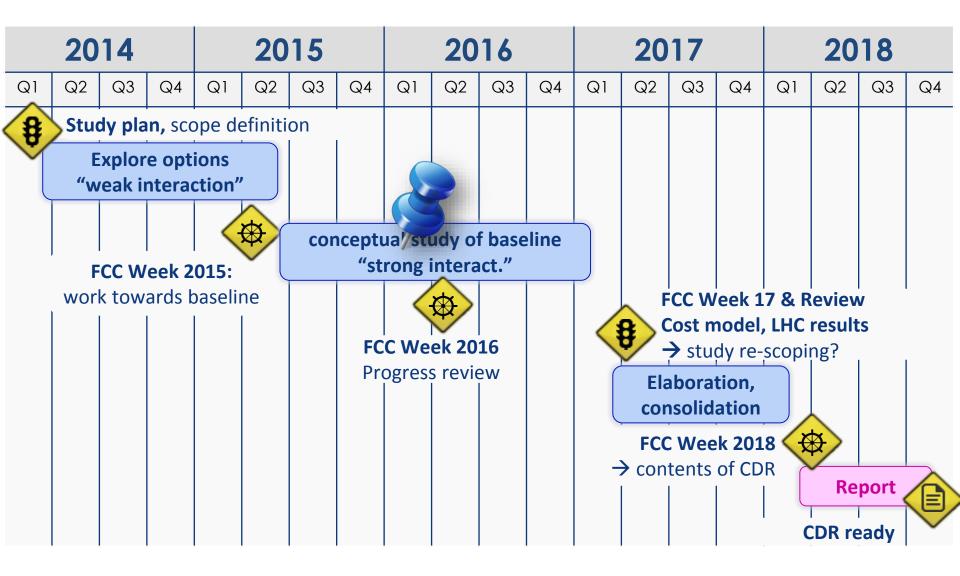
lepton collider parameters

parameter	FCC-ee			CEPC	LEP2
energy/beam [GeV]	45	120	175	120	105
bunches/beam	90000	770	78	50	4
beam current [mA]	1450	30	6.6	16.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	70	5	1.3	2.0	0.0012
energy loss/turn [GeV]	0.03	1.67	7.55	3.1	3.34
synchrotron power [MW]	100			103	22
RF voltage [GV]	0.08	3.0	10	6.9	3.5


FCC-ee: 2 separate rings

CEPC baseline: single beam pipe like LEP

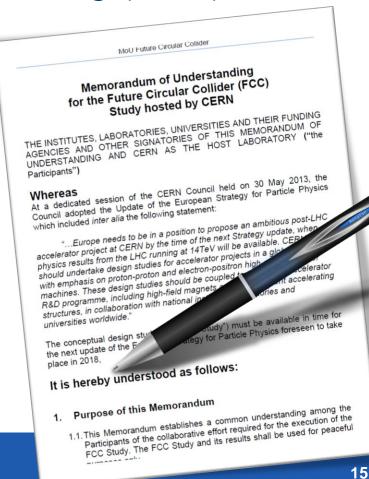
CERN Circular Colliders and FCC


CDR by end 2018 for next strategy update

Future Circular Collider Study Michael Benedikt Academic Training. 2 February 2016

CDR Study Time Line

Overall FCC Study Setup


- carried out by global collaboration
- universities, laboratories & industry worldwide
- hosted by CERN

FCC Collaboration

- A **consortium** of partners based on a Memorandum Of Understanding (MoU)
- Working together on a best effort basis
- Pursuing the same common goal
- Self governed
- Incremental & open to academia and industry

Future Circular Collider Study Michael Benedikt Academic Training 2 February 2016

•

FCC International Collaboration

72 institutes26 countries + EC

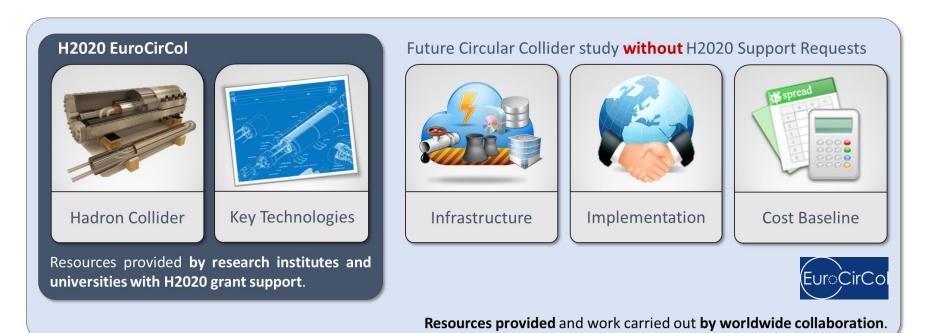
Status: 1 February 2016

Future Circular Collider Study Michael Benedikt Academic Training 2 February 2016

FCC Collaboration Status

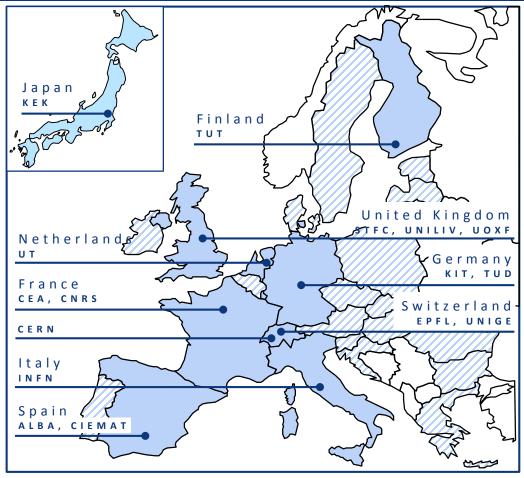
72 collaboration members & CERN as host institute, 1 Feb. 2016

ALBA/CELLS, Spain Ankara U., Turkey U Belgrade, Serbia **U** Bern, Switzerland **BINP, Russia** CASE (SUNY/BNL), USA **CBPF, Brazil CEA Grenoble, France CEA Saclay, France CIEMAT, Spain Cinvestav, Mexico CNRS**, France **CNR-SPIN**, Italy **Cockcroft Institute, UK** U Colima, Mexico **UCPH Copenhagen, Denmark** CSIC/IFIC, Spain **TU Darmstadt, Germany TU Delft, Netherlands DESY, Germany** DOE, Washington, USA **TU Dresden, Germany** Duke U, USA **EPFL**, Switzerland

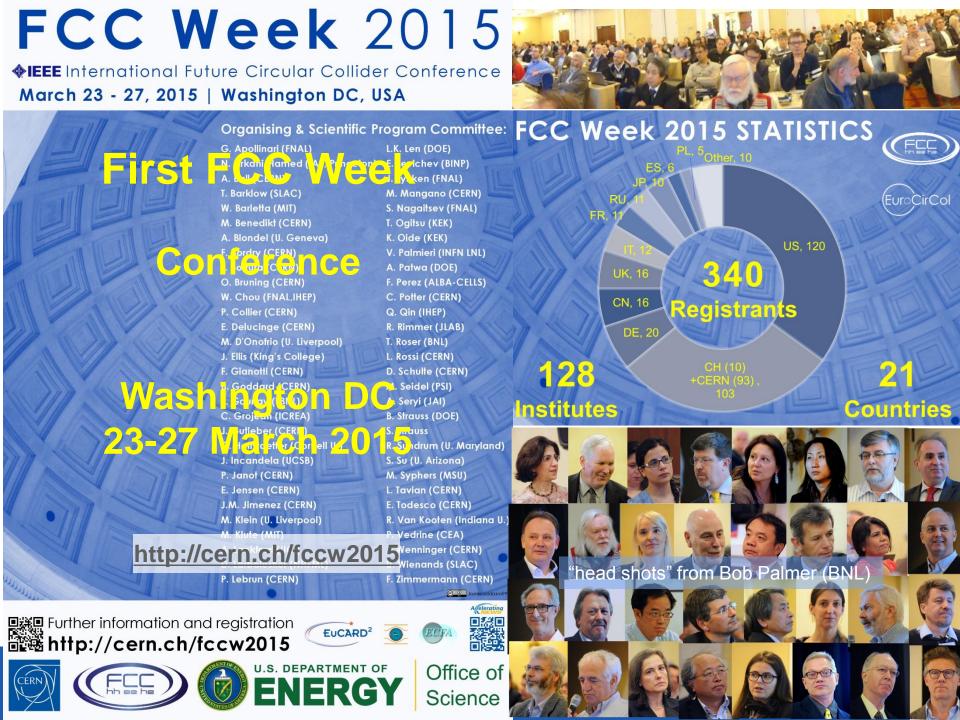

UT Enschede, Netherlands U Geneva, Switzerland **Goethe U Frankfurt, Germany GSI, Germany GWNU**, Korea U. Guanajuato, Mexico Hellenic Open U, Greece **HEPHY, Austria U** Houston, USA IIT Kanpur, India **IFJ PAN Krakow, Poland INFN**, Italy **INP Minsk, Belarus** U Iowa, USA IPM, Iran UC Irvine, USA Istanbul Aydin U., Turkey JAI, UK JINR Dubna, Russia FZ Jülich, Germany KAIST, Korea **KEK**, Japan **KIAS, Korea King's College London, UK**

KIT Karlsruhe, Germany KU, Seoul, Korea Korea U Sejong, Korea **U. Liverpool**, UK MAX IV, Lund, Sweden MEPhl, Russia **UNIMI, Milan, Italy** MIT, USA Northern Illinois U, USA **NC PHEP Minsk. Belarus** U Oxford, UK **PSI, Switzerland U. Rostock, Germany RTU**, Riga, Latvia UC Santa Barbara, USA Sapienza/Roma, Italy U Siegen, Germany **U** Silesia, Poland **TU Tampere, Finland TOBB**, **Turkey U** Twente, Netherlands **TU Vienna. Austria** Wigner RCP, Budapest, Hungary Wroclaw UT, Poland

EC contributes with funding to FCC-hh study


Main aspects of hadron collider design: arc & IR optics design, 16 T magnet program, cryogenic beam vacuum system Recognition of FCC Study by European Commission.

CERN


EuroCirCol Consortium + Associates

CERN	IEIO
TUT	Finland
CEA	France
CNRS	France
KIT	Germany
TUD	Germany
INFN	Italy
UT	Netherlands
ALBA	Spain
CIEMAT	Spain
STFC	United Kingdom
UNILIV	United Kingdom
UOXF	United Kingdom
KEK	Japan
EPFL	Switzerland
UNIGE	Switzerland
NHFML-FSU	USA
BNL	USA
FNAL	USA
LBNL	USA

Consortium Beneficiaries, signing the Grant Agreement

FCC Week 2016

Rome, 11-15 April 2016

http://cern.ch/fccw2016

Council on Superconductivity

INF

Istituto Nazionale di Fisica Nucleare Sezione di Roma INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

