

15-16.02.2016 Isabelle Wingerter-Seez - LAPP-CNRS - Annecy

PROGRAMME

Lesson 1

Why build calorimeters ?

Lesson 1

Why build calorimeters ? Electromagnetic showers Calorimeter energy resolution

Lesson 2

Hadronic showers & calorimeters Jets Missing Transverse Energy CMS & ATLAS calorimeters

Lesson 3

Other calorimeters Calorimeter R&Ds for future colliders

Tutorial

15-16.02.2016

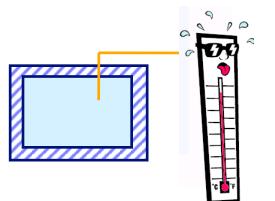
WHAT IS A CALORIMETER ?

Concept comes from thermo-dynamics: A leak-proof closed box containing a substance which temperature is to be measured.

Temperature scale:

1 calorie (4.185J) is the necessary energy to increase the temperature of 1 g of water at 15°C by one degree

At hadron colliders we measure GeV (0.1 - 1000) $1 \text{ GeV} = 10^9 \text{ eV} \approx 10^9 * 10^{-19} \text{ J} = 10^{-10} \text{ J} = 2.4 \ 10^{-9} \text{ cal}$ 1 TeV = 1000 GeV : kinetic energy of a flying mosquito



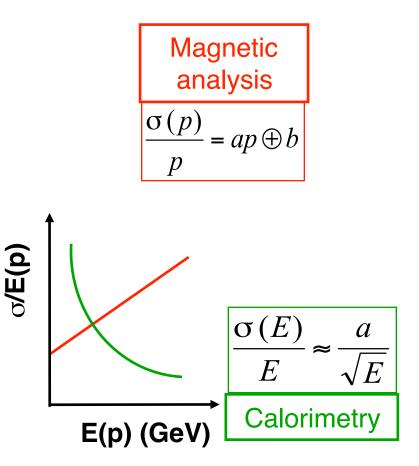
Required sensitivity for our calorimeters is ~ a thousand million time larger than to measure the increase of temperature by 1°C of 1 g of water

WHY CALORIMETERS ?

First calorimeters appeared in the 70's: need to measure the energy of all particles, charged and neutral.

Until then, only the momentum of charged particles was measured using magnetic analysis.

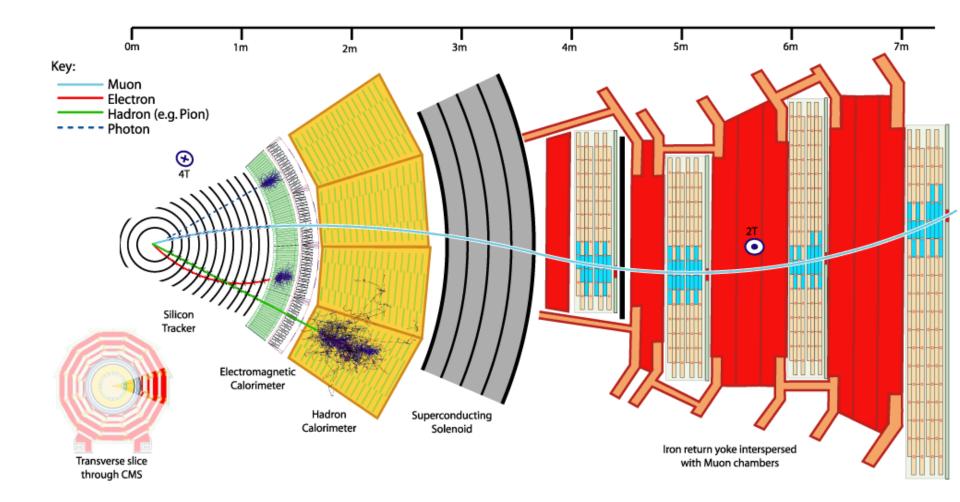
The measurement with a calorimeter is destructive e.g.



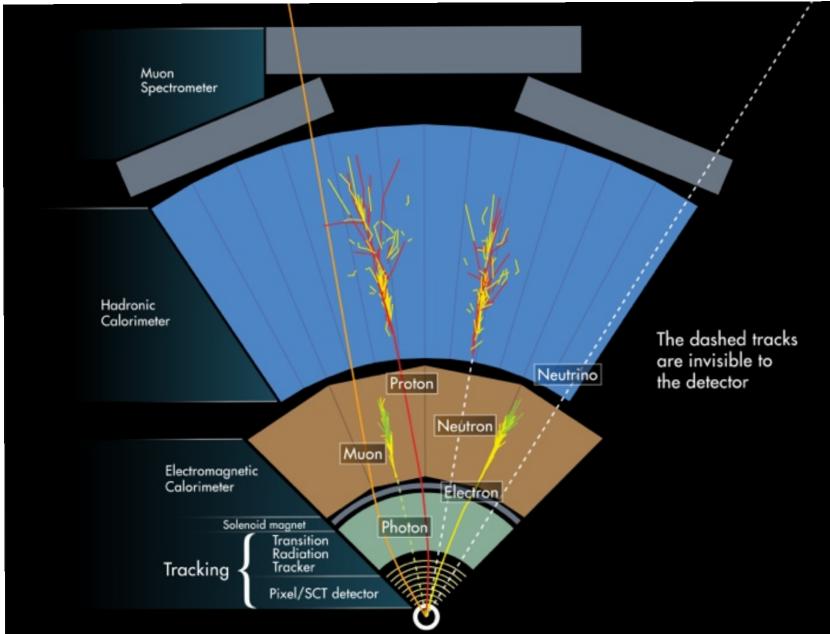
$$\pi^- + p \rightarrow \pi^0 + n$$

Particles do not come out alive of a calorimeter

GENERAL STRUCTURE of a DETECTOR



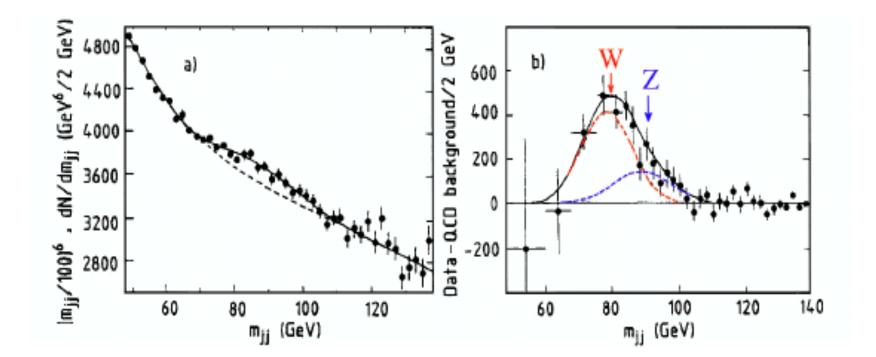
GENERAL STRUCTURE of a DETECTOR



ENERGY RESOLUTION

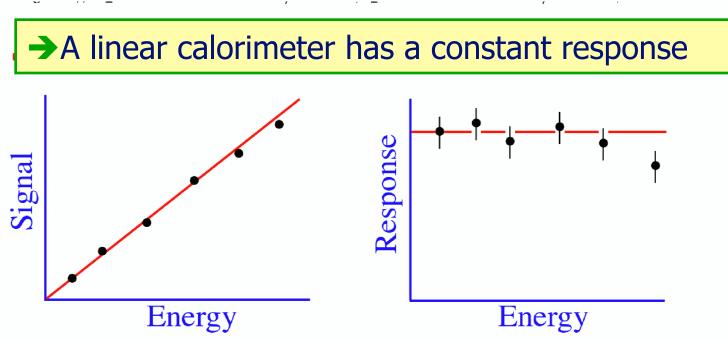


ENERGY RESOLUTION



Mass Reconstruction of W & Z⁰ in UA2 (years 80-90)

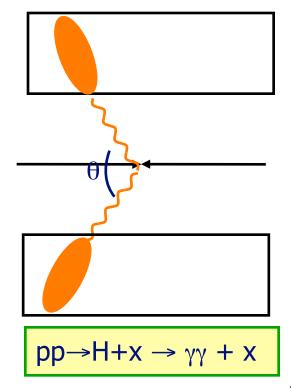
Response: mean signal per unit of deposited energy e.g. *#* of photons electrons/GeV, pC/MeV, µA/GeV



Electromagnetic calorimeters are in general linear. All energies are deposited via ionisation/excitation of the absorber.

POSITION RESOLUTION

Higgs Boson in ATLAS For M_H ~ 120 GeV, in the channel $H \rightarrow \gamma \gamma$ σ (M_H) / M_H = $\frac{1}{2} [\sigma(E_{\gamma 1})/E_{\gamma 1} \oplus \sigma(E_{\gamma 2})/E_{\gamma 2} \oplus \cot(\theta/2) \sigma(\theta)]$



15-16.02.2016

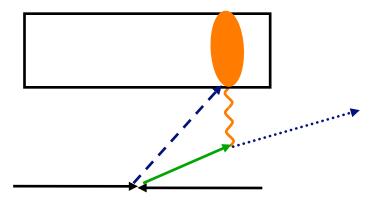
TIME RESOLUTION

At LHC, pp collisions will have a frequency of 25ns and ~40 interactions/bunch crossing when $L=10^{34}$ cm⁻²s⁻¹

Some theoretical models predict existence of long lived particles

Time measurement

Validate the synchronisation between sub-detectors (~1ns) Reject non-collisions background (beam, cosmic muons,..) Identify particles which reach the detector with a non nominal time of flight (~5ns measured with ~100ps precision)



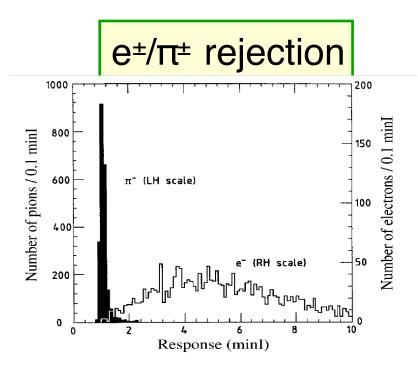
PARTICLE IDENTIFICATION

Particle Identification is particularly crucial at Hadron Colliders:

- Large hadron background
- Need to separate
 - Electrons, photons, muons from Jets, hadrons

Means

- Shower shapes (lateral & longitudinal segmentations)
- Track association with energy deposit in calorimeter
- Signal time

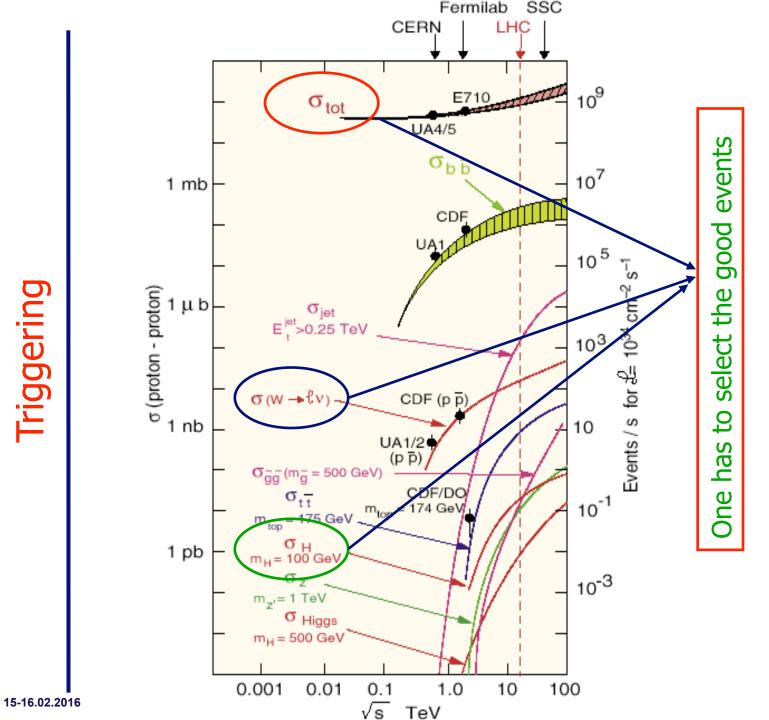


PARTICLE IDENTIFICATION

Higgs boson in ATLAS With $M_H \sim 125 \text{ GeV}$ in the channel $H \rightarrow \gamma \gamma$ Background: π^0 looking like a γ

π⁰→γγ $pp \rightarrow \gamma - jet \rightarrow \gamma + \pi^0 + x$

15-16.02.2016



Triggering

RADIATION HARDNESS and ACTIVATION

At LHC, detectors, and in particular calorimeters, have to be radiation hard Material (active material), glues, support structure, cables,... Electronics installed on the detector.

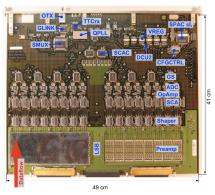
Dominant source of particles (for the calorimeter) is coming from particles produced by the pp collisions.

This was (and is still) one of the challenge when designing the calorimeters for LHC

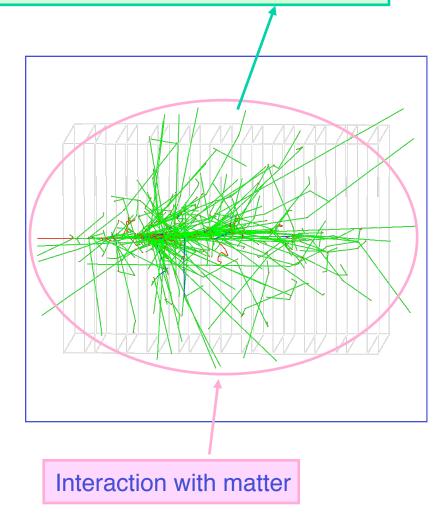
Detailed maps produced by simulation to assess expected level Dedicated tests in very high intensity beam lines

Experiments have installed monitoring detectors which now allow to confront the models with measurements.

Electronics (conversion, amplification, signal transmission)

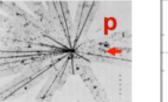


Signal detection (light, electric charge) Homogenous or sampling calorimeters

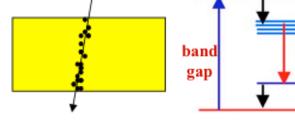


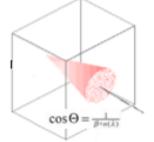
FOUR STEPS

1. Particles interact with matter depends on particle and material

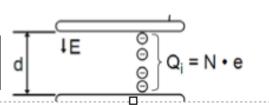


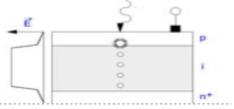
2. Energy loss transfer to detectable signal depends on the material





3. Signal collection depends on signal and type of detection



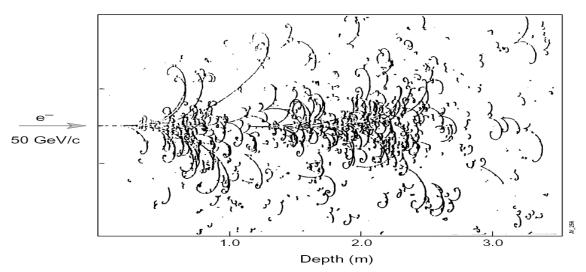


4. BUILD a SYSTEM depends on physics, experimental conditions,....

GENERAL CHARACTERISTICS

Calorimeters have the following properties:

- Sensitive to charged and neutral particles
- Precision improves with Energy (opposite to magnetic measurements)
- No need of magnetic field
- Containment varies as In(E): compact
- Segmentation: position measurement and identification
- Fast response
- **Triggering capabilities**

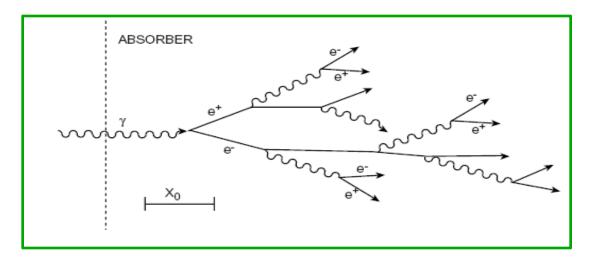


Big European Bubble Chamber filled with Ne:H₂ = 70%:30%, 3T Field, L=3.5 m, X₀ \approx 34 cm, 50 GeV incident electron

e

ELECTROMAGNETIC SHOWERS

At high energies, electromagnetic showers result from electrons and photons undergoing mainly bremsstrahlung and pair creation.



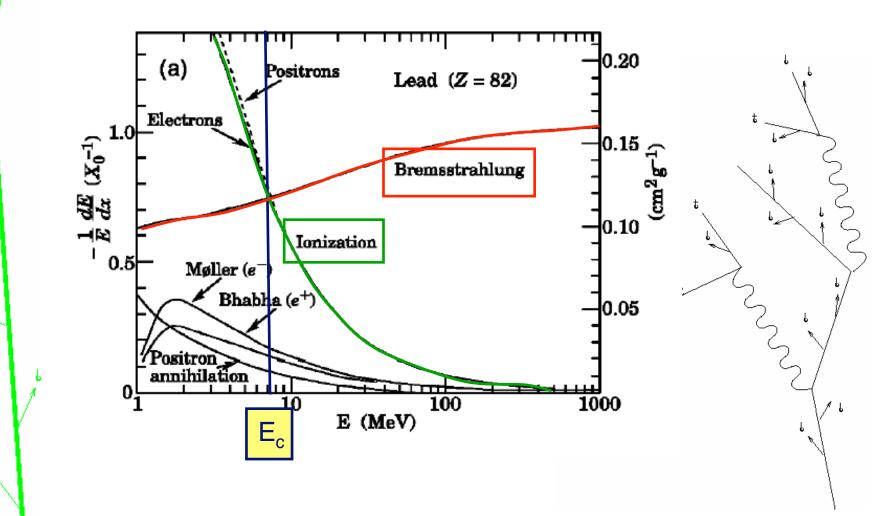
For high energy (GeV scale) electrons bremsstrahlung is the dominant energy loss mechanism.

For high energy photons pair creation is the dominant absorption mechanism.

Shower development is governed by these processes.

WHICH PROCESSES CONTRIBUTE for ELECTRONS

Electrons mainly loose their energy via ionization & Bremsstralung



b

IONISATION

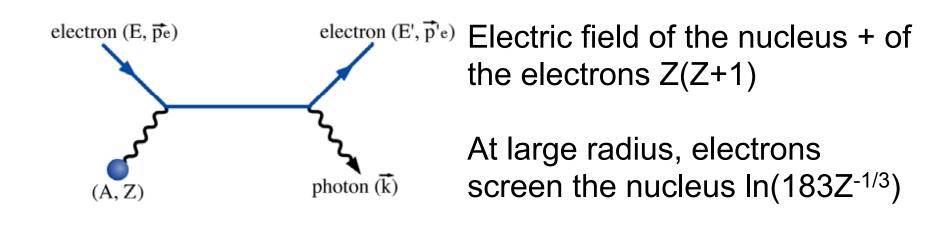
Interaction of charged particles with the atomic electronic cloud. Dominant process at low energy $E < E_c$ (defined in a moment) The whole incident energy is ultimately lost in the form of ionisation and excitation of the medium

$$\sigma \prec Z$$

$$-\frac{dE}{dx}\Big|_{ion} = N_A \frac{Z}{A} \frac{4\pi\alpha^2(\hbar c)^2}{m_e c^2} \frac{Z_i^2}{\beta^2} \left[\ln\frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 - \frac{\delta}{2} \right]$$

where E is the kinetic energy of the incident particle with velocity β and charge Z_i , I ($\approx 10 \times Z \text{ eV}$) is the mean ionization potential in a medium with atomic number Z.

Real photon emission in the electromagnetic field of the atomic nucleus



$$d\sigma/dk = 4 \alpha Z(Z+1)r_e^2 \ln(183Z^{-1/3})(4/3-4/3y+y^2)/k$$
 [D.F.]

where y=k/E and $r_e = \frac{1}{4\pi\epsilon_0} \cdot \frac{e^2}{m_e c^2} = 2.818 \ 10^{-15} \text{ m}$ classical radius of the electron.

→ For a given E, the average energy lost by radiation, dE, is obtained by integrating over y.

BREMSSTRAHLUNG

In this formulae Z(Z+1) ~ Z²
$$-\frac{dE}{dx}\Big|_{rad} = \left[4n \ \frac{Z^2 \alpha^3 (\hbar c)^2}{m_e^2 c^4} \ \ln \frac{183}{Z^{1/3}}\right] E$$

where n is the number of nucleus/unit volume.

dE/dx is conveniently described by introducing the radiation length X₀

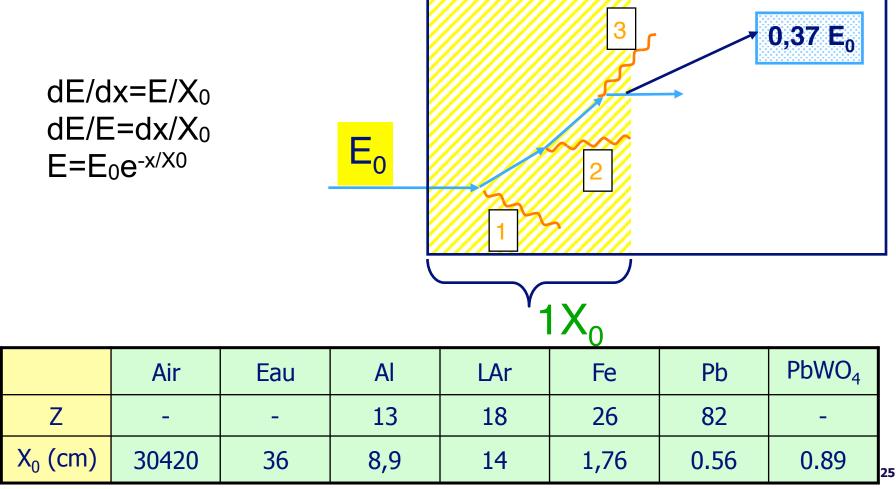
$$\frac{-\frac{dE}{dx}}{Brem} = \frac{E}{X_0} \qquad X_0 = \left[4n \ \frac{Z^2 \alpha^3 (\hbar c)^2}{m_e^2 c^4} \ \ln \frac{183}{Z^{1/3}}\right]^{-1} \text{g/cm}^2$$
Approximation $X_0 \approx \frac{180A}{Z^2} \ g.cm^{-2}$

 X_0 is most of the time expressed in [length] $X_0[g.cm^{-2}]/\rho$

RADIATION LENGTH

The radiation length is a "universal" distance, very useful to describe electromagnetic showers (electrons & photons)

 X_0 is the distance after which the incident electron has radiated (1-1/e) 63% of its incident energy



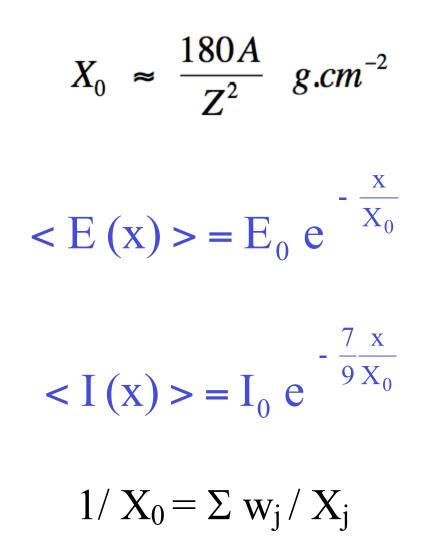
RADIATION LENGTH

Approximation

Energy loss by radiation

γ Absorption (e⁺ e⁻ pair creation)

For compound material



IONISATION: DETECTABLE

Critical Energy E _c			$\frac{dE}{dx}(E_c)\Big _{Brem} = \frac{dE}{dx}(E_c)\Big _{ioniz} \Longrightarrow E_c$				
	- 610 MeV]	Materials	Z	Ec (MeV)	X ₀ (cm)	
Solide	$E_c = \frac{6101007}{Z + 1.24}$		Liquid Argon	18	37	14	
Liquide	$E_c = \frac{710 MeV}{7 + 0.02}$		Fe	26	22	1.8	
	$^{-c}$ Z + 0.92		Lead	82	7.4	0.56	
			Uranium	92	6.2	0.32	

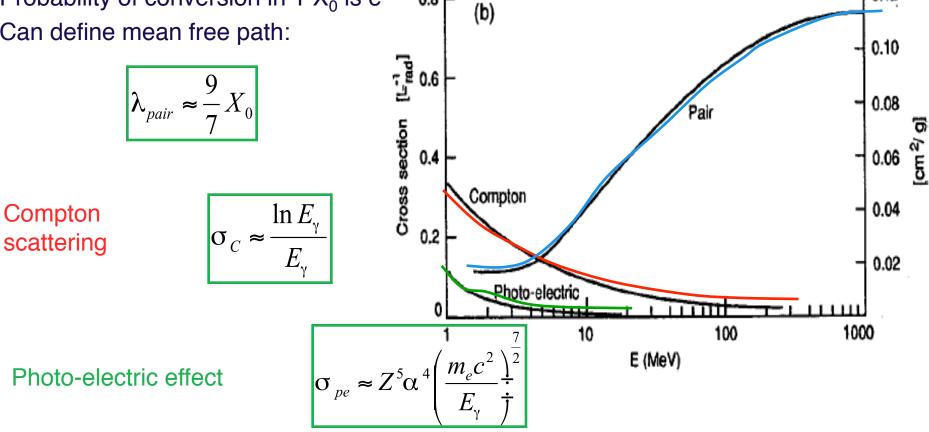
There are more ionising particles (E<E_c) in a dense medium

ENERGY LOSS in MATTER for PHOTONS

Pair Production

$$\sigma_{pair} \approx \frac{7}{9} \times \frac{A}{N_A} \times \frac{1}{X_0}$$

Probability of conversion in 1 X_0 is $e^{-7/9}$ 0.8 Can define mean free path:



0.12

PAIR PRODUCTION

Photon interaction with nucleus electric field or electrons if $E_{\gamma} > 2.m_{e.}c^{2}$.

photon (k)

$$\sigma_{pair} \sim 7/9 \text{ . } A/N_A \text{ . } 1/X_0 \\ \prec \text{ Z(Z+1)}$$

Cross-section is independent of E_{γ} (E_{γ} >1 GeV)

Conversion length $\lambda_{conv} = 9/7 X_0$

e⁺e⁻ pair is emitted in the photon direction $\theta \sim m_e/E_{\gamma}$

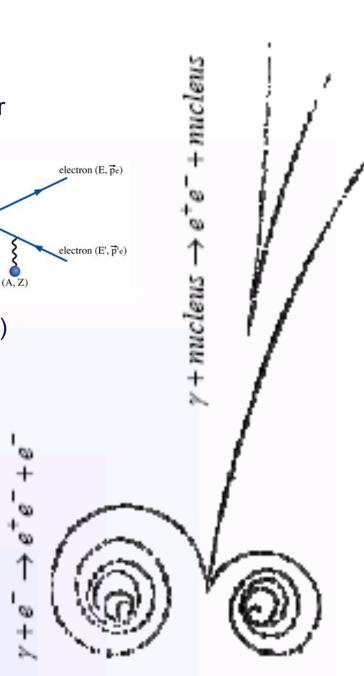


PHOTO-ELECTRIC EFFECT

Photon extracts an electron from the atom γ +atom \rightarrow e⁻+atom^{*}

Electrons are not free \rightarrow binding energy \rightarrow discontinuities

ĝ

section

cross

^ohotoelectric

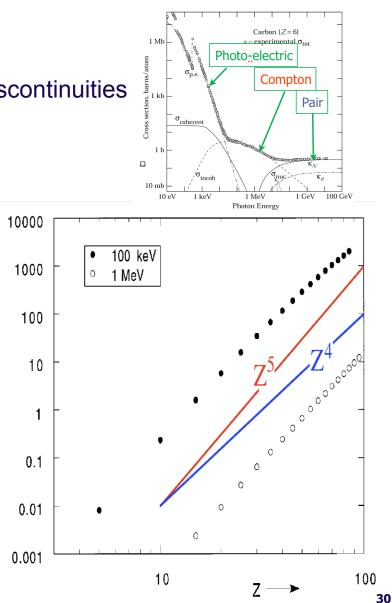
Cross-section

Strong function of the number of electrons

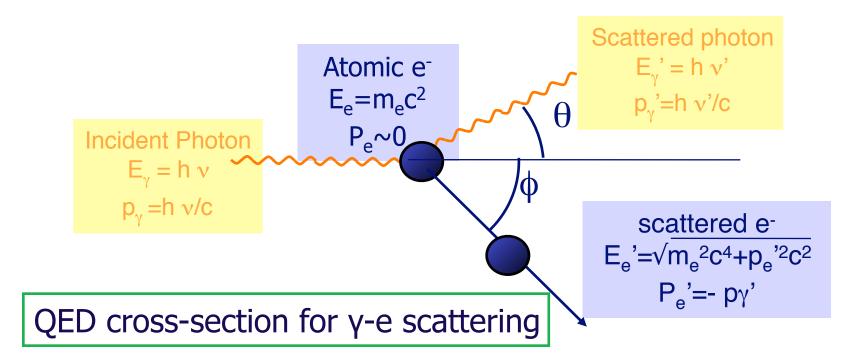
Dominant at very low energy

Electrons are emitted isotropically

$$\sigma \propto \frac{Z^5}{E^3}$$



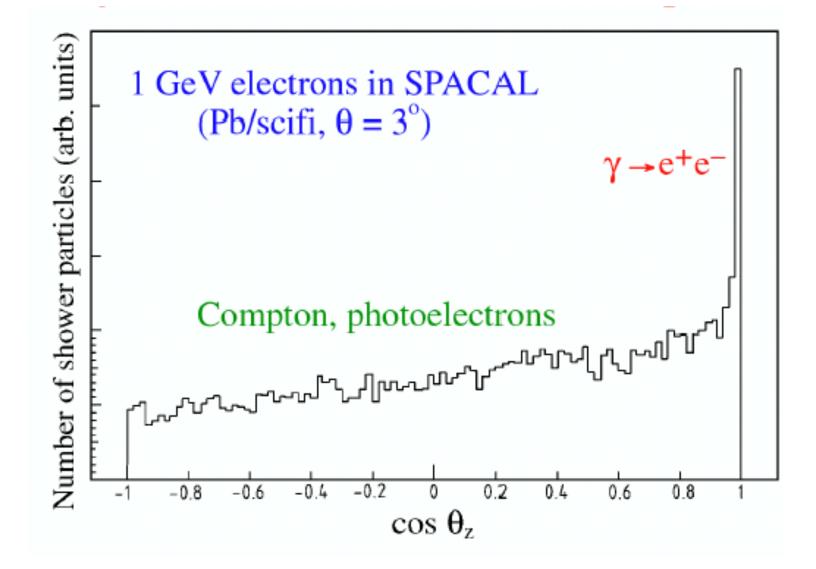
COMPTON SCATTERING

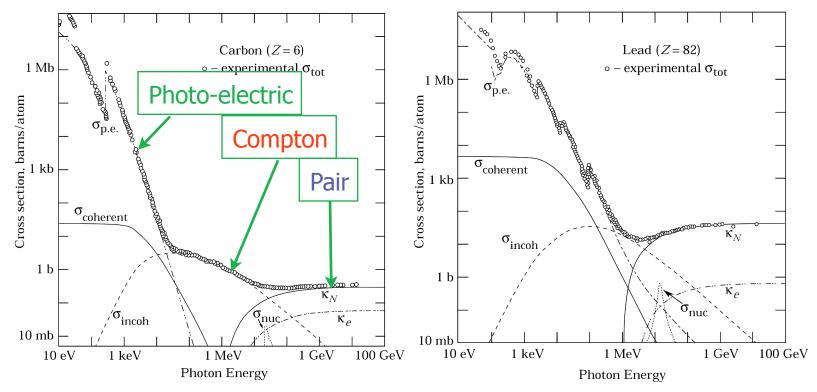


$$\sigma_{compton} \sim Z$$
 . In(E_{\gamma})/E_{\gamma}

Process dominant at $E\gamma \approx 100 \text{ keV} - 5 \text{ GeV}$

PHOTON ANGULAR DISTRIBUTION





Contributions to Photon Cross Section in Carbon and Lead

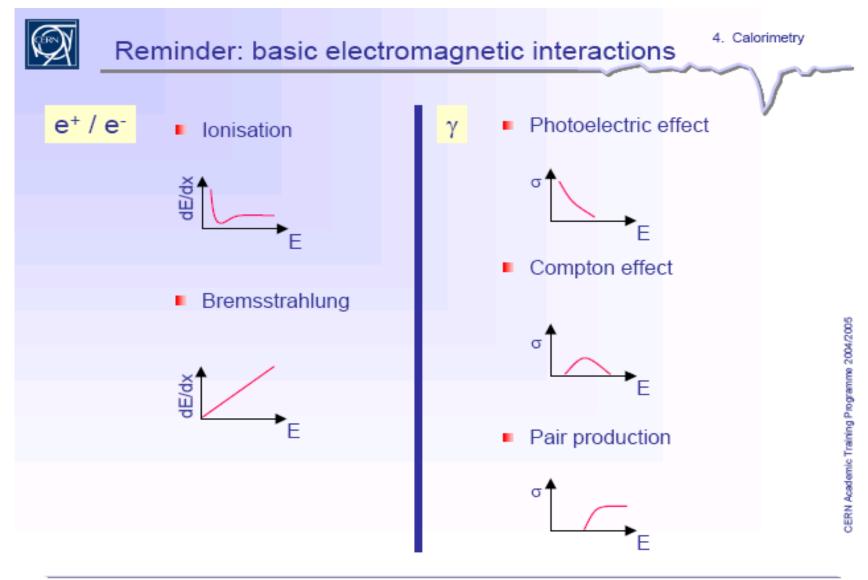
Figure 24.3: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes:

 $\sigma_{p.e.}$ = Atomic photo-effect (electron ejection, photon absorption)

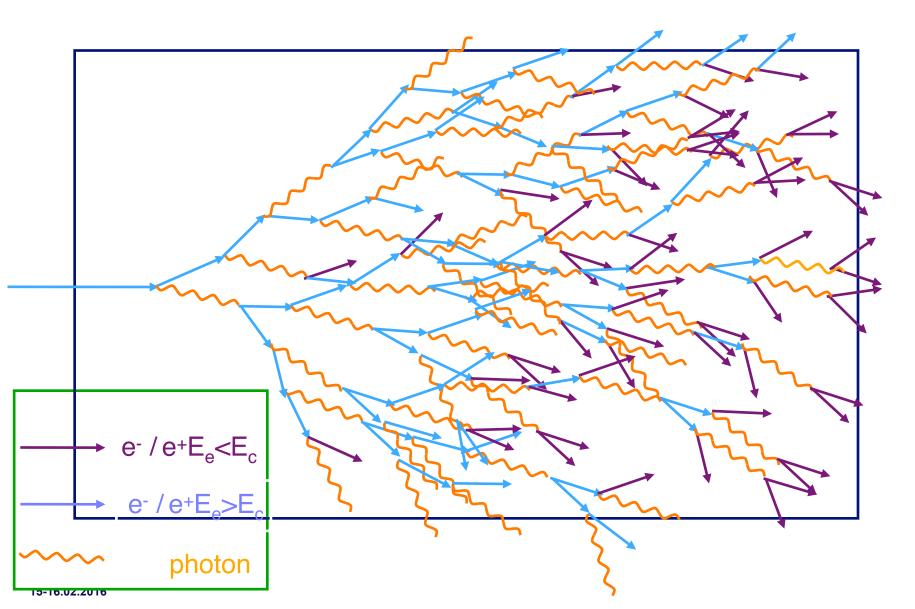
- $\sigma_{\text{coherent}} = \text{Coherent scattering}$ (Rayleigh scattering—atom neither ionized nor excited)
- $\sigma_{\text{incoherent}} = \text{Incoherent scattering (Compton scattering off an electron)}$
 - $\kappa_n =$ Pair production, nuclear field
 - κ_e = Pair production, electron field
 - $\sigma_{\rm nuc}$ = Photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle)

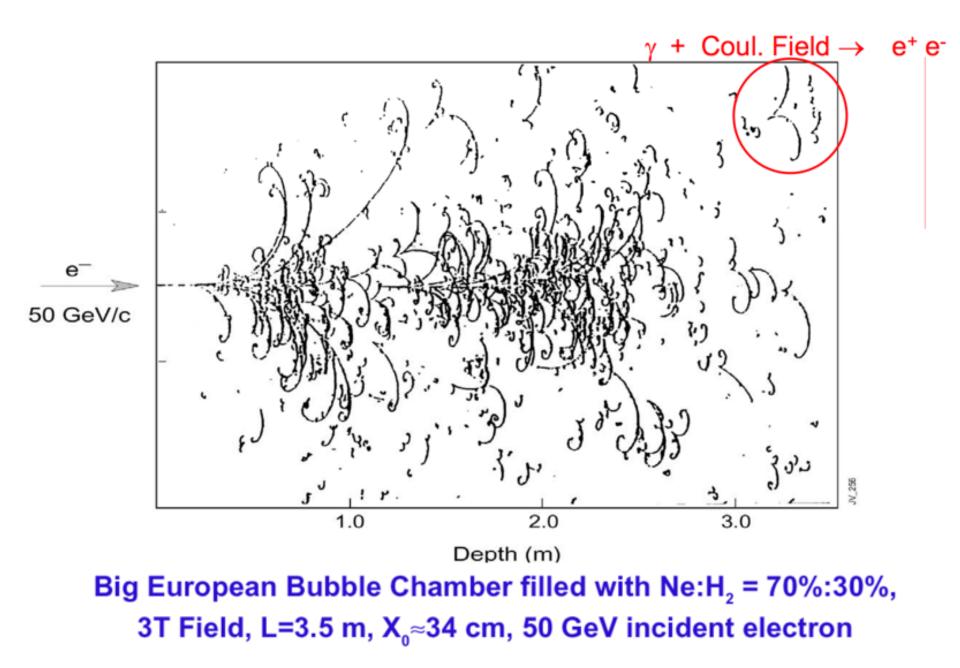
From Hubbell, Gimm, and Øverbø, J. Phys. Chem. Ref. Data 9, 1023 (80). Data for these and other elements, compounds, and mixtures may be obtained from http://physics.nist.gov/PhysRefData. The photon total cross section is assumed approximately flat for at least two decades beyond the energy range shown. Figures courtesy J.H. Hubbell (NIST).

SUMMARY: ELECTRONS vs PHOTONS



SCHEMATIC SHOWER DEVELOPMENT





SUMMARY: DEVELOPMENT of EM SHOWERS

The shower develops as a cascade by energy transfer from the incident particle to a multitude of particles (e^{\pm} and γ).

The number of cascade particles is proportional to the energy deposited by the incident particle.

The role of the calorimeter is to count these cascade particles.

The relative occurrence of the various processes is a function of the material (Z)

The radiation length (X_0) allows to universally describe the shower development

A SIMPLE EM SHOWER MODEL

Simple shower model: [from Heitler]

> Only two dominant interactions: Pair production and Bremsstrahlung ...

 γ + Nucleus → Nucleus + e⁺ + e⁻ [Photons absorbed via pair production]

 $e + Nucleus \rightarrow Nucleus + e + \gamma$ [Energy loss of electrons via Bremsstrahlung]

Shower development governed by X₀ ...

After a distance X_0 electrons remain with only $(1/e)^{th}$ of their primary energy ...

Photon produces e^+e^- -pair after $9/7X_0 \approx X_0 \dots$

Assume:

- $E > E_c$: no energy loss by ionization/excitation
- E < Ec : energy loss only via ionization/excitation

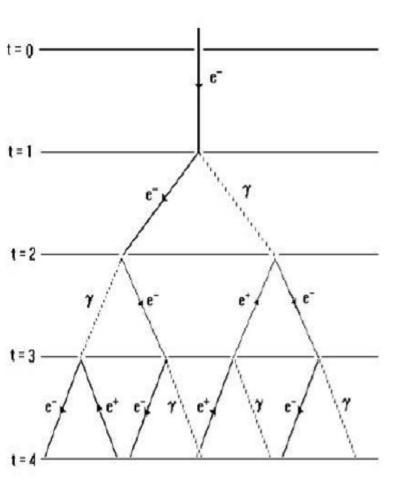
Use Simplification:

$$\begin{split} E_Y &= E_e \approx E_0/2 \\ [E_e \text{ looses half the energy}] \end{split}$$

 $E_e \approx E_0/2$ [Energy shared by e⁺/e⁻]

... with initial particle energy E₀

DEVELOPMENT of EM SHOWERS



For one electron of incident energy E₀

On average, for each X_0 , one multiplication occurs: $e^- \rightarrow e^- \gamma$ ou $\gamma \rightarrow e^+ e^-$

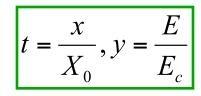
The energy of the secondary particles decreases at each cascade until E $\sim E_{\rm c}$

The number of detectable particles $(E < E_c)$ reaches a maximum $N \sim E_0 / E_c$, called shower maximum.

EM SHOWER DESCRIPTION: SIMPLE MODEL

The multiplication of the shower continues until the energies fall below the critical energy, E_{c}

A simple model of the shower uses variables scaled to X_0 and E_c



Electrons loose about 2/3 of their energy in $1X_0$, and the photons have a probability of 7/9 for conversion: $X_0 \sim$ generation length After distance t:

number of particles, $n(t) = 2^t$ energy of particle

es,
$$E(t) \approx \frac{E}{2^t}$$

Shower maximum: t_{max}

$$n(t_{\max}) \approx \frac{E}{E_c} = y$$
$$t_{\max} \approx \ln\left(\frac{E}{E_c}\right) = \ln y$$

A SIMPLE EM SHOWER MODEL

Simple shower model: [continued]

Shower characterized by:

Number of particles in shower Location of shower maximum Longitudinal shower distribution Transverse shower distribution

Number of shower particles after depth t:

$$N(t) = 2^t$$

Energy per particle after depth t:

→

$$E = \frac{E_0}{N(t)} = E_0 \cdot 2^{-t}$$

-
$$t = \log_2(E_0/E)$$

Longitudinal components; measured in radiation length ...

Total number of shower particles with energy E_1 :

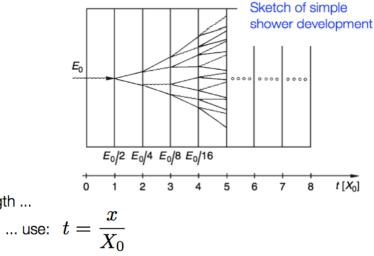
$$N(E_0, E_1) = 2^{t_1} = 2^{\log_2(E_0/E_1)} = \frac{E_0}{E_1}$$

Number of shower particles at shower maximum:

$$N(E_0, E_c) = N_{\max} = 2^{t_{\max}} = \frac{E_0}{E_c}$$

Shower maximum at:

$$t_{
m max} \propto \ln(E_0/E_c)$$



-

 $\propto E_0$

A SIMPLE EM SHOWER MODEL

Simple shower model: [continued]

Longitudinal shower distribution increases only logarithmically with the primary energy of the incident particle ...

Some numbers: $E_c \approx 10$ MeV, $E_0 = 1$ GeV → $t_{max} = ln \ 100 \approx 4.5$; $N_{max} = 100$ $E_0 = 100$ GeV → $t_{max} = ln \ 10000 \approx 9.2$; $N_{max} = 10000$

$$t_{\max}[X_0] \sim \ln \frac{E_0}{E_c}$$

EM LONGITUDINAL DEVELOPMENT

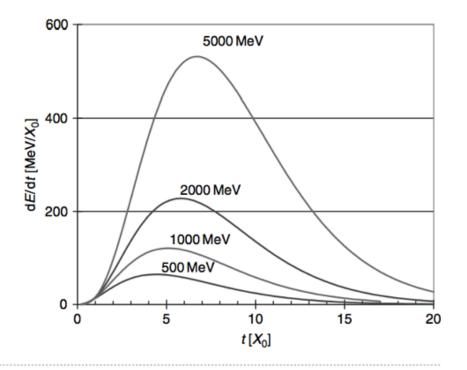
Longitudinal profile

Parametrization: [Longo 1975]

$$\frac{dE}{dt} = E_0 \ t^{\alpha} e^{-\beta t}$$

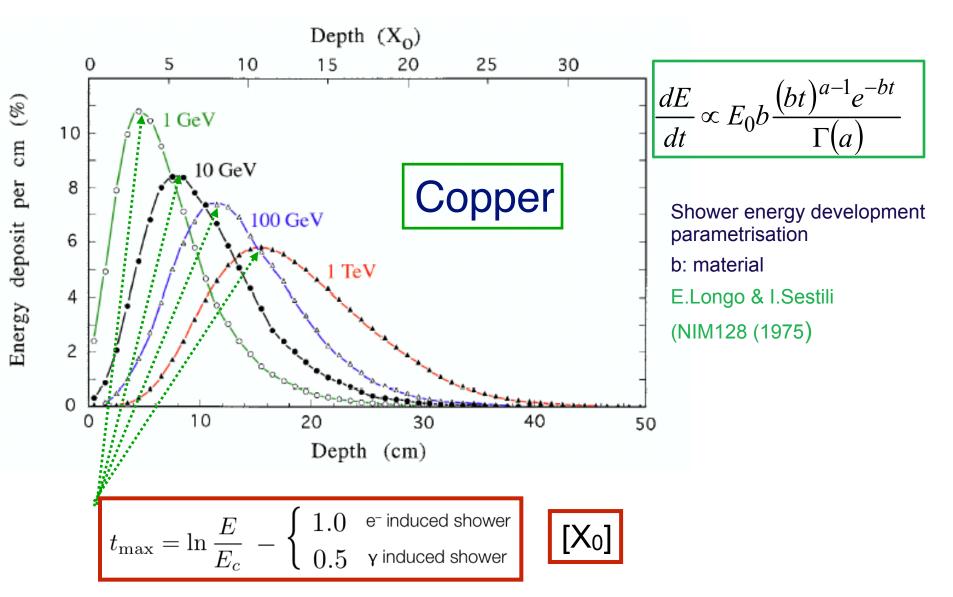
- α,β : free parameters
- t^α : at small depth number of secondaries increases ...
- $e^{-\beta t}$: at larger depth absorption dominates ...

Numbers for E = 2 GeV (approximate): $\alpha = 2, \beta = 0.5, t_{max} = \alpha/\beta$

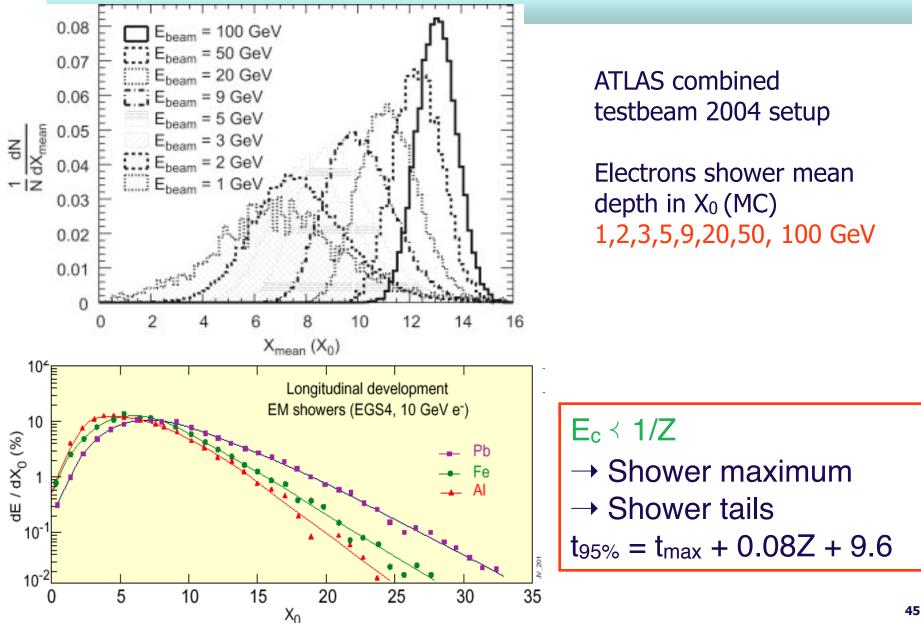


More exact [Longo 1985]

EM SHOWER LONGITUDINAL DEVELOPMENT



EM SHOWER LONGITUDINAL DEVELOPMENT



SEARCH FOR DECAYS OF THE Z⁰ INTO A PHOTON AND A PSEUDOSCALAR MESON

ALEPH Collaboration

D. DECAMP, B. DESCHIZEAUX, C. GOY, J.-P. LEES, M.-N. MINARD

Laboratoire de Physique des Particules (LAPP), IN2P3-CNRS, F-74019 Annecy-le-Vieux Cedex, France

Measurement made by ALEPH Electron/Photon longitudinal development: different

 $e^+e^- \rightarrow e^+e^$ $e^+e^- \rightarrow \gamma\gamma$

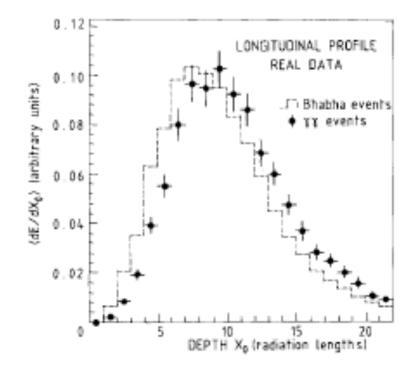


Fig. 1. Longitudinal profile of electromagnetic showers, both for electrons from $e^+e^- \rightarrow e^+e^-$ and for the $\gamma\gamma$ candidates. Both samples are real data. There is a clear shift by about 1 radiation length of the photon showers with respect to electron showers, as expected.

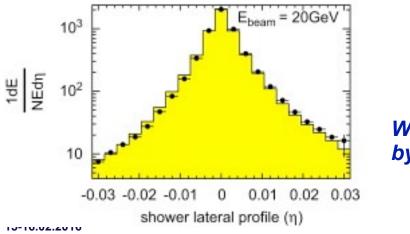
EM SHOWERS LATERAL DEVELOPMENT

Molière radius, R_m, scaling factor for lateral extent, defined by:

$$R_{M} = \frac{21MeV \times X_{0}}{E_{c}} \approx \frac{7A}{Z}g \times cm^{-2}$$

Gives the average lateral deflection of electrons of critical energy after 1X₀

- 90% of shower energy contained in a cylinder of $1R_m$
- 95% of shower energy contained in a cylinder of 2R_m
- 99% of shower energy contained in a cylinder of 3.5R_m



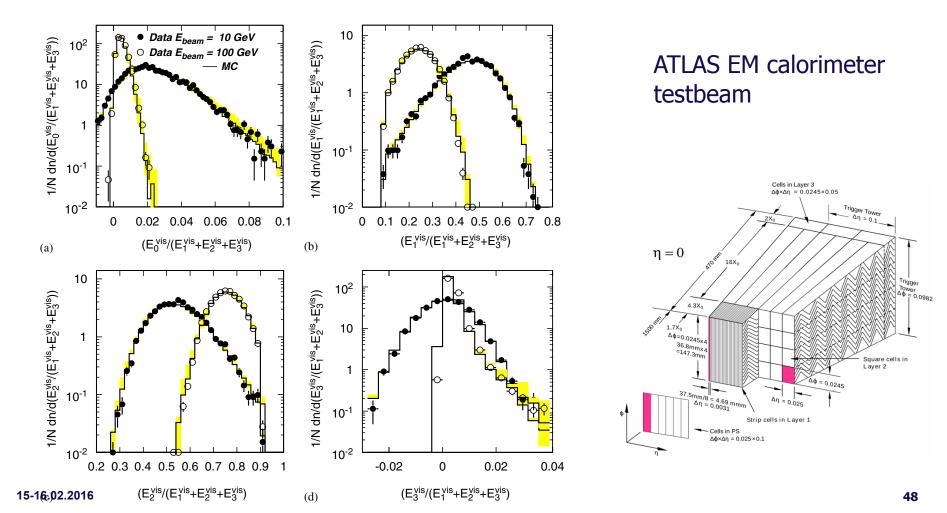
Width of core controlled by multiple scattering______ of e[±]

Width of periphery controlled by Compton photons

EM SHOWERS SIMULATIONS

Electromagnetic processes are well understood and can be very well reproduced by MC simulation:

A key element in understanding detector performance



PROPERTIES of ELECTROMAGNETIC CALORIMETERS

		Density	Ec	X_0	ρ_{M}	λ_{int}	(dE/dx) _{mip}
Material	Ζ	$[g_{3} cm]$	[MeV]	[mm]	[mm]	[mm]	$[MeV cm^{-1}]$
С	6	2.27	83	188	48	381	3.95
Al	13	2.70	43	89	44	390	4.36
Fe	26	7.87	22	17.6	16.9	168	11.4
Cu	29	8.96	20	14.3	15.2	151	12.6
Sn	50	7.31	12	12.1	21.6	223	9.24
W	74	19.3	8.0	3.5	9.3	96	22.1
Pb	82	11.3	7.4	5.6	16.0	170	12.7
²³⁸ U	92	18.95	6.8	3.2	10.0	105	20.5
Concrete	-	2.5	55	107	41	400	4.28
Glass	-	2.23	51	127	53	438	3.78
Marble	-	2.93	56	96	36	362	4.77
Si	14	2.33	41	93.6	48	455	3.88
Ge	32	5.32	17	23	29	264	7.29
Ar (liquid)	18	1.40	37	140	80	837	2.13
Kr (liquid)	36	2.41	18	47	55	607	3.23
Polystyrene	-	1.032	94	424	96	795	2.00
Plexiglas	-	1.18	86	344	85	708	2.28
Quartz	-	2.32	51	117	49	428	3.94
Lead-glass	-	4.06	15	25.1	35	330	5.45
Air 20°, 1 atm	-	0.0012	87	304 m	74 m	747 m	0.0022
Water	-	1.00	83	361	92	849	1.99

The energy deposited in the calorimeters is converted to active detector response

•
$$E_{vis} \le E_{dep} \le E_0$$

Main conversion mechanism

- Cerenkov radiation from e
- Scintillation from molecules
- Ionization of the detection medium

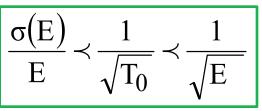
Different energy threshold \mathbf{E}_{th} for signal detectability

EM ENERGY RESOLUTION

Detectable signal is proportional to the number of potentially detectable particles in the shower $N_{tot} \prec E_0/E_c$

Total track length $T_0 = N_{tot} \cdot X_0 \sim E_0/E_c \cdot X_0$

The ultimate energy resolution



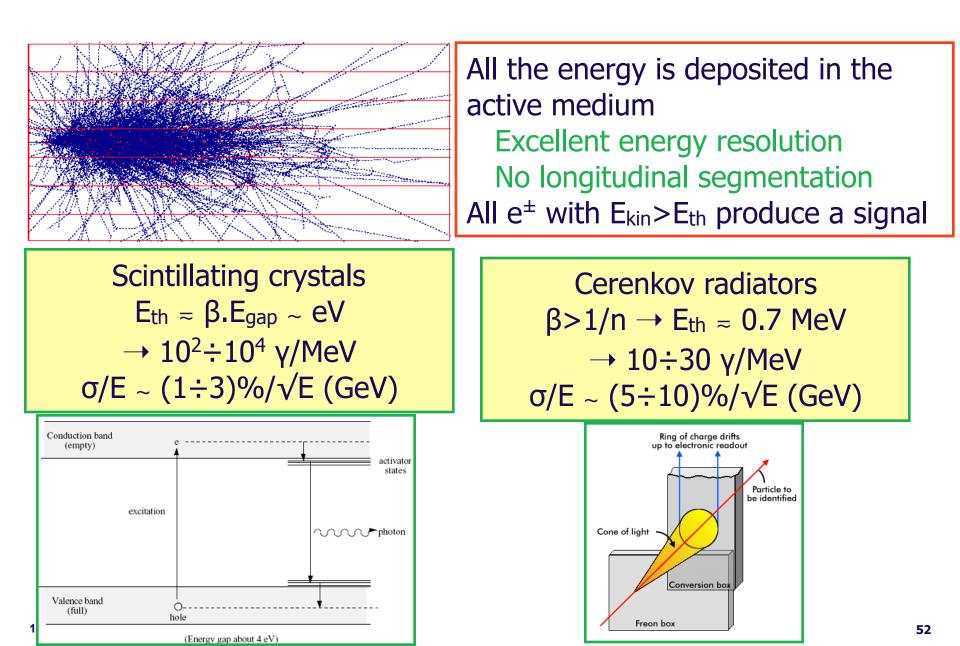
Detectable track length $T_r = f_s$. T_0 where f_s is the fraction of N_{tot} which can be detected by the involved detection process (Cerenkov light, scintillation light, ionisation) $E_{kin} > E_{th}$

Converting back to materials (X₀ \prec A/Z², E_c \prec 1/Z) and fixing E

Maximise detection fs Minimise Z/A

$$\frac{\sigma(E)}{E} \propto \frac{1}{\sqrt{f_s}} \sqrt{\frac{E_c}{X_0}} \propto \frac{1}{\sqrt{f_s}} \sqrt{\frac{Z}{A}}$$

HOMOGENEOUS CALORIMETERS



EXAMPLE

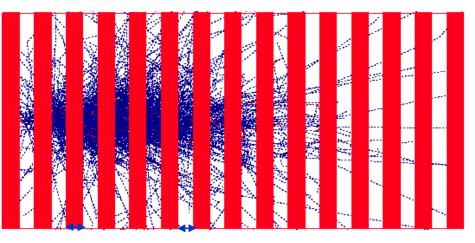
Take a Lead Glass crystal $E_c = 15 \text{ MeV}$ produces Cerenkov light Cerenkov radiation is produced par e[±] with $\beta > 1/n$, i.e E > 0.7MeV

Take a 1 GeV electron At maximum 1000 MeV/0.7 MeV e^{\pm} will produce light Fluctuation $1/\sqrt{1400} = 3\%$

In addition, one has to take into account the photon detection efficiency which is typically 1000 photo-electrons/GeV: $1/\sqrt{1000}\sim 3\%$

Final resolution $\sigma/E \sim 5\%/\sqrt{E}$

SAMPLING CALORIMETERS

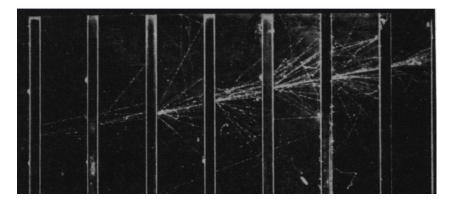


Shower is sampled by layers of an active medium and dense radiator Limited energy resolution Longitudinal segmentation Only e^{\pm} with $E_{kin} > E_{th}$ of the active layer produce a signal

Absorber (high Z): typically Lead, Uranium

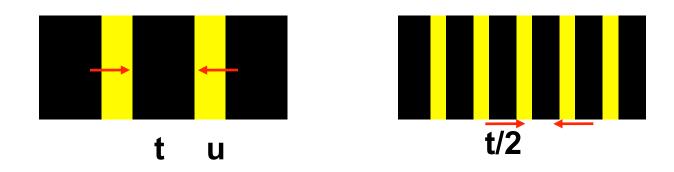
Active medium (low Z): typically Scintillators, Liquid Argon, Wire chamber

Energy resolution of sampling calorimeter dominated by fluctuations in energy deposited in the active layers



 $\sigma(E)/E \sim (10 \div 20)\%/\sqrt{E}$ (GeV)

SAMPLING CALORIMETERS

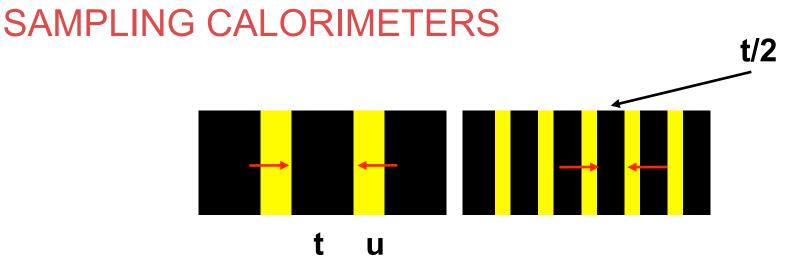


Sampling frequency is defined by the the thickness t (in units of X_0) of the passive layers: number of times a high energy electron or photon shower is sampled

The thinner the passive layer, the better

Sampling fraction is defined by the thickness of the active layer

 $f_{\rm S} = u.dE/dx_{\rm active}/[u.dE/dx_{\rm active} + t.dE/dx_{\rm passive}]$ (u,t in gcm⁻², dE/dx in MeV/gcm⁻²). for minimum ionising particles.



Most of detectable particles are produced in the absorber layers Need to enter the active material to be counted/measured The number of crossing of a unit "cell" N_x, using the Total Track Length $N_x = TTL/(t+u) = E/E_c(t+u) = E/\Delta E$ where ΔE is the energy lost in a unit cell t+u

Assuming the statistical independence of the crossings, the fluctuations on Nx represent the "sampling fluctuations" $\sigma(E)_{samp}$

$$\sigma(E)_{samp/}E = \sigma(N_x)/N_x = 1/\sqrt{N_x} = [\Delta E(GeV)/E(GeV)]^{\frac{1}{2}} = a/\sqrt{E}$$

a is called the sampling term

SAMPLING FRACTION

The actual signal produced by the calorimeter is proportional $E.f_s=\sum u.dE/dx$

If fs is too small, the collected signal will be affected by electronics noise.

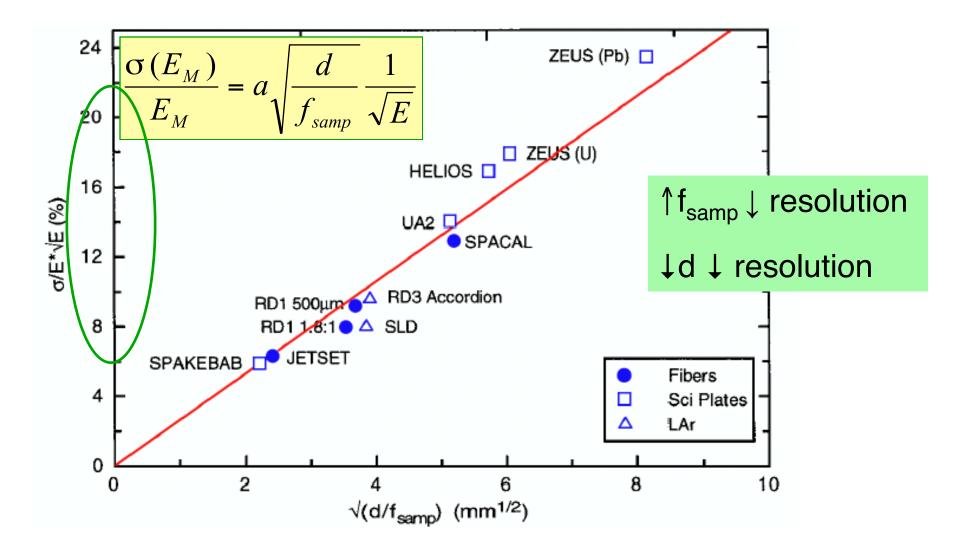
The dominant part of the calorimeter signal is not produced by minimum ionising particles (m.i.p.), but by low-energy electrons and positrons crossing the signal planes.

One defines the fractional response f_{R^i} of a given layer i as the ratio of energy lost in the active and of sum of active+passive layers:

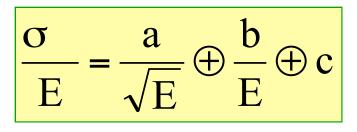
 $f_{R^{i}} = E^{i}_{active} / (E^{i}_{active} + E^{i}_{passive})$ with $\sum^{i} (E^{i}_{active} + E^{i}_{passive}) = E_{0}$

 $f_R/f_s \sim e/mip \sim 0.6$ when $Z_{passive} >> Z_{active}$ due to transitions effects & low energy particles not reaching the active medium

ENERGY RESOLUTION for SAMPLING CALORIMETERS



ENERGY RESOLUTION



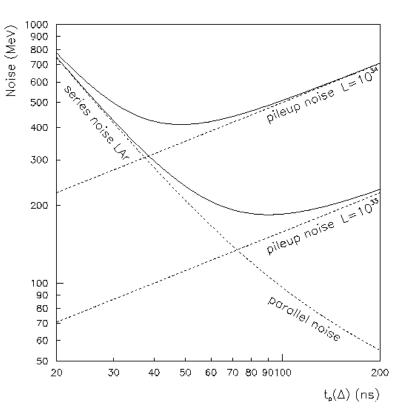
a the stochastic term accounts for Poisson-like fluctuations naturally small for homogeneous calorimeters takes into account sampling fluctuations for sampling calorimeters
b the noise term (hits at low energy) mainly the energy equivalent of the electronics noise at LHC in particular: includes fluctuation from non primary interaction (pile-up noise)
c the constant term (hits at high energy) Essentially detector non homogeneities like intrinsic geometry, calibration but also energy leakage

NOISE TERM WITH PILE-UP

Electronics noise vs pile-up noise

Electronics integration time was optimized taking into account both contributions for LHC nominal luminosity if 10³⁴cm⁻²s⁻¹

Contribution from the noise to an electron is typically ~ 300-400 MeV at such luminosity



THE CONSTANT TERM

The constant term describes the level of uniformity of response of the calorimeter as a function of position, time, temperature and which are not corrected for.

Geometry non uniformity

Non uniformity in electronics response

Signal reconstruction

Energy leakage

Dominant term at high energy

Correlated contributions	Impact on uniformity	ATLAS LAr EMB testbeam
Calibration	0.23%	
Readout electronics	0.10%	
Signal reconstruction	0.25%	
Monte Carlo	0.08%	
Energy scheme	0.09%	
Overall (data)	0.38% (0.34%)	
Uncorrelated	P13	P15
Lead thickness	0.09%	0.14%
Gap dispersion	0.18%	0.12%
Energy modulation	0.14%	0.10%
Time stability	0.09%	0.15%
Overall (data)	0.26% (0.26%)	0.25% (0.23%)

Interlude muons

MUONS INTERACTING with MATTER

Muons are like electrons but behave differently when interacting with matter (at a given energy).

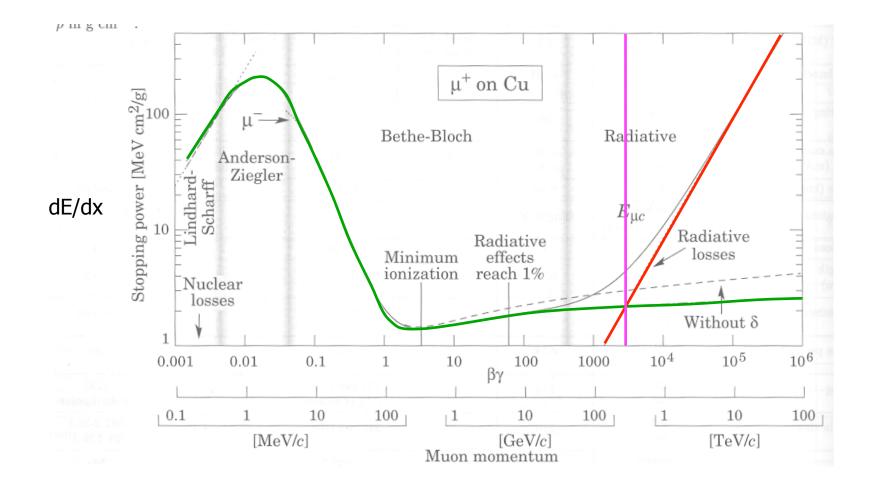
Bremsstralhung process is ~ 1/m²

$$\left.\begin{array}{c} m_{e}=0.519 \; \text{MeV/c}^{2} \\ m_{\mu}=105,66 \; \text{MeV/c}^{2} \end{array}\right\} \; m\mu \; / \; m_{e} \; \sim 200 \; \Rightarrow \; (m\mu \; / \; me \;)^{2} \sim 40000 \\ \end{array}$$

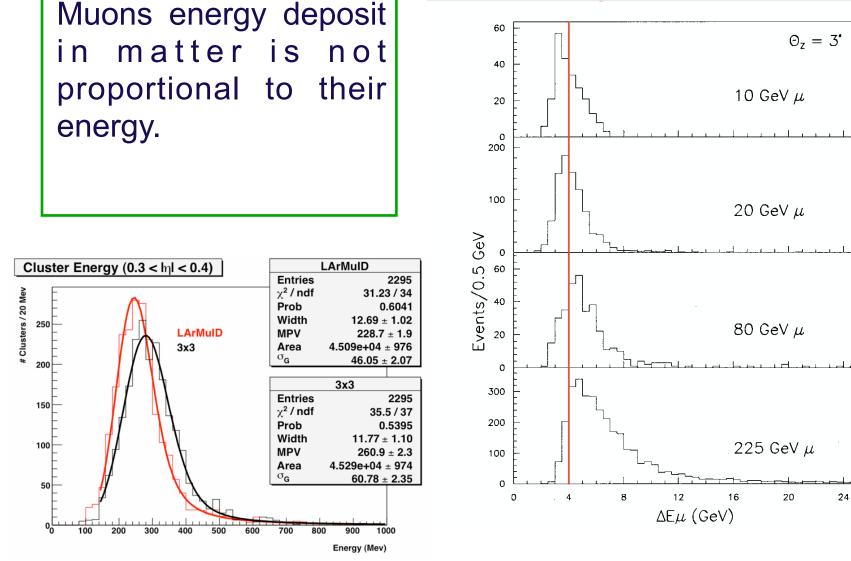
Contrary to electrons, muons (E<100GeV) loose energy mainly via ionization with

 $E_c(\mu)$ =(m_µ /m_e)² x E_c(e) E_c (μ)≈200 GeV in lead

MUONS in MATTER



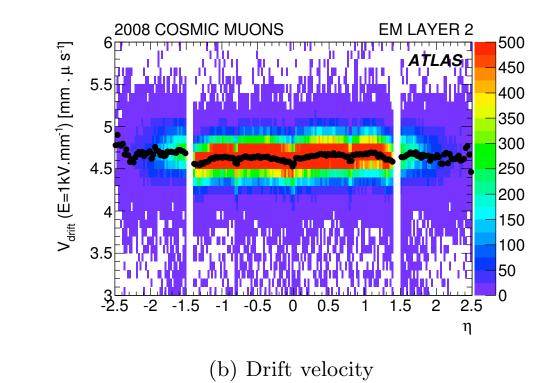
ENERGY DEPOSIT of MUONS in MATTER

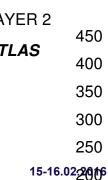


 $Cosmic \mu$ in ATLAS LAr EM barrel

MUONS for CALORIMETERS

250Muons deposit very little energy in calorimeter: dE/dx . x200Except for catastrophic energy loss (γ emission)150100They are nice tools to assess calorimeter response uniformityat low energy200-2.5-2.5-2.5-1-0.50They are nice clean probes to analyse the calorimeter geometry





End of interlude