Experimental Particle. physics

European School of Instrumentation in Particle & Astroparticle Physics

systems used to identify and measure particle properties

2

Experimental Particle Physics

Interaction mode recap...

- electrically charged
- ionization (dE/dx)
- electromagnetic shower

- electrically charged
- ionization (dE/dx)
- can emit photons
 - electromagnetic shower induced by emitted photon

- electrically neutral
- pair production
 ✓ E >I MeV
- electromagnetic shower

produce hadron(s) jets via QCD hadronization process

What should a particle experiment do?

- Tracking
- Momentum and energy measurements
- Neutral particle detection

- Particle identification
- Trigger
- Data acquisition

Detector	Common uses
Scintillation counter	tracking, fast timing, triggering
Cerenkov counter	particle identification, triggering
Proportional chamber	tracking, triggering
Drift chamber	tracking, particle identification
Sampling calorimeters	neutral particle detection, triggering
Bubble chamber	vertex detector, tracking
Emulsion	high resolution vertex detection
Spark chamber	tracking
Streamer chamber	vertex detector, tracking
Transition radiation detector	high energy particle identification
Semiconductor detector	vertex detector
Flashtube hodoscope	tracking
Spark counter	high resolution timing

Magnetic spectrometer

- A system to measure (charged) particle momentum
- Tracking device + magnetic field

Magnetic spectrometer

Charged particle in magnetic field

 $\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$

If the field is constant and we neglect presence of matter, momentum magnitude is constant with time, trajectory is helical

$$p[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$$

Actual trajectory differ from exact helix because of:

- magnetic field inhomogeneity
- particle energy loss (ionization, multiple scattering)

Momentum measurement

smaller for larger number of points measurement error (RMS) $=A_N \frac{\epsilon}{L^2} \frac{p}{0.3B}$ Momentum resolution due to measurement

Momentum resolution gets worse for larger momenta

projected track length resolution is improved faster in magnetic field by increasing L then B

Marco Delmastro

error

Momentum resolution

smaller for larger number of points measurement error (RMS) $\left|\frac{\delta p}{n}\right| = A_N \frac{\epsilon}{L^2} \frac{p}{0.3B}$

> projected track length resolution is improved faster in magnetic field by increasing L then B

Momentum resolution due to measurement error

Momentum resolution gets worse for larger momenta

Momentum resolution due to multiple scattering

Design consideration: magnetic field (collider)

Solenoid

Split field

- Field...
 - should ensure good
 momentum resolution in
 region of most importance
 - Cannot be too high (low p particle would spiral)
 - Should not interfere too much with beam orbit
 - Compensate deflection with additional magnets...

Design consideration: magnetic field (collider)

	Dipole	Split field magnet	Solenoid	Axial field magnet	Toroid
Return yoke Compensating magnet e^+e^- beams Coils before field region High p_t measurement Forward particle measurement	yes yes no no good good	yes no no good good	yes small yes no poor poor	yes small yes no good poor	no no yes yes poor poor

Design consideration: tracking devices

Inner tracker

- Silicon detectors (pixels, microstrips)
 - High resolution vertexing
- Transition detector trackers
- ✓ TPC Time Projection Chambers

Muon spectrometer

- Drift chambers
- MWPC (Multi Wire Proportional Chambers)
- ✓ RPC (Resistive Place Chambers)

Semiconductor detectors

ATLAS Pixel Detector

[Details]

Pixel Sensor

Semiconductor detectors

TPC principles of operation

ALICE TPC

ALICE TPC:

Length: 5 meter Radius: 2.5 meter Gas volume: 88 m³

Total drift time: 92 µs High voltage: 100 kV

End-cap detectors: 32 m² Readout pads: 557568 159 samples radially 1000 samples in time

Gas: Ne/CO₂/N₂ (90-10-5) Low diffusion (cold gas)

Gain: $> 10^4$

Diffusion: $\sigma_t = 250 \ \mu m$ Resolution: $\sigma \approx 0.2 \ mm$

Magnetic field: 0.5 T

Pad size: 5x7.5 mm² (inner) 6x15 mm² (outer)

Temperature control: 0.1 K [also resistors ...]

Material: Cylinder build from composite material of airline industry ($X_0 = ~ 3\%$)

Marco Delmastro

Experimental Particle Physics

Calorimetry

 Detector for energy measurement via total absorption of particles

Principles of operation

- ✓ Incoming particle initiates particle shower
 - Electromagnetic, hadronic
 - Shower properties depend on particle type and detector material
- Energy is deposited in active regions
 - Heat, ionization, atom excitation (scintillation), Cherenkov light
 - Different calorimeters use different kind of signals

Calorimeters can...

• Calorimeters can be built as 4π -detectors

- ✓ They can detect particles over almost the full solid angle
- Magnetic spectrometer: anisotropy due to magnetic field

$$\left(\frac{\sigma_p}{p}\right)^2 = \left(\frac{\sigma_{p_T}}{p_T}\right)^2 + \left(\frac{\sigma_\theta}{\sin\theta}\right)^2$$

• Calorimeters are often also sensitive to particle position

✓ Important for neutral particles: no track in inner detector!

• Calorimeters can provide fast timing signal

- ✓ 0.1 to 10 ns
- ✓ They can be used for triggering!
- Calorimeters can measure the energy of both charged and neutral particles
 - Magnetic spectrometer: only charged particles!

• Segmentation in depth allows particles separation

e.g. separate hadrons from particles which only interact electromagnetically

Energy resolution

Calorimeter energy resolution determined by fluctuations ...

Homogeneous calorimeters:

Photo-electron statistics

Quantum fluctuations

Shower leakage

Shower fluctuations

Instrumental effects (noise, light attenuation, non-uniformity)

In addition for

Sampling calorimeters:

Sampling fluctuations Landau fluctuations Track length fluctuations

Quantum fluctuations	$\sim 1/\sqrt{E}$
Electronic noise	$\sim 1/E$
Shower leakage*	$\approx \text{ const}$
Sampling fluctuations	$\sim 1/\sqrt{E}$
Landau fluctuations	$\sim 1/\sqrt{E}$
Track length fluctuations	$\sim 1/\sqrt{E}$

* Different for longitudinal and lateral leakage ... Complicated; small energy dependence ...

Energy resolution

Shower fluctuations: [intrinsic resolution]

Ideal (homogeneous) calorimeter without leakage: energy resolution limited only by statistical fluctuations of the number N of shower particles ...

i.e.:

$$\frac{\sigma_E}{E} \propto \frac{\sigma_N}{N} \approx \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}} \quad \text{with } N = \frac{E}{W}$$
$$\frac{\sigma_E}{E} \propto \sqrt{\frac{W}{E}}$$

Resolution improves due to correlations between fluctuations

$$\frac{\sigma_E}{E} \propto \sqrt{\frac{FW}{E}}$$
 [F: Fano factor]

E : energy of primary particle

W : mean energy required to produce 'signal quantum'

Examples:

Silicon detectors	:	$W \approx 3.6 \text{ eV}$
Gas detectors	:	$W \approx 30 \text{ eV}$
Plastic scintillator	:	$W \approx 100 \text{ eV}$

Impact of shower leakage

Shower leakage:

Fluctuations due to finite size of calorimeter; shower not fully contained ...

Lateral leakage: limited influence Longitudinal leakage: strong influence

Typical expression when including leakage effects:

$$\frac{\sigma_E}{E} \propto \left(\frac{\sigma_E}{E}\right)_{f=0} \cdot \left[1 + 2f\sqrt{E}\right]$$

[f: average fraction of shower leakage]

Remark: other parameterizations exist ...

Energy vs. momentum

Energy vs. momentum measurement:

At very high energies one has to switch to calorimeters because their resolution improves while those of a magnetic spectrometer decreases with E ...

Shower depth:

Calorimeter: [see below]

$$L \sim \ln \frac{E}{E_c}$$

[E_c: critical energy]

Shower depth nearly energy independent i.e. calorimeters can be compact ...

Compare with magnetic spectrometer: $\sigma_p/p \sim p/L^2$ Detector size has to grow quadratically to maintain resolution

Homogeneous calorimeters

★ In a homogeneous calorimeter the whole detector volume is filled by a high-density material which simultaneously serves as absorber as well as as active medium ...

Signal	Material
Scintillation light	BGO, BaF ₂ , CeF _{3,}
Cherenkov light	Lead Glass
Ionization signal	Liquid nobel gases (Ar, Kr, Xe)

- ★ Advantage: homogenous calorimeters provide optimal energy resolution
- ★ Disadvantage: very expensive
- ★ Homogenous calorimeters are exclusively used for electromagnetic calorimeter, i.e. energy measurement of electrons and photons

Sampling calorimeters

Scheme of a sandwich calorimeter

Principle:

Alternating layers of absorber and active material [sandwich calorimeter]

Absorber materials: [high density]

> Iron (Fe) Lead (Pb) Uranium (U) [For compensation ...]

Active materials:

Plastic scintillator Silicon detectors Liquid ionization chamber Gas detectors

Sampling calorimeters

★ Advantages:

By separating passive and active layers the different layer materials can be optimally adapted to the corresponding requirements ...

By freely choosing high-density material for the absorbers one can built very compact calorimeters ...

Sampling calorimeters are simpler with more passive material and thus cheaper than homogeneous calorimeters ...

★ Disadvantages:

Only part of the deposited particle energy is actually detected in the active layers; typically a few percent [for gas detectors even only ~10⁻⁵] ...

Due to this sampling-fluctuations typically result in a reduced energy resolution for sampling calorimeters ...

Sampling calorimeters

Possible setups

Scintillators as active layer; signal readout via photo multipliers

Homogeneous vs. sampling calorimeters

Technology (Experiment)	Depth	Energy resolution	Date	
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983	7
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993	T
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996	On
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999	<u> 301</u>
CsI(Tl) (BELLE)	$16X_{0}$	1.7% for $E_{\gamma} > 3.5~{ m GeV}$	1998	Jen
$PbWO_4 (PWO) (CMS)$	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997	e o
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990	S S
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1998	
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988	
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988	
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E}\oplus 0.6\%$	1995	Sa
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E}\oplus 0.5\%\oplus 0.1/E$	1988	m
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993	Jin
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus1\%$	1998	Q
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993	
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996	

Resolution of typical electromagnetic calorimeter [E is in GeV]

Marco Delmastro

Particle identification with tracker and calo

Hadronic calorimeters

Most common realization: Sampling Calorimeter

Utilization of homogenous calorimeters unnecessary (and thus too expensive) due to fluctuations of invisible shower components ...

Typical absorbers : Fe, Pb, U ... Sampling elements : Scintillators, LAr, MWPCs ...

Typical setup: Alternating layers of active and passive material [also: 'spaghetti' or 'shashlik' calorimeter]

Example: LHCb Hadron Calorimeter

Energy resolution

Resolution: EM vs. HAD

Sampling fluctuations only minor contribution to hadronic energy resolution

A typical HEP calorimetry system

Typical Calorimeter: two components ...

ΈM) +

Schematic of a typical HEP calorimeter

A few words on QCD

- QCD (strong) interactions are carried out by massless spin-1 particled called gluons
 - Gluons are massless
 - Long range interaction
 - ✓ Gluons couple to color charges
 - Gluons have color themselves
 - They can couple to other gluons

Principle of asymptotic freedom

- ✓ At short distances strong interactions are weak
 - Quarks and gluons are essentially free particles
 - Perturbative regime (can calculate!)
- \checkmark At large distances, higher-order diagrams dominate
 - Interaction is very strong
 - Perturbative regime fails, have to resort to effective models

quark-quark effective potential

exchange

Confinement, hadronization, jets

B-tagging

- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
 - They will travel away form collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

top quark

Boosted jets and jet substructure

Marco Deimastro

Tau

- Tau are heavy enough that they can decay in several final states
 - Several of them with hadrons
 - Sometimes neutral hadrons
- Lifetime = 0.29 ps
 - ✓ 10 GeV tau flies ~ 0.5 mm
 - Typically too short to be directly seen in the detectors
- Tau needs to be identifies by their decay products
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

Neutrino (and other invisible particles) at colliders

electron neutrino

Interaction length $\lambda_{int} = A / (\rho \sigma N_A)$

- Cross section $\sigma \sim 10^{-38} \text{ cm}^2 \times \text{E} [\text{GeV}]$
 - This means 10 GeV neutrino can pass through more then a million km of rock
- Neutrinos are usually detected in HEP experiments through missing (transverse) energy

- Missing energy resolution depends on
 - Detector acceptance
 - Detector noise and resolution (e.g. calorimeters)