particle. Experimental

European School of Instrumentation in Particle & Astroparticle Physics

B. particle interactions
and detector response and detector response

er mo A simple show ber¨ Analytic Shower Model A simple shower model

Simple shower model:

[from Heitler]

Only two dominant interac [from Heitler]

Pair production and Bremsstrahlung ... Only two dominant interactions:

 $+e^+ +$
duction] $\overline{}$ produ
+ Nucle
notons ab $y +$ Nucleus \rightarrow Nucleus + e^+ + e^- [Photons absorbed via pair production]

[Energy loss of electrons via Bremsstrahlung] producti
eus + { μ Photons absorbed via pair production
 θ + Nucleus \rightarrow Nucleus + e + γ

[Energy loss of electrons via Bremsstrahlu

 \sim Shower development governed by X_0 ...

 $X_0 ...$
with \cdot e+ \cdot ain with
y ...
9/7X₀ ≈ <mark>></mark> iower development governed by
After a distance X₀ electrons remain
only (1/e)th of their primary energy ... Photon produces e⁺e⁻-pair after $9/7X_0 \approx X_0$... nach X0,After a distance X_0 electrons remain with

Assume:

te-pair after 9
brems after 9
bremstrahlung
only via ionizative $\frac{1}{2}$ erg E_c : no
 E_c : en $=$ $E > E_c$: no energy loss by ionization/excitation $E < E_c$: energy loss only via ionization/excitation

 SchauersSimplification: Use

 $E_v = E_e \approx E_0/2$ [Ee looses half the energy]

 $E_e \approx E_0/2$ [Energy shared by e^+/e^-]

Ee

Ene

... with \ldots with initial particle energy E_0

A simple shower model and a shower development

Simple shower model: [continued]

Shower characterized by:

Number of particles in shower Location of shower maximum Longitudinal shower distribution Transverse shower distribution

Number of shower particles after depth t:

$$
N(t)=2^t
$$

Energy per particle after depth t:

$$
E = \frac{E_0}{N(t)} = E_0 \cdot 2^{-t}
$$

\n
$$
N(E_0, E_c) = N_{\text{m}}
$$

\n
$$
\sum_{t = \log_2(E_0/E)} E_0 \cdot 2^{-t}
$$

\n
$$
t_{\text{max}} \propto \ln(E_0/E_c)
$$

Longitudinal components; measured in radiation length ...

 $t = \frac{x}{V}$ *X*⁰ ... use:

Total number of shower particles with energy E_1 :

$$
N(E_0, E_1) = 2^{t_1} = 2^{\log_2(E_0/E_1)} = \frac{E_0}{E_1}
$$

Number of shower particles at shower maximum:

$$
N(E_0, E_c) = N_{\text{max}} = 2^{t_{\text{max}}} = \frac{E_0}{E_c}
$$

Shower maximum at:

 \propto *E*₀

A simple shower model A simple shower model

Simple shower model: [continued]

Longitudinal shower distribution increases only logarithmically with the primary energy of the incident particle ...

Some numbers: $E_c \approx 10$ MeV, $E_0 = 1$ GeV \rightarrow t_{max} = ln 100 \approx 4.5; N_{max} = 100 $E_0 = 100$ GeV \rightarrow t_{max} = ln 10000 ≈ 9.2; N_{max} =10000

Relevant for energy measurement (e.g. via scintillation light):

$$
t_{\text{max}}[X_0] \sim \ln \frac{E_0}{E_c}
$$

LAr calorimeter exercises

- The electromagnetic calorimeter for the ATLAS detector is made from roughly 2 mm thick layers of lead. Between the lead layers are 2 mm wide gaps filled with liquid Argon. Lead has a Z = 82, A = 206 and a density of 11.34 g/cm³. Liquid argon has a $Z = 18$, A = 40 and a density of 1.4 g/cm3.
	- \checkmark At η = 0 the depth of the ATLAS electromagnetic calorimeter is (about) 22 radiation lengths X_0 . What would be the depth of the detector in cm if it was an homogeneous calorimeter (i.e. all made of liquid argon)? And if it was all made of lead?
	- \checkmark An electron of 5 GeV is generating an electromagnetic shower. At what depth would the shower reach its maximum in liquid argon?
	- \checkmark Compute the longitudinal depth of lead needed to contain 95% of the energy of a 10 GeV and a 100 GeV photons respectively.
	- \checkmark How much energy does a minimum-ionizing-particle (mip) deposit in 22 X_0 of liquid Argon, assuming:

$$
\frac{1}{\rho_{\rm LAT}} \left(\frac{dE}{dx}\right)_{\rm{min}} = 1.52\,{\rm MeV/(g\,cm^{-2})}
$$

 \checkmark How deep in cm is the real ATLAS electromagnetic calorimeter at $\eta = 0$, assuming a perfect succession of lead and liquid argon layers of the same thickness?

Particle interactions

• Compute the threshold energies an electron and a proton must possess in water to emit Cherenkov radiation

 $\sqrt{N_{water}} = 1.3$