Multivariate analysis

Yann Coadou

CPPM Marseille

Archamps, 8 February 2016

Thanks to Harrison Prosper, Balàzs Kégl, Jérôme Schwindling, Jan Therhaag

Outline

- Introduction
- Optimal discrimination
 - Bayes limit
 - Multivariate discriminant
- 3 Machine learning
- Supervised and unsupervised learning
- Multivariate discriminants
 - Random grid search
 - Genetic algorithms
 - Quadratic and linear discriminants
 - Support vector machines
 - Kernel density estimation
 - Neural networks
 - Bayesian neural networks
 - Deep networks
 - Decision trees
 - Summary

Introduction

Typical problems in HEP

- Classification of objects
 - separate real and fake leptons/jets/etc.
- Signal enhancement relative to background
- Regression: best estimation of a parameter
 - lepton energy, ∉_T value, invariant mass, etc.

Discrimination of signal from background in HEP

- Event level (Higgs searches, ...)
- Cone level (tau-vs-jet reconstruction, ...)
- Lifetime and flavour tagging (b-tagging, ...)
- Track level (particle identification, ...)
- Cell level (energy deposit from hard scatter/pileup/noise, ...)

Introduction

Input information from various sources

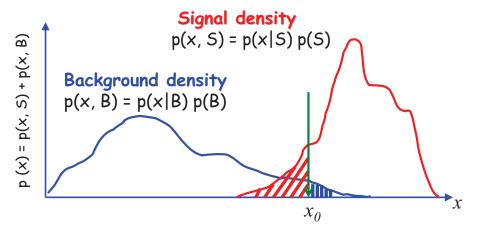
- Kinematic variables (masses, momenta, decay angles, . . .)
- Event properties (jet multiplicity, sum of charges, brightness . . .)
- Event shape (sphericity, aplanarity, . . .)
- Detector response (silicon hits, dE/dx, Cherenkov angle, shower profiles, muon hits, ...)

Most data are (highly) multidimensional

- Use dependencies between $x = \{x_1, \dots, x_n\}$ discriminating variables
- Approximate this *n*-dimensional space with a function f(x) capturing the essential features
- f is a multivariate discriminant
- For most of these lectures, use binary classification:
 - an object belongs to one class (e.g. signal) if f(x) > q, where q is some threshold.
 - and to another class (e.g. background) if $f(x) \leq q$

Optimal discrimination: 1-dimension case

• Where to place a cut x_0 on variable x?



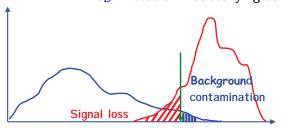
• Optimal choice: minimum misclassification cost at decision boundary $x = x_0$

Optimal discrimination: cost of misclassification

$$C(x_0) = C_S \int H(x_0 - x)p(x, S)dx + C_B \int H(x - x_0)p(x, B)dx$$

signal loss background contamination

 C_S = cost of misclassifying signal as background C_B = cost of misclassifying background as signal



- H(x): Heaviside step function
- H(x) = 1 if x > 0, 0 otherwise

Optimal choice: when cost function C is minimum

Optimal discrimination: Bayes discriminant

7/92

Minimising the cost

Minimise

$$C(x_0) = C_S \int H(x_0 - x)p(x, S)dx + C_B \int H(x - x_0)p(x, B)dx$$
 with respect to the boundary x_0 :

$$0 = C_S \int \delta(x_0 - x) p(x, S) dx - C_B \int \delta(x - x_0) p(x, B) dx$$

= $C_S p(x_0, S) - C_B p(x_0, B)$

This gives the Bayes discriminant:

$$BD = \frac{C_B}{C_S} = \frac{p(x_0, S)}{p(x_0, B)} = \frac{p(x_0|S)p(S)}{p(x_0|B)p(B)}$$

Probability relationships

- p(A, B) = p(A|B)p(B) = p(B|A)p(A)
- Bayes theorem: p(A|B)p(B) = p(B|A)p(A)
- p(S|x) + p(B|x) = 1

Optimal discrimination: Bayes limit

Generalising to multidimensional problem

• The same holds when x is an *n*-dimensional variable:

$$BD = B \frac{p(S)}{p(B)}$$
 where $B = \frac{p(x|S)}{p(x|B)}$

• B is the Bayes factor, identical to the likelihood ratio when class densities p(x|S) and p(x|B) are independent of unknown parameters

Bayes limit

- p(S|x) = BD/(1+BD) is what should be achieved to minimise cost, achieving classification with the fewest mistakes
- Fixing relative cost of background contamination and signal loss $q = C_B/(C_S + C_B)$, q = p(S|x) defines decision boundary:
 - signal-rich if $p(S|x) \ge q$
 - background-rich if p(S|x) < q
- Any function that approximates conditional class probability p(S|x) with negligible error reaches the Bayes limit

Optimal discrimination: using a discriminant

How to construct p(S|x)?

- k = p(S)/p(B) typically unknown
- Problem: p(S|x) depends on k!
- Solution: it's not a problem...
- Define a multivariate discriminant:

$$D(x) = \frac{s(x)}{s(x) + b(x)} = \frac{p(x|S)}{p(x|S) + p(x|B)}$$

Now:

$$p(S|x) = \frac{D(x)}{D(x) + (1 - D(x))/k}$$

• Cutting on D(x) is equivalent to cutting on p(S|x), implying a corresponding (unknown) cut on p(S|x)

Machine learning: learning from examples

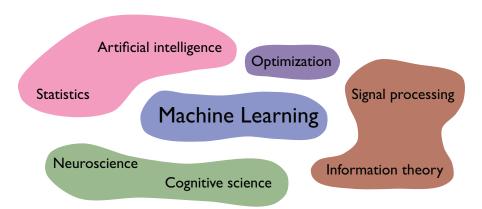
Several types of problems

- Classification/decision:
 - signal or background
 - type la supernova or not
 - will pay his/her credit back on time or not
- Regression (mostly ignored in these lectures)
- Clustering (cluster analysis):
 - in exploratory data mining, finding features

Our goal

- ullet Teach a machine to learn the discriminant f(x) using examples from a training dataset
- Be careful to not learn too much the properties of the training sample
 - no need to memorise the training sample
 - instead, interested in getting the right answer for new events
 ⇒ generalisation ability

Machine learning and connected fields



©Balàzs Kégl

Machine learning and HEP



HiggsML challenge

- Put ATLAS Monte Carlo samples on the web $(H \to \tau \tau \text{ analysis})$
- Compete for best signal-bkg separation
- 1785 teams (most popular challenge ever)
- 35772 uploaded solutions

	Δrank	Team Name #model	sploaded * in the money	Score 🗑	Entries	Last Submission UTC (Best - Last Submission)
1	†1	Gábor Melis ‡ *	7000\$	3.80581	110	Sun, 14 Sep 2014 09:10:04 (-0h)
2	†1	Tim Salimans ‡	* 4000\$	3.78913	57	Mon, 15 Sep 2014 23:49:02 (-40.6d)
3	11	nhlx5haze ‡ *	2000\$	3.78682	254	Mon, 15 Sep 2014 16:50:01 (-76.3d)
4	†38	ChoKo Team #		3.77526	216	Mon, 15 Sep 2014 15:21:36 (-42.1h)
5	†35	cheng chen		3.77384	21	Mon, 15 Sep 2014 23:29:29 (-0h)
6	†16	quantify		3.77086	8	Mon, 15 Sep 2014 16:12:48 (-7.3h)
7	†1	Stanislav Seme	3.76211	68	Mon, 15 Sep 2014 20:19:03	
8	17	Luboš Motl's te	3.76050	589	Mon, 15 Sep 2014 08:38:49 (-1.6h)	
9	†8	Roberto-UCIIIM	3.75864	292	Mon, 15 Sep 2014 23:44:42 (-44d)	
10	†2	Davut & Josef #		3.75838	161	Mon, 15 Sep 2014 23:24:32 (-4.5d)
45	†5	crowwork #‡	HEP meets ML award Free trip to CERN	3.71885	94	Mon, 15 Sep 2014 23:45:00 (-5.1d)
782	Į149	Eckhard	TMVA expert, with TMV	'A 3.4994!	5 29	Mon, 15 Sep 2014 07:26:13 (-46.1h)
991	†4	Rem.	improvements	3.20423	2	Mon, 16 Jun 2014 21:53:43 (-30.4h)

Machine learning: (un)supervised learning

Supervised learning

- Training events are labelled: N examples $(x, y)_1, (x, y)_2, \dots, (x, y)_N$ of (discriminating) feature variables x and class labels y
- The learner uses example classes to know how good it is doing

Reinforcement learning

- Instead of labels, some sort of reward system (e.g. game score)
- Goal: maximise future payoff
- May not even "learn" anything from data, but remembers what triggers reward or punishment

Unsupervised learning

- e.g. clustering: find similarities in training sample, without having predefined categories (how Amazon is recommending you books...)
- Discover good internal representation of the input
- Not biased by pre-determined classes ⇒ may discover unexpected features!

An example from Google research team

▶ 2011 paper

A "giant" neural network

- At Google they trained a 9-layered NN with 1 billion connections
 - trained on 10 million 200×200 pixel images from YouTube videos
 - on 1000 machines (16000 cores) for 3 days, unsupervised learning
- Sounds big? The human brain has 100 billion (10^{11}) neurons and 100 trillion (10^{14}) connections...

What it did

- It learned to recognise faces, one of the original goals
- ... but also cat faces (among the most popular things in YouTube videos) and body shapes

Google's research on building high-level features

- Features extracted from such images
- Results shown to be robust to
 - colour
 - translation
 - scaling
 - out-of-plane rotation

Google's research on building high-level features

- Features extracted from such images
- Results shown to be robust to
 - colour
 - translation
 - scaling
 - out-of-plane rotation

Deep networks

More details towards the → end of the lecture

Machine learning

Finding the multivariate discriminant y = f(x)

- Given our N examples $(x, y)_1, \dots, (x, y)_N$ we need
 - a function class $\mathbb{F} = \{f(x, w)\}$ (w: parameters to be found)
 - ullet a constraint Q(w) on ${\mathbb F}$
 - a loss or error function L(y, f), encoding what is lost if f is poorly chosen in \mathbb{F} (i.e., f(x, w) far from the desired y = f(x))
- Cannot minimise *L* directly (would depend on the dataset used), but rather its average over a training sample, the empirical risk:

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i, w))$$

subject to constraint Q(w), so we minimise the cost function:

$$C(w) = R(w) + \lambda Q(w)$$

• At the minimum of C(w) we select $f(x, w_*)$, our estimate of y = f(x)

Machine learning: choice of loss function

Loss function in regression

- Goal: set f(x, w) as close as possible to y
- Therefore, loss increases with difference between f(x, w) and y
- Most widely used loss function is quadratic loss:

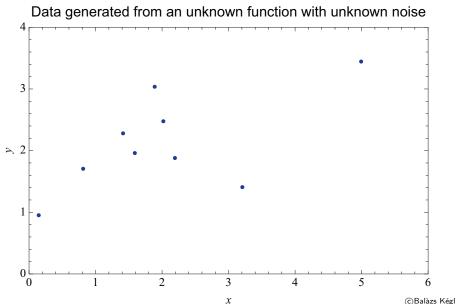
$$L(y, f) = (f(x, w) - y)^{2}$$

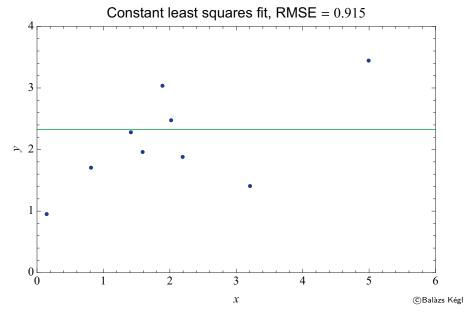
Loss function in classification

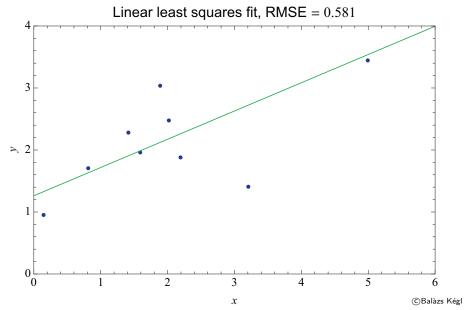
- There is no "distance" between classes
- Goal: f(x, w) predicts properly class y
- Usual loss function is one-loss or zero-one loss:

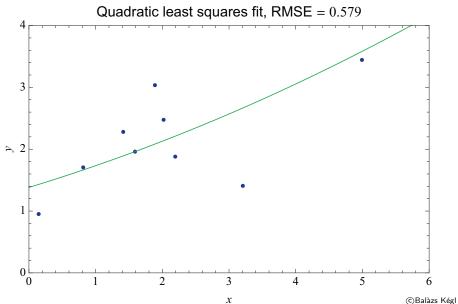
$$L(y, f) = \mathbb{I}(f(x, w) \neq y)$$

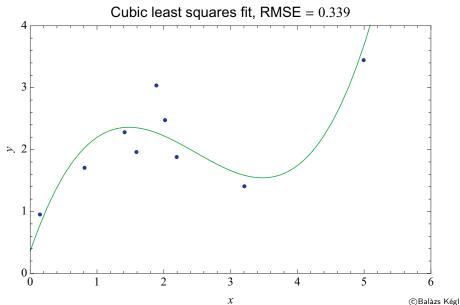
where indicator function $\mathbb{I}(X) = 1$ if X is true, 0 otherwise

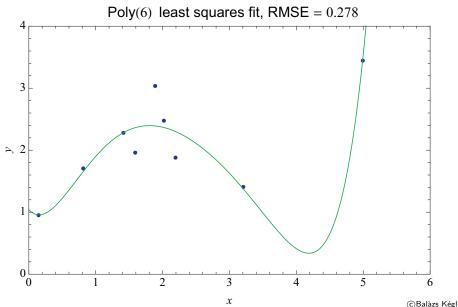


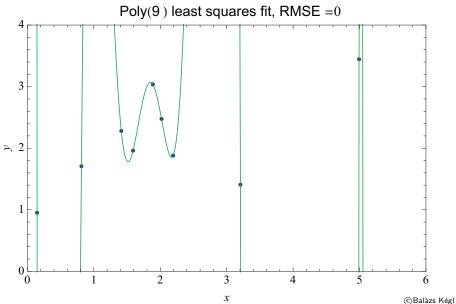












Quality of fit

- Increasing degree of polynomial increases flexibility of function
- Higher degree ⇒ can match to more features
- If degree = # points, polynomial passes through each point: perfect match!

Quality of fit

- Increasing degree of polynomial increases flexibility of function
- ullet Higher degree \Rightarrow can match to more features
- If degree = # points, polynomial passes through each point: perfect match!

Is it meaningful?

- It could be:
 - if there is no noise or uncertainty in the measurement
 - if the true distribution is indeed perfectly described by such a polynomial
- ... not impossible, but not very common...

Quality of fit

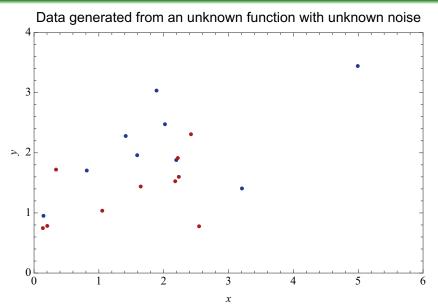
- Increasing degree of polynomial increases flexibility of function
- Higher degree ⇒ can match to more features
- If degree = # points, polynomial passes through each point: perfect match!

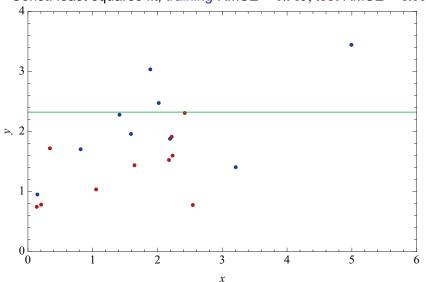
Is it meaningful?

- It could be:
 - if there is no noise or uncertainty in the measurement
 - if the true distribution is indeed perfectly described by such a polynomial
- ... not impossible, but not very common...

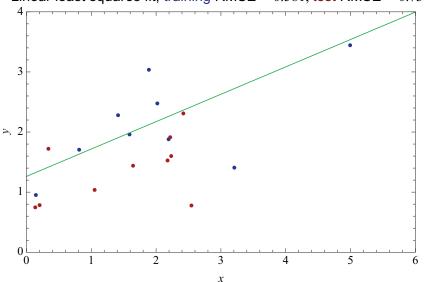
Solution: testing sample

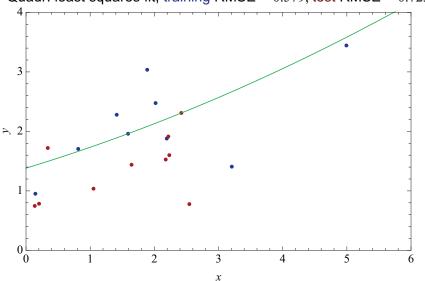
- Use independent sample to validate the result
- Expected: performance will also increase, go through a maximum and decrease again, while it keeps increasing on the training sample



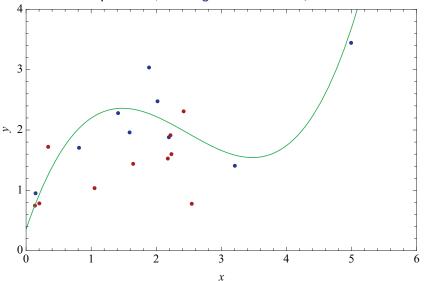


©Balàzs Kégl

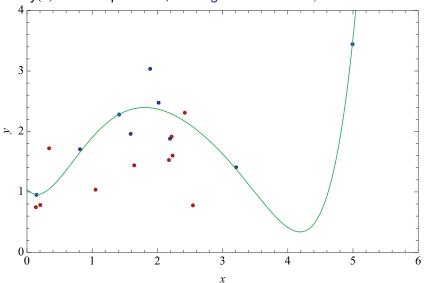


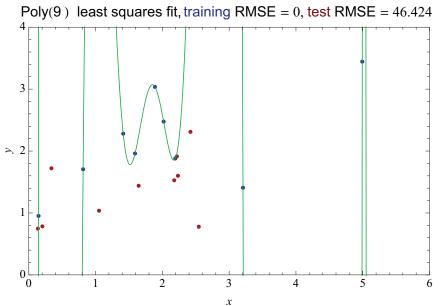


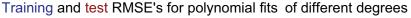
©Balàzs Kégl

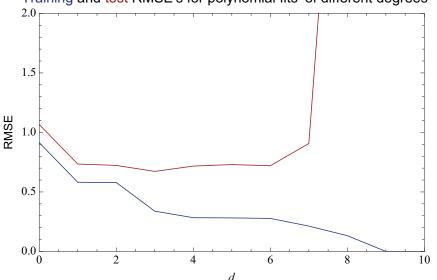


©Balàzs Kégl









Choice of function class

Non-parametric fit

- Minimising the training cost (here, RMSE) does not work if the function class is not fixed in advance (e.g. fix the polynomial degree): complete loss of generalisation capability!
- But if you do not know the correct function class, you should not fix it! Dilemma...

Capacity control and regularisation

- Trade-off between approximation error and estimation error
- Take into account sample size
- Measure (and penalise) complexity
- Use independent test sample
- In practice, no need to correctly guess the function class, but need enough flexibility in your model, balanced with complexity cost

Multivariate discriminants

- - Bayes limit
 - Multivariate discriminant
- - Supervised and unsupervised learning
- Multivariate discriminants
 - Random grid search
 - Genetic algorithms
 - Quadratic and linear discriminants
 - Support vector machines
 - Kernel density estimation
 - Neural networks
 - Bayesian neural networks
 - Deep networks
 - Decision trees

Multivariate discriminants

Reminder

 To solve binary classification problem with the fewest number of mistakes, sufficient to compute the multivariate discriminant:

$$D(x) = \frac{s(x)}{s(x) + b(x)}$$

where:

- s(x) = p(x|S) signal density
- b(x) = p(x|B) background density
- Cutting on D(x) is equivalent to cutting on probability p(S|x) that event with x values is of class S

Which approximation to choose?

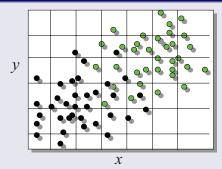
- Best possible choice: cannot beat Bayes limit (but usually impossible to define)
- No single method can be proven to surpass all others in particular case
- Advisable to try several and use the best one

Cut-based analysis and grid search

Cut-based analysis

- Simple approach: cut on each discriminating variable
- Difficulty: how to optimise the cuts?

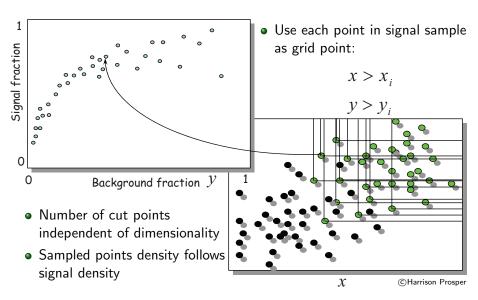
Grid search



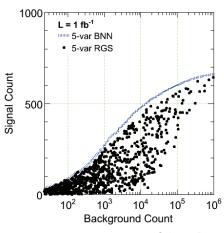
© Harrison Prosper

- Split each variable in K values
- Apply cuts at each grid point: $x > x_i, y > y_i$
- Number of points scales with K^n : curse of dimensionality

Random grid search



Random grid search example



©Harrison Prosper

Comparison to BNN

- Blue: 5-dim Bayesian neural network discriminant (see later)
- Points: each cut point from a 5-dim RGS calculation
- Conclusions:
 - RGS can find very good criteria with high discrimination
 - but it usually cannot compete with a full-blown multivariate discriminant
 - and never outsmarts it

Genetic algorithms: survival of the fittest

- Inspired by biological evolution
- Model: group (population) of abstract representations (genome/discriminating variables) of possible solutions (individuals/list of cuts)
- Typical processes at work in evolutionary processes:
 - inheritance
 - mutation
 - sexual recombination (a.k.a. crossover)
- Fitness function: value representing the individual's goodness, or comparison of two individuals
- For cut optimisation:
 - good background rejection and high signal efficiency
 - compare individuals in each signal efficiency bin and keep those with higher background rejection

Genetic algorithms

- Better solutions more likely to be selected for mating and mutations, carrying their genetic code (cuts) from generation to generation
- Algorithm:
 - Create initial random population (cut ensemble)
 - Select fittest individuals
 - Oreate offsprings through crossover (mix best cuts)
 - Mutate randomly (change some cuts of some individuals)
 - 3 Repeat from 2 until convergence (or fixed number of generations)
- ullet Good fitness at one generation \Rightarrow average fitness in the next
- Algorithm focuses on region with higher potential improvement

Quadratic discriminants: Gaussian problem

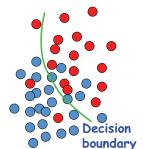
• Suppose densities s(x) and b(x) are multivariate Gaussians:

$$\mathsf{Gaussian}(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp^{\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)}$$

with vector of means μ and covariance matrix Σ

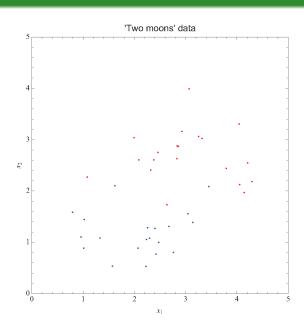
• Then Bayes factor B(x) = s(x)/b(x) (or its logarithm) can be expressed explicitly:

$$\ln B(x) = \lambda(x) \equiv \chi^2(\mu_B, \Sigma_B) - \chi^2(\mu_S, \Sigma_S)$$

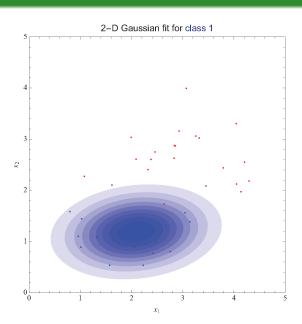


with
$$\chi^2(\mu, \Sigma) = (x - \mu)^T \Sigma^{-1}(x - \mu)$$

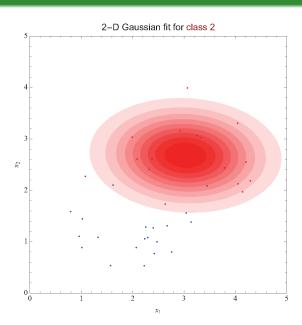
- Fixed value of $\lambda(x)$ defines a quadratic hypersurface partitioning the n-dimensional space into signal-rich and background-rich regions
- Optimal separation if s(x) and b(x) are indeed multivariate Gaussians

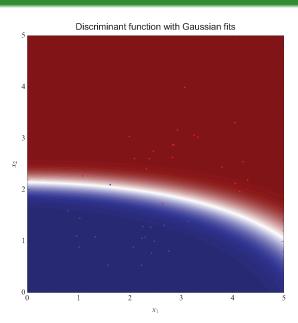


©Balàzs Kégl



©Balàzs Kégl

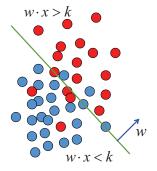




Linear discriminant: Fisher's discriminant

• If in $\lambda(x)$ the same covariance matrix is used for each class (e.g. $\Sigma = \Sigma_S + \Sigma_B$) one gets Fisher's discriminant:

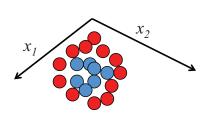
$$\lambda(x) = w \cdot x$$
 with $w \propto \Sigma^{-1}(\mu_S - \mu_B)$

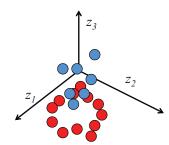


- Optimal linear separation
- Works only if signal and background have different means!
- Optimal classifier (reaches the Bayes limit) for linearly correlated Gaussian-distributed variables

Support vector machines

- Fisher discriminant: may fail completely for highly non-Gaussian densities
- But linearity is good feature ⇒ try to keep it
- Generalising Fisher discriminant: data non-separable in *n*-dim space \mathbb{R}^n , but better separated if mapped to higher dimension space \mathbb{R}^H : $h: x \in \mathbb{R}^n \to z \in \mathbb{R}^H$
- Use hyper-planes to partition higher dim space: $f(x) = w \cdot h(x) + b$
- Example: $h:(x_1,y_2) \to (z_1,z_2,z_3) = (x_1^2,\sqrt{2}x_1x_2,x_2^2)$

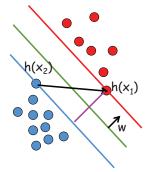




Support vector machines: separable data

• Consider separable data in \mathbb{R}^H , and three parallel hyper-planes:

$$w \cdot h(x) + b = 0$$
 (separating hyper-plane between red and blue)
 $w \cdot h(x_1) + b = +1$ (contains $h(x_1)$)
 $w \cdot h(x_2) + b = -1$ (contains $h(x_2)$)



- Subtract blue from red: $w \cdot (h(x_1) - h(x_2)) = 2$
- With unit vector $\hat{w} = w/||w||$: $\hat{w} \cdot (h(x_1) - h(x_2)) = 2/||w|| = m$
- Margin m is distance between red and blue planes
- Best separation: maximise margin
- \Rightarrow empirical risk margin to minimise: $R(w) \propto ||w||^2$

Support vector machines: constraints

- When minimising R(w), need to keep signal and background separated
- Label red dots y=+1 ("above" red plane) and blue dots y=-1 ("below" blue plane)
- Since: $w \cdot h(x) + b > 1$ for red dots $w \cdot h(x) + b < -1$ for blue dots

all correctly classified points will satisfy constraints:

$$y_i(w \cdot h(x_i) + b) \ge 1, \ \forall i = 1, \dots, N$$

• Using Lagrange multipliers $\alpha_i > 0$, cost function can be written:

$$C(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{N} \alpha_i [y_i (w \cdot h(x_i) + b) - 1]$$

Support vector machines

Minimisation

• Minimise cost function $C(w, b, \alpha)$ with respect to w and b:

$$C(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (h(x_i) \cdot h(x_j))$$

• At minimum of $C(\alpha)$, only non-zero α_i correspond to points on red and blue planes: support vectors

Kernel functions

- Issues:
 - need to find h mappings (potentially of infinite dimension)
 - need to compute scalar products $h(x_i) \cdot h(x_j)$
- Fortunately $h(x_i) \cdot h(x_j)$ are equivalent to some kernel function $K(x_i, x_j)$ that does the mapping and the scalar product:

$$C(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

Support vector machines: example

•
$$h: (x_1, x_2) \to (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

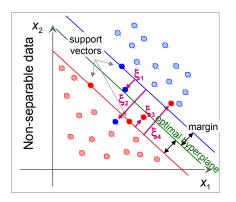
• $h(x) \cdot h(y) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1y_2, y_2^2)$
• $(x \cdot y)^2$
• $K(x, y)$
 x_2

- In reality: do not know a priori the right kernel
- \Rightarrow have to test different standard kernels and use the best one

Support vector machines: non-separable data

- Even in infinite dimension space, data are often non-separable
- Need to relax constraints:

$$y_i(w \cdot h(x_i) + b) \geq 1 - \xi_i$$

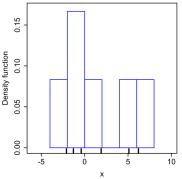


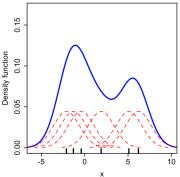
with slack variables $\xi_i > 0$

- $C(w, b, \alpha, \xi)$ depends on ξ , modified $C(\alpha, \xi)$ as well
- Values determined during minimisation

- Introduced by E. Parzen in the 1960s
- Place a kernel $K(x, \mu)$ at each training point μ
- Density p(x) at point x approximated by:

$$p(x) \approx \hat{p}(x) = \frac{1}{N} \sum_{j=1}^{N} K(x, \mu_j)$$





Choice of kernel

- Any kernel can be used
- In practice, often product of Gaussians:

$$K(x,\mu) = \prod_{i=1}^{n} Gaussian(x_i|\mu,h_i)$$

each with bandwidth (width) hi

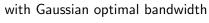
Optimal bandwidth

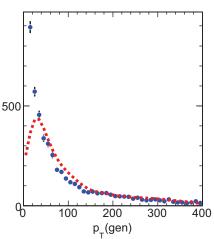
- Too narrow: noisy approximation
- Too wide: loose fine structure
- In principle found by minimising risk function $R(\hat{p}, p) = \int (\hat{p}(x) - p(x))^2 dx$
- For Gaussian densities:

$$h = \sigma \left(\frac{4}{(n+2)N}\right)^{1/(n+4)}$$

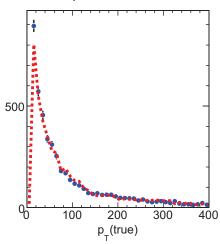
Far from optimal for non-Gaussian densities

Kernel density estimation (KDE): example





with optimised bandwidth



Why does it work?

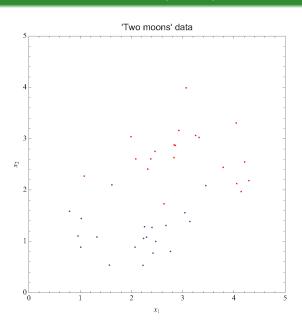
• When $N \to \infty$:

$$\hat{p}(x) = \int K(x,\mu)p(\mu)d\mu$$

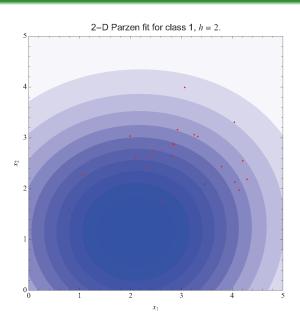
- $p(\mu)$: true density of x
- Kernel bandwidth getting smaller with N, so when $N \to \infty$, $K(x,\mu) \to \delta^n(x-\mu)$ and $\hat{p}(x) = p(x)$
- KDE gives consistent estimate of probability density p(x)

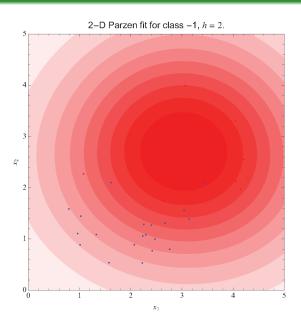
Limitations

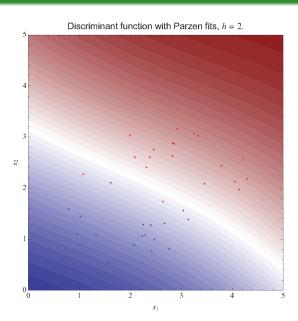
- Choice of bandwidth non-trivial
- Difficult to model sharp structures (e.g. boundaries)
- Kernels too far apart in regions of low point density
- (both can be mitigated with adaptive bandwidth choice)
- Requires evaluation of N n-dimensional kernels



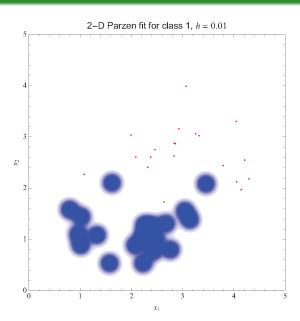
©Balàzs Kégl



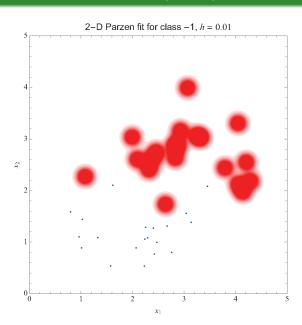


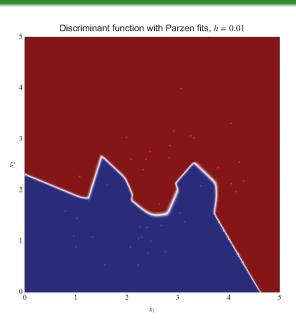


© Balàzs Kégl

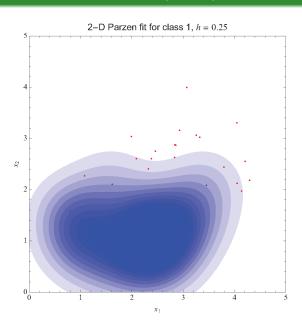


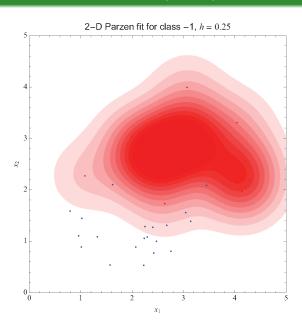
©Balàzs Kégl

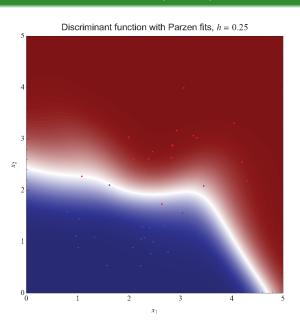




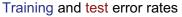
©Balàzs Kégl

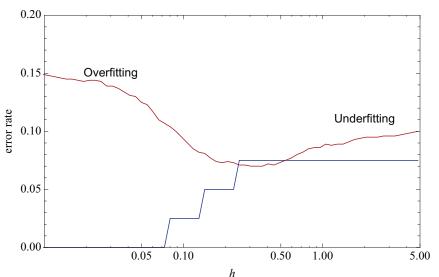




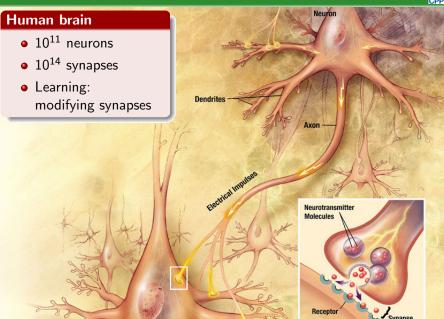


KDE: choice of bandwidth





Neural networks



Brief history of artificial neural networks

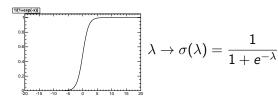
- 1943: W. McCulloch and W. Pitts explore capabilities of networks of simple neurons
- 1958: F. Rosenblatt introduces perceptron (single neuron with adjustable weights and threshold activation function)
- 1969: M. Minsky and S. Papert prove limitations of perceptron (linear separation only) and (wrongly) conjecture that multi-layered perceptrons have same limitations
 - ⇒ ANN research almost abandoned in 1970s!!!
- 1986: Rumelhart, Hinton and Williams introduce "backward propagation of errors": solves (partially) multi-layered learning
- Next: focus on multilayer perceptron (MLP)

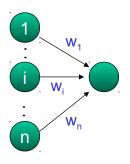
Single neuron

• Remember linear separation (Fisher discriminant):

$$\lambda(x) = w \cdot x = \sum_{i=1}^{n} w_i x_i + w_0$$

- Boundary at $\lambda(x) = 0$
- Replace threshold boundary by sigmoid (or tanh):





- \bullet $\sigma(\lambda)$ is neuron activity, λ is activation
- Neuron behaviour completely controlled by weights $w = \{w_0, \dots, w_n\}$
- Training: minimisation of error/loss function (quadratic deviations, entropy [maximum likelihood]), via gradient descent or stochastic approximation

Neural networks

Theorem

Let $\sigma(.)$ be a non-constant, bounded, and monotone-increasing continuous function. Let $\mathcal{C}(I_n)$ denote the space of continuous functions on the n-dimensional hypercube. Then, for any given function $f \in \mathcal{C}(I_n)$ and $\varepsilon > 0$ there exists an integer M and sets of real constants w_j , w_{ij} where $i=1,\ldots,n$ and $j=1,\ldots,M$ such that

$$y(x, w) = \sum_{j=1}^{M} w_j \sigma \left(\sum_{i=1}^{n} w_{ij} x_i + w_{0j} \right)$$

is an approximation of f(.), that is $|y(x) - f(x)| < \varepsilon$

Neural networks

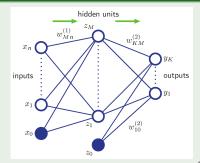
Interpretation

- You can approximate any continuous function to arbitrary precision with a linear combination of sigmoids
- Corollary 1: can approximate any continuous function with neurons!
- Corollary 2: a single hidden layer is enough
- Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

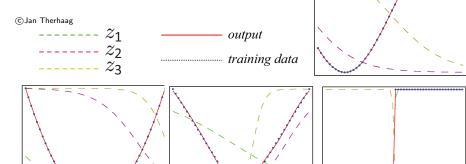
- Neurons organised in layers
- Output of one layer becomes input to next layer

$$y_k(x, w) = \sum_{j=0}^{M} w_{kj}^{(2)} \underbrace{\sigma\left(\sum_{i=0}^{n} w_{ji}^{(1)} x_i\right)}_{z_j}$$



A neural network can fit any function: examples

- 1 input (training data), 1 output
- 3 hidden neurons on one hidden layer



Backpropagation

- Training means minimising error function E(w)
- For single neuron: $\frac{dE}{dw_k} = (y t)x_k$
- One can show that for a network:

$$\frac{dE}{dw_{ji}} = \delta_j z_i$$
, where

$$w_{ji}$$
 δ_{j} w_{kj} \vdots δ_{1}

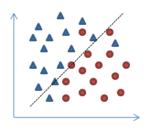
$$\delta_k = (y_k - t_k)$$
 for output neurons $\delta_j \propto \sum_k w_{kj} \delta_k$ otherwise

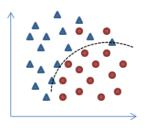
• Hence errors are propagated backwards

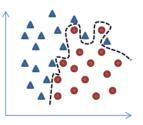
Neural network training

- Minimise error function E(w)
- Gradient descent: $w^{(k+1)} = w^{(k)} \eta \frac{dE^{(k)}}{dw}$
- $\frac{\partial E}{\partial w_j} = \sum_{n=1}^N -(t^{(n)} y^{(n)})x_j^{(n)}$ with target $t^{(n)}$ (0 or 1), so $t^{(n)} y^{(n)}$ is the error on event n
- All events at once (batch learning):
 - weights updated all at once after processing the entire training sample
 - finds the actual steepest descent
 - takes more time
- or one-by-one (online learning):
 - speeds up learning
 - useful in HEP because of redundant datasets (large Monte Carlo samples with many similar events)
 - may avoid local minima with stochastic component in minimisation
 - careful: depends on the order of training events
- One epoch: going through the training data once

Neural network overtraining



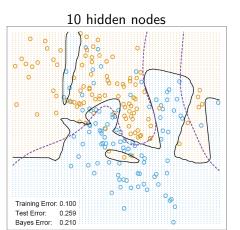




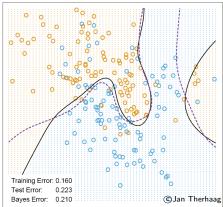
- Diverging weights can cause overfitting
- Mitigate by:
 - early stopping (after a fixed number of epochs)
 - monitoring error on test sample
 - regularisation, introducing a "weight decay" term to penalise large weights, preventing overfitting:

$$\tilde{E}(w) = E(w) + \frac{\alpha}{2} \sum_{i} w_i^2$$

Regularisation



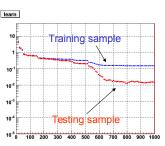
10 hidden nodes and $\alpha = 0.04$

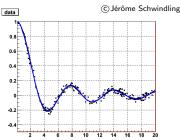


• Much less overfitting, better generalisation properties

Getting confused: testing better than training?

- Train on noisy data centred on true value
- Test on no-noise data
- Testing error becomes better: during training, the NN learned the true distribution (average of noisy inputs)
- Example: $\sin(x)/x + rand(-0.05, +0.05)$
- Of course doesn't work as well if noise is not symmetric

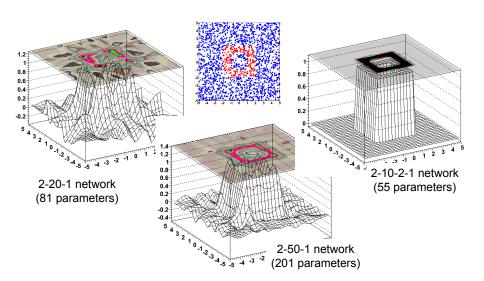




Neural networks: Tricks of the trade

- Preprocess data:
 - if relevant, provide e.g. x/y instead of x and y
 - subtract the mean because the sigmoid derivative becomes negligible very fast (so, input mean close to 0)
 - normalise variances (close to 1)
 - shuffle training sample (order matters in online training)
- Initial random weights should be small to avoid saturation
- Batch/online training: depends on the problem
- Regularise weights to minimise overtraining. May also help select good variables via Automatic Relevance Determination (ARD)
- Make sure the training sample covers the full parameter space
- No rule (not even guestimates) about the number of hidden nodes (unless using constructive algorithm, adding resources as needed)
- A single hidden layer is enough for all purposes, but multiple hidden layers may allow for a solution with fewer parameters

Adding a hidden layer



Bayesian neural networks

- As name says: Bayesian approach, try to infer functions f(x)
- Training sample T of N examples $(x, y)_1, (x, y)_2, \dots, (x, y)_N$ of discriminating variables x and class labels y
- Each point w corresponds to a function f(x, w)
- Assign probability density p(w|T) to it
- If $p(w_1|T) > p(w_2|T)$, then associated function $f(x, w_1)$ more compatible with training data T than function $f(x, w_2)$
- Posterior density p(w|T) is final result of Bayesian inference
- BNN is the predictive distribution

$$p(y|x,T) = \int p(y|x,w)p(w|T)dw$$

where the function class is class of feedforward neural networks with a fixed structure (inputs, layers, hidden nodes, outputs)

Bayesian neural networks

• Take the mean of the predictive distribution:

$$y(x) = \int zp(z|x, T)dz$$
$$= \int f(x, w)p(w|T)dw$$

- Why? For classification $p(y|x, w) = f(x, w)^y (1 f(x, w))^{1-y}$
 - for y = 1: p(y|x, w) = f(x, w)
 - for y = 0: p(y|x, w) = 1 f(x, w)
 - so only f(x, w) contributes to the mean
- Example usage:

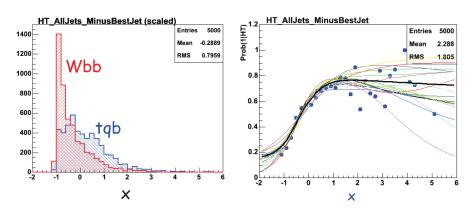
$$f(x, w) = \frac{1}{1 + e^{-g(x,w)}}
 g(x, w) = b + \sum_{j=1}^{H} v_j \tanh(a_j + \sum_{i=1}^{n} u_{ij} x_i)$$

with H hidden nodes

Bayesian neural networks

- Scanning NN parameter space can be daunting
- Can approximate integral in y(x) using Markov chain Monte Carlo method (MCMC)
- Will generate M sample weights w_1, \ldots, w_M from posterior density p(w|T)
- $y(x) \approx \frac{1}{M} \sum_{m=1}^{M} f(x, w_m)$
- Use spare subset of MCMC points to avoid correlations
- Start with "reasonable" guesses for parameters (e.g. zero-centred Gaussians)

Bayesian neural networks: example



- points: bin by bin histogram ratio
- thin curves: each $f(x, w_k)$
- thick curve: average, which approximates D(x)

Deep learning

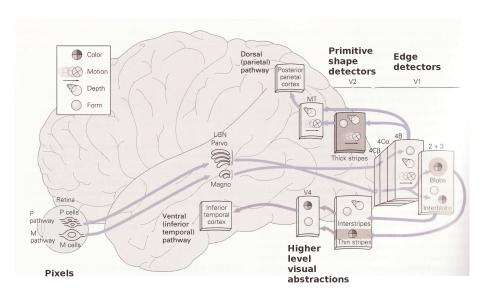
What is learning?

- Ability to learn underlying and previously unknown structure from examples
 - ⇒ capture variations
- ullet Deep learning: have several hidden layers (> 2) in a neural network

Motivation for deep learning

- Just like in the brain!
- Humans organise ideas hierarchically, through composition of simpler ideas
- Heavily unsupervised training, learning simpler tasks first, then combined into more abstract ones
- Learn first order features from raw inputs, then patterns in first order features, then etc.

Deep architecture in the brain



Deep learning in artificial intelligence

Mimicking the brain

- About 1% of neurons active simultaneously in the brain: distributed representation
 - activation of small subset of features, not mutually exclusive
 - more efficient than local representation
 - distributed representations necessary to achieve non-local generalization, exponentially more efficient than 1-of-N enumeration
 - example: integers in 1..N
 - local representation: vector of N bits with single 1 and N-1 zeros
 - distributed representation: vector of log₂ N bits (binary notation), exponentially more compact
- Meaning: information not localised in particular neuron but distributed across them

Deep architecture

- Insufficient depth can hurt
- Learn basic features first, then higher level ones
- Learn good intermediate representations, shared across tasks

Deep learning revolution

Deep networks were unattractive

- One layer is theoretically enough for everything
- Used to perform worse than shallow networks with 1 or 2 hidden layers
- Apparently difficult/impossible to train (using random initial weights and supervised learning with backpropagation)
- Backpropagation issues:
 - requires labelled data (usually scarce and expensive)
 - does not scale well, getting stuck in local minima
 - "diffusion of gradients": gradients getting very small further away from output ⇒ early layers do not learn much, can even penalise overall performance

Deep learning revolution

Deep networks were unattractive

- One layer is theoretically enough for everything
- Used to perform worse than shallow networks with 1 or 2 hidden layers
- Apparently difficult/impossible to train (using random initial weights and supervised learning with backpropagation)
- Backpropagation issues:
 - requires labelled data (usually scarce and expensive)
 - does not scale well, getting stuck in local minima
 - "diffusion of gradients": gradients getting very small further away from output ⇒ early layers do not learn much, can even penalise overall performance

Breakthrough in 2006 (Bengio, Hinton, LeCun)

- Try to model structure of input, p(x) instead of p(y|x)
- Can use unlabelled data (a lot of it), with unsupervised training
- Most importantly: train each layer independently

Greedy layer-wise pre-training

Algorithm

- Take input information
- Train feature extractor
- Use output as input to training another feature extractor
- Keep adding layers, train each layer separately
- Finalise with a supervised classifier, taking last feature extractor output as input
- All steps above: pre-training
- Fine-tune the whole thing with supervised training (backpropagation)
 - initial weights are those from pre-training

Feature extractors

- Restricted Boltzmann machine (RBM), auto-encoder, sparse auto-encoder, denoising auto-encoder, etc.
- Note: important to not use linear activation functions in hidden layers. Combination of linear functions still linear, so equivalent to single hidden layer

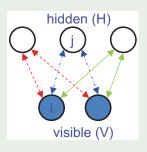
Restricted Boltzmann machine

Energy minimisation

- RBM: visible and hidden variables, without hidden-hidden or visible-visible connections
- Energy of joint combination of visible and hidden units:

$$E(v,h) = -b^T v - c^T h - h^T W v$$

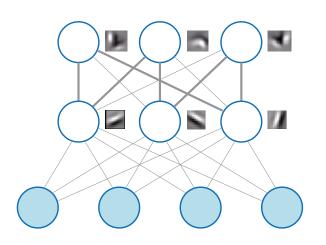
- b/c: biases of visible/hidden nodes
- W: weights connecting visible and hidden units
- Probability: $p(v,h) \propto e^{-E(v,h)}$



RBM training: Gibbs sampling



Learning feature hierarchy



Higher layer: DBNs (Combinations of edges)

First layer: RBMs (edges)

Input image patch (pixels)

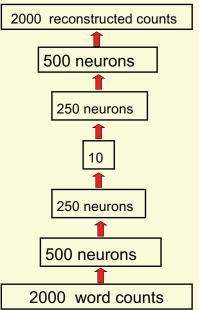
Auto-encoders

Approximate the identity function

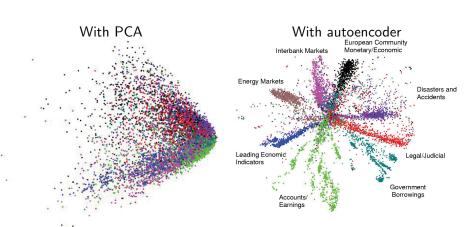
- Build a network whose output is similar to its input
- Sounds trivial? Except if imposing constraints on network (e.g., # of neurons, locally connected network) to discover interesting structures
- Can be viewed as lossy compression of input

Finding similar books

- Get count of 2000 most common words per book
- "Compress" to 10 numbers



Auto-encoders



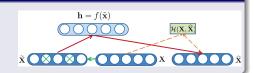
Other auto-encoders

Sparse auto-encoder

- Sparsity: try to have low activation of neurons (like in the brain)
- Compute average activation of each hidden unit over training set
- Add constraint to cost function to make average lower than some value close to 0

Denoising auto-encoder

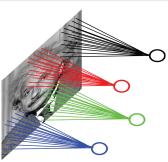
- Stochastically corrupt inputs
- Train to reconstruct uncorrupted input



Locally connected auto-encoder

- Allow hidden units to connect only to small subset of input units
- Useful with increasing number of input features (e.g., bigger image)
- Inspired by biology: visual system has localised receptive fields

• Images are stationary: can learn feature in one part and apply it in another



- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1,	1,0	1,	0	0
O _{×0}	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1	1,	1,0	0,1	0
0	1 _{×0}	1,	1 _{×0}	0
0	0,,1	1,0	1,	1
0	0	1	1	0
0	1	1	0	0

Image

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1	1	1,	0,0	0,,1
0	1	1,0	1,	0,0
0	0	1,	1,0	1,
0	0	1	1	0
0	1	1	0	0

Image

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1	1	1	0	0
0,	1,0	1,	1	0
0,	0,1	1,0	1	1
0,	0,×0	1,	1	0
0	1	1	0	0

Image

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

0	1	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1 _{×1}	1 _{×0}	1 _{×1}	0
0 4 4 0 0	0	0,0	1,	1,0	1
$0 \mid 1 \mid 1 \mid 0 \mid 0$	0	0,,1	1 _{×0}	1 _{×1}	0
0 1 1 0 0	0	1	1	0	0

4	3	4
2	4	

Image

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1,	1 _{×0}	0,1
- ×1 ×0 ×1	0	0	1,0	1,	1,0
$0 \mid 1 \mid 1 \mid 0 \mid 0$	0	0	1,	1 _{×0}	0,,1
	0	1	1	0	0

Image

Convolved Feature

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1	1	1	0	0
0	1	1	1	0
0,1	0,0	1,	1	1
0,0	0,,1	1 _{×0}	1	0
0,1	1_×0	1,	0	0

4	3	4
2	4	3
2		

Image

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1	1	1	0	0
0	1	1	1	0
0	0 _{×1}	1,0	1,	1
0	0,0	1,	1 _{×0}	0
0	1 _{×1}	1,0	0,1	0

4	3	4
2	4	3
2	3	

Image

Convolutional networks

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0,×0
0	1	1,	0,×0	0 _{×1}

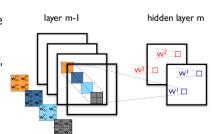
2 4 3	4	3	4
2 3 4	2	4	3
	2	3	4

Image

Convolved Feature

Convolutional networks

- Images are stationary: can learn feature in one part and apply it in another
- Use e.g. small patch sampled randomly, learn feature, convolve with full image
- Build several "feature maps"



Convolutional networks

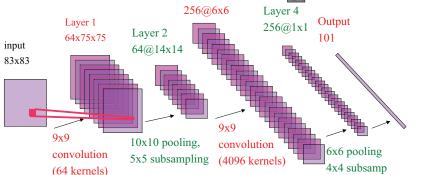
WI L

WI D

layer m-I hidden layer m Images are stationary: can learn feature in one part and apply it in another Use e.g. small patch sampled randomly, learn feature, convolve with full image

Build several "feature maps"

• Stack them with pooling layers Layer 3



Why does unsupervised training work?

Optimisation hypothesis

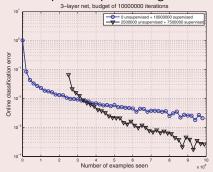
- Training one layer at a time scales well
- Backpropagation from sensible features
- Better local minimum than random initialisation, local search around it

Overfitting/regularisation hypothesis

- More info in inputs than labels
- No need for final discriminant to discover features
- Fine-tuning only at category boundaries

Example

- Stacked denoising auto-encoders
- 10 million handwritten digits
- First 2.5 million used for unsupervised pre-training



 Worse with supervision: eliminates projections of data not useful for local cost but helpful for deep model cost

Deep learning: looking forward

- Very active field of research in machine learning and artificial intelligence
 - not just at universities (Google, Facebook, Microsoft, NVIDIA, etc...)
- Possible path forward: continuation methods
 - solve easier or smoothed version first, and gradually consider less smoothing
- Training with curriculum:
 - what humans do over 20 years
 - learn different concepts at different times
 - exploit previously learned concepts to ease learning of new abstractions
- Influence learning dynamics can have big impact:
 - order and selection of examples matters
 - choose which examples to present first, to guide training and possibly increase learning speed (called shaping in animal training)
- Combination of deep learning and reinforcement learning
 - still in its infancy, but already impressive results

ImageNet Large Scale Visual Recognition Challenge

- ImageNet: database with 14 million images and 20k categories
- Used 1000 categories and about 1.3 million manually annotated images

PASCAL

cat

ILSVRC

cock

flamingo

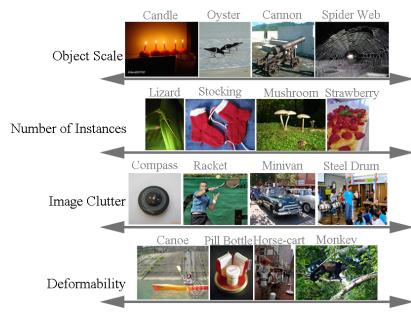
Egyptian cat

tabby

lvnx

dalmatian

ILSVRC 2014 images



ILSVRC 2014 images

Color Distinctiveness

Red Wine Ant

Lion

Bell

Shape Distinctiveness

Real-world Size

ILSVRC 2014 tasks

Image classification

Ground truth

Steel drum Folding chair Loudspeaker

Accuracy: 1

Scale T-shirt

Steel drum Drumstick Mud turtle

Accuracy: 1

Scale T-shirt Giant panda Drumstick Mud turtle

Accuracy: 0

Single-object localization Steel drum

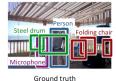
Ground truth

Accuracy: 1

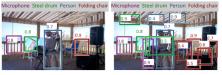
Accuracy: 0

Accuracy: 0

Object detection



AP: 0.0 0.5 1.0 0.3



78/92

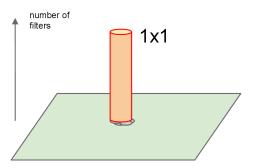
AP: 1.0 0.7 0.5 0.9

- Google of course! (first time)
- GoogLeNet:

In images, correlations tend to be local

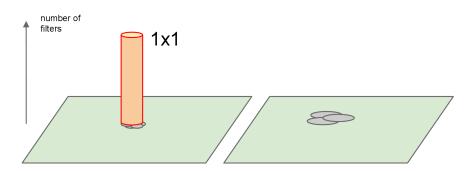
- Google of course! (first time)
- GoogLeNet:

Cover very local clusters by 1x1 convolutions



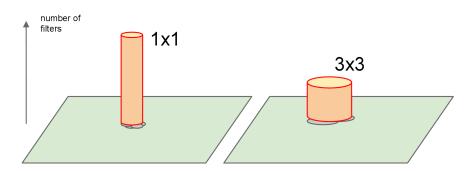
- Google of course! (first time)
- GoogLeNet:

Less spread out correlations



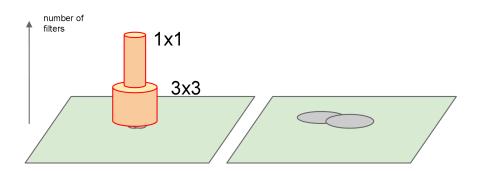
- Google of course! (first time)
- GoogLeNet:

Cover more spread out clusters by 3x3 convolutions



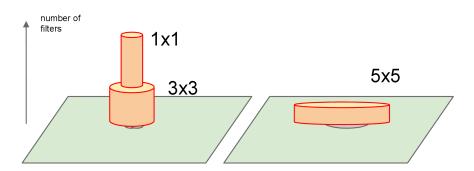
- Google of course! (first time)
- GoogLeNet:

Cover more spread out clusters by 5x5 convolutions



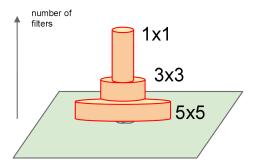
- Google of course! (first time)
- GoogLeNet:

Cover more spread out clusters by 5x5 convolutions



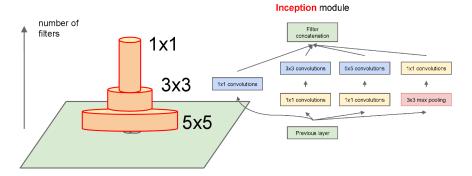
- Google of course! (first time)
- GoogLeNet:

A heterogeneous set of convolutions

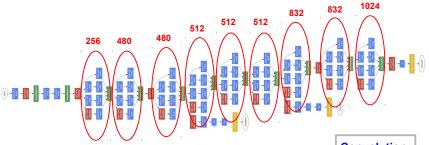


- Google of course! (first time)
- GoogLeNet:

Schematic view



- Google of course! (first time)
- GoogLeNet:



9 Inception modules

Network in a network in a network...

Convolution Pooling Softmax Other

ILSVRC 2014 Even GoogLeNet is not perfect!

Classification failure cases

Groundtruth: Police car GoogLeNet:

- laptop
- hair drier
- binocular
- ATM machine
- seat belt

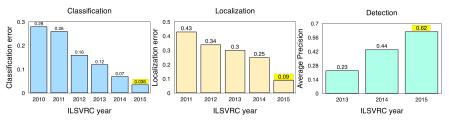
ILSVRC 2014 Even GoogLeNet is not perfect!

Classification failure cases

Groundtruth: hay GoogLeNet:

- sorrel (horse)
- hartebeest
- Arabian camel
- warthog
- gaselle

ILSVRC 2010–2015



2010-14: 4.2x reduction

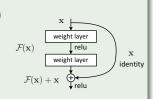
1.7x reduction

1.9x increase

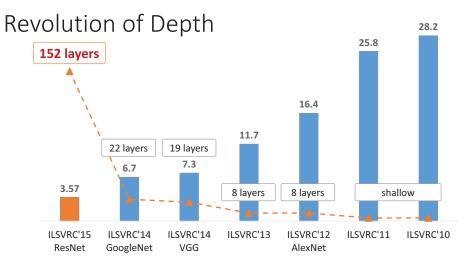
ILSVRC 2015 (same dataset as 2014)

▶ arXiv:1512.03385

- Winner: MSRA (Microsoft Research in Beijing)
- Deep residual networks with > 150 layers
- Classification error: $6.7\% \rightarrow 3.6\%$ (1.9x)
- Localisation error: $26.7\% \rightarrow 9.0\%$ (2.8x)
- ullet Object detection: 43.9% ightarrow 62.1% (1.4x)



MSRA @ ILSVRC2015



ImageNet Classification top-5 error (%)

- Learning to play 49 different Atari 2600 games
- No knowledge of the goals/rules, just 84x84 pixel frames
- 60 frames per second, 50 million frames (38 days of game experience)
- Deep convolutional network with reinforcement: DQN (deep Q-network)
 - action-value function $Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, a_t = a, \pi]$
 - maximum sum of rewards r_t discounted by γ at each timestep t, achievable by a behaviour policy $\pi = P(a|s)$, after making observation s and taking action a
- Tricks for scalability and performance:
 - experience replay (use past frames)
 - separate network to generate learning targets (iterative update of Q)
- Outperforms all previous algorithms, and professional human player on most games

Google DeepMind: training&performance

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function \hat{Q} with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

initialize target action-

For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_i, a_j, r_j, \phi_{j+1})$ from D

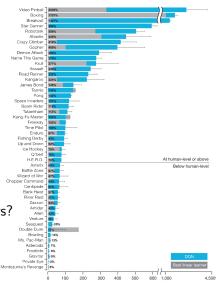
Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

network parameters θ Every C steps reset $\hat{O} = O$

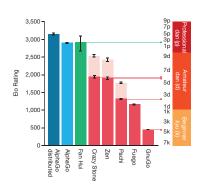
End For

• What about Breakout or Space invaders?



- Game of Go considered very challenging for AI
- Board games: can be solved with search tree of b^d possible sequences of moves (b = breadth [number of legal moves], d = depth [length of game])
- Chess: $b \approx 35$, $d \approx 80 \rightarrow \text{go}$: $b \approx 250$, $d \approx 150$
- Reduction:
 - of depth by position evaluation (replace subtree by approximation that predicts outcome)
 - of breadth by sampling actions from probability distribution (policy p(a|s)) over possible moves a in position s
- ullet 19 imes 19 image, represented by CNN
- Supervised learning policy network from expert human moves, reinforcement learning policy network on self-play (adjusts policy towards winning the game), value network that predicts winner of games in self-play.

- AlphaGo: 40 search threads, simulations on 48 CPUs, policy and value networks on 8 GPUs
- Distributed AlphaGo: 1020 CPUs, 176 GPUs
- AlphaGo won 494/495 games against other programs (and still 77% against Crazy Stone with four handicap stones)
- Fan Hui: 2013/14/15 European champion
- Distributed AlphaGo won 5–0
- AlphaGo evaluated thousands of times fewer positions than Deep Blue (first chess computer to bit human world champion) ⇒ better position selection (policy network) and better evaluation (value network)
- Will play Lee Sedol (top Go play in the world over last decade) in March 2016



Decision trees

Next lecture

Summary of MVA techniques

Criteria		Classifiers								
		Cuts	Likeli- hood	PDERS / k-NN	H-Matri x	Fisher	MLP	BDT	RuleFit	SVM
Perfor- mance	no / linear correlations	(2)	©	©	(2)	©	©	(2)	©	©
	nonlinear correlations	(2)	8	©	8	8	©	©	=	©
Speed	Training	8	©	©	©	©	=	8	=	8
	Response	©	©	8/9	©	©	©	(2)	=	(2)
Robust -ness	Overtraining	©	<u>=</u>	<u>=</u>	©	©	8	8	<u>=</u>	<u>=</u>
	Weak input variables	<u>©</u>	<u>©</u>	8	©	©	(2)	<u>=</u>	=	<u>=</u>
Curse of dimensionality		8	<u>©</u>	8	©	©	(2)	©	=	(2)
Transparency		©	©	(2)	©	©	8	8	8	8

(according to TMVA authors)

© Andreas Hoecker

Conclusion

 When trying to achieve optimal discrimination one can try to approximate

$$D(x) = \frac{s(x)}{s(x) + b(x)}$$

- Many techniques and tools exist to achieve this
- (Un)fortunately, no one method can be shown to outperform the others in all cases.
- One should try several and pick the best one for any given problem
- Multivariate techniques are at work in your everyday life without your knowning and can easily outsmart you for many tasks
- Try this to convince yourself http://www.phi-t.de/mousegame/index_eng.html

References I

- V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 2nd Edition, 2000
- T. Hastie, R. Tibshirani and J. Friedman, *The Elements of Statistical Learning:*Data Mining, Inference and Prediction, Springer-Verlag, New York, 2nd Edition,
 2009
- R.M. Neal, Bayesian Learning of Neural Networks, Springer-Verlag, New York, 1996
- C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2007
- M. Minsky and S. Papert, "Perceptrons", M.I.T. Press, Cambridge, Mass., 1969

References II

H.B. Prosper, "The Random Grid Search: A Simple Way to Find Optimal Cuts", Computing in High Energy Physics (CHEP 95) conference, Rio de Janeiro, Brazil, 1995

W.S. McCulloch & W. Pitts, "A logical calculus of the ideas immanent in nervous activity", *Bulletin of Mathematical Biophysics*, 5, 115-137, 1943

F. Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage & Organization in the Brain", *Psychological Review*, 65, pp. 386-408, 1958

D.E.Rumelhart et al., "Learning representations by back-propagating errors", *Nature* vol. 323, p. 533, 1986

K.Hornik et al., "Multilayer Feedforward Networks are Universal Approximators", Neural Networks, Vol. 2, pp 359-366, 1989

Y. LeCun, L. Bottou, G. Orr and K. Muller, "Efficient BackProp", in *Neural Networks: Tricks of the trade*, Orr, G. and Muller K. (Eds), Springer, 1998

P.C. Bhat and H.B. Prosper, "Bayesian neural networks", in *Statistical Problems in Particles, Astrophysics and Cosmology*, Imperial College Press, Editors L. Lyons and M. Ünel, 2005

References III

- Q.V. Le et al., "Building High-level Features Using Large Scale Unsupervised Learning", in *Proceedings of the 29th International Conference on Machine Learning*, Edinburgh, Scotland, UK, 2012 http://research.google.com/pubs/pub38115.html
- G.E. Hinton, S. Osindero and Y. Teh, "A fast learning algorithm for deep belief nets", *Neural Computation* 18:1527-1554, 2006
 - Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, "Greedy Layer-Wise Training of Deep Networks", in *Advances in Neural Information Processing Systems 19* (NIPS'06), pages 153–160, MIT Press 2007
 - M.A. Ranzato, C. Poultney, S. Chopra and Y. LeCun, in J. Platt et al., "Efficient Learning of Sparse Representations with an Energy-Based Model", in *Advances in Neural Information Processing Systems* 19 (NIPS'06), pages 1137–1144, MIT Press, 2007
- Y. Bengio, "Learning deep architectures for Al", Foundations and Trends in Machine Learning, Vol. 2, No. 1 (2009) 1–127. Also book at http://www.iro.umontreal.ca/lisa/publications2/index.php/publications/show/239
 - A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss, "TMVA: Toolkit for Multivariate Data Analysis", PoS A CAT 040 (2007) [physics/0703039] http://tmva.sourceforge.net