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Heavy-lon Collisions and Elliptic flow V,

Beam’s eye view of a Particles prefer to be “in plane”:
non-central collision:
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Heavy-lon Collisions and Triangular flow V,

dN/dd ~V,;cos(3d)



In Heavy-lon
collisions (e.g.
Au+Au, P+Pb),
V,, V3, V, ...are
all measured
experimentally

e v,(ALICE) m Vv,(ALICE) a Varw, (ALICE)
o v, (ATLAS) o v, (ATLAS) A Ve, (ATLAS)
v v, (CMS)
* Vv, (STAR)

ALICE Pb-Pb | s =2.76 TeV
1 | L1 1

[ [

| I L1 1

I Ll | L1 I L1 1 I L1 1 I L1

2

4

6

1 | | I L1
8 10 12 14 16 18 20




Hydro well describes A-A collisions

0.2 : \

Vo — | ATLAS 10-20%, EP Contitutes major

0.15 | piece of evidence
N for formation of
< 0.1 Quark-Gluon
= Plasma in the
0.05 | laboratory!

[Gale et al. 2012]



Hydrodynamics




Hydrodynamics

Hydrodynamics converts gradients into velocities



Hydrodynamics

Hydrodynamics converts gradients into velocities
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(Relativistic) Hydro History

Hydro (gradient) order

1st

Navier & Stokes




(Relativistic) Hydro Equations: Transport coefficients

Hydro (gradient) order

Oth 1 st an
Speed of sound Shear and bulk Second order

C viscosities N & ¢ coefficients: T, A;, A,, A,
K; K*I g]_l Ez: 531---

S

Equilibrium Non-equilibrium, but “Far” from Equilibrium
“close” to equilibrium



Example: Effective Pressure in Hydro

* Ideal Hydrodynamics: T?*=T*" =diag(-¢,P,P,P)
Just equilibrium pressure
* Navier-Stokes: T2P=Teb , +1 ; t@b=-n ¢2°; so Peff=P-n ¥ u
Equilibrium pressure+ “small” corrections
* 2"d order hydro (BRSSS) : T*=T*F ,+m?"; D, m?P=-(r®*+ n 6°°)/t,

Non-equilibrium pressure; OK as long as close to NS



Can this be checked?

* Simple setup for equilibration: space-time initially at rest starts to
expand in one dimension (“Bjorken flow”); matter reacts to ST

ds® = —dt* + dz* + dy* + g(t)dL*
e t<<0: g(t)=1 (Minkowski)
* t>>0: g(t)=t? (Bjorken)
* g(t) interpolating between Minkowski and Bjorken
ST flat except for small region around t=0

[Keegan et al, 1512.05347]



Can this be checked?

* Simple setup for equilibration: space-time initially at rest starts to
expand in one dimension (“Bjorken flow”); matter reacts to ST

ds® = —dt* + dz* + dy® + g(t)dL?

 Simulate solution exactly (using AdS/CFT & kinetic theory) and
compare to hydrodynamics

* Pressure anisotropy: “how far from equilibrium”  Pr 1 —4H(t)

P, 1+2H(t)

2n g'(t)
3ag(t)T(t)"

* Navier-Stokes Hys(t) =
[Keegan et al, 1512.05347]
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“Unreasonable” Effectiveness of Hydro

* Hydrodynamics describes exact result when non-equilibrium
corrections are 50-80%

e Order unity deviation from Equilibrium Dynamics!
* (2" order) Hydro works for non-equilibrium situations!



s this relevant for Heavy-lon Physics?



Simulating Pb+Pb using AdS+hydro+cascade

Pressure Anisotropy
Ph4Pb @ s = 2,76 TeV

no hydro matching

anal ytic T<<I
start AdS/CFT code
AdS/CFT [va n der

start hydro code

hydro Schee et al,,
de cod
perfoot 1SOLTOpY 1307.2539]




Simulating Pb+Pb using AdS+hydro+cascade

Hydro velocity profile at =1 fm/c
Pb+Pb @ Vs =2.76 TeV
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Reality-check: comparison to exp’ data
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Non-equilibrium dynamics in Pb+Pb

* Pressure anisotropy O(1) in hydro simulations of HIC (all hydro groups)
* Clear non-equilbrium phenomenal!
* Nevertheless, can be described by (2"? order) hydro!

* Applicability of hydro not obvious from “standard” mean-free path
argument (mean free path ~ system size)

* Needed first-principles strong-coupling dynamics (e.g AdS/CFT) to verify

Why does it work? When does hydro break down?



Why does it work?

e | do not know...

e ...but | have an argument!



Hydro vs. Non-hydro modes

* Hydro modes: genuine low energy degrees of freedom (EFT)
* Non-hydro modes: everything else

As long as non-hydro modes are not (strongly) excited, hydro
offers a good description!

|Il

This criterion is not (trivially) related to “usual” mean free path
vs. system size. Thus hydro may work in non-equilibrium
situations.



What are non-hydro modes?

* Non-hydro QNMs in black holes

-4 -2 . 4

e Branch cuts in kinetic theory S e
kty=1 .
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[PR, 1512.02641]



New criterion for applicability of hydro

Hydrodynamics good approximation of non-equilibrium
dynamics as long as hon-hydro modes not excited



What happens if non-hydro modes excited?

* Non-hydrodynamic transport

* Example: pressure anisotropy in homogeneous system, e.g.
Teb=diag(-€,P,P;,P;+AP)

* Hydrodynamics: no change of initial state (no flow in hom’ system)

* Actual QFT evolution AP/E

[Heller et al, 1304.5172] 4

_af 02 04,06 08 10 1.2

— 8y Pure non-hydro transport!



How to test if non-hydro modes excited?

e 2" order hydro has non-hydro mode controlled by T,
* Can test sensitivity of final results on T,
* Practical criterion: vary t; by factor 2, see how much results change

 Large variations: strong non-hydro contribution, hydro has broken
down

* Small variations: weak non-hydro contribution, hydro is in good shape



Testing Hydro for light-heavy ion collisions

supersONIC: p+PD @ 5.02 TeV, n/s=0.16
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[PR, 1502.04745]



Testing Hydro for light-heavy ion collisions

* Non-equilibrium dynamics

* Sensitivity to non-hydro modes small
* Hydro reliable!

* Can make predictions!



Hydro for d-Au @ 200 GeV

supersONIC: d+Au @ 200 GeV, n/'s=0.08
0.2

heal-tvzl —=3 . e
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Hydro for *He-Au @ 200 GeV

supersONIC: He+Au @ 200 GeV, n's=0.08

W, (unid)
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Hydro for p-A from 7.7 GeV to 2760 GeV

supersONIC: v2 for p+A @ 7.7 to 5020 GeV
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How do predictions hold up to
experimental tests?



QM15: 3He+Au @ 200 GeV
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Several models can reproduce the v, measurements in d+Au
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QM15: p+Au @ 200 GeV

S e e "SONIC and superSONIC
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QM 15: p+Au, d+Au, 3He+Au @ 200 GeV

Glauber-like initial condition hydro + hadronic cascade
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QM15:

0+Pb @ 2760 GeV
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Comparison of hydro predictions to
experimental data

* Predictions from Hydro in small systems verified

 Reaction from colleagues?




Beware of models that never fail!



Hydro in p+p collisions



Dn/dy~5 for p-p

* Handful of particles
* Would not expect so few particles to behave as a fluid

For “rare” high-multiplicity events P. Bozek [0911.2392]; Casalderrey-
Solana & Wiedemann [0911.4400] conjecture:
Collective flow in pp collisions



13 NS ridge in pp
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The ridge yield does not significantly change with collision energy
(Confirmation by two experiments!)

[Loizides, QM15]




Testing Hydrodynamics in pp collisions



vy (pr=0.5 GeV)

Hydro for p-p collisions
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Hydro breaks down for
peripheral pp, but
seems OK for min-bias!

Naive min-bias result for
round protons matches
exp’ datall!

[Miller et al., 1512.05345]



Hydro with <5 particles

* Hydro with 5 particles does not make sense

* |f system is strongly coupled, there are no good quasiparticles, just
(quantum) fields

* |t is possible to derive hydrodynamics without ever using particle concepts
* |tisirrelevant how many particles there are in final state!
* |t is only marginally relevant that system is non-equilibrium

Hydro can apply to small systems if strongly coupled

Hydro for p-A |
Hydro for p-p !
Hydro for e*-e" ??7?



Looking for Hydro in e* e

* Use modern analysis techniques on “old” LEP data
* Hunt for the same type of signatures as found in pp
* Need “raw” data, cannot do with published results

Possible analysis from LEP data looking for collective effects Inbox

Jamie Nagle
to stefan, Peter, Dennis.Perepel., Paul, Kenneth |~

Aug B (6 days ago)

Hello Stefan (cc Peter, Dennis, Paul, Ken),

| was given your contact information from Bill Gary (UCR) as someone who might still have access to analyzing LEP data.

[..]



Hydrodynamics as Non-equilibrium Tool

* Hydrodynamics describes (and predicts) non-equilibrium systems
* Works when non-equilibrium corrections are O(1) “Large”
* This “unreasonable” success continues to be surprising to some

* Hydrodynamics does break down when non-hydro modes become
Important

* | would argue that we understand hydro and have it under control!

Let’s use hydrodynamics to study non-equilibrium
properties of QCD experiments!



Small systems as QCD laboratory

supersONIC: p.-::l.HE‘3'+ﬁu @ 200 GeV
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[PR, 1502.04745]



Conclusions

e (2" order) Hydro is genuine non-equilibrium tool

* Hydro reliable as long as non-hydro modes unimportant

e Can test importance of non-hydro modes in practice

* Nuclear Collisions offer experimental probe of non-eq’ effects
* The smaller the collision system, the larger the non-eq effects
* Predictions for QCD non-eq’ effects in light-heavy ion collisions
* Maybe there are some gems still in e+ e- data!



Thank youl!



Conclusions

* (2" order) Hydro is a tool for genuine non-equilibrium dynamics
* Hydro gives reliable results even is non-equilibrium corrections are O(1)

* Hydro Breaks down when non-hydro modes dominate evolution (early
times, far from equilibrium)
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Bonus Material
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Charged Hadron vy
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[Miller et al., 1512.05345]
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Hydro velocity profile at T=1 fm/c
Pb+Pb @ s =2.76 TeV
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dN/(2npt dpt dn) [GeV-2]
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