
  

Nonlinear dynamics of the 
Boltzmann equation in the FRW 

universe
Mauricio Martinez GuerreroMauricio Martinez Guerrero

Collaborators: D. Bazow, G. Denicol, J. Noronha and U. Heinz
Based on: PRL 116 022301 (2016), arXiv:1607.05245

The big bang and little bangs
Non equilibrium phenomena in cosmology and heavy ion 

collisions
CERN, August 15-26 2016

 



  

Motivation

● Exact solutions to the relativistic Boltzmann equation have been 
obtained within the relaxation time approximation (RTA) for 
rapidly expanding systems 

- Bjorken flow: Baym; PLB 138 (1984) 18

- Gubser flow: Denicol,Heinz, Martinez, Noronha and Strickland; 
PRL 113 (2014) 202301, PRD 90 (2014) 125026

● Those solutions have been useful to determine the accuracy 
and validity of hydrodynamical approximations for weakly 
coupled systems.  

● In this work we make a step forward by solving exactly the 
non-linear relativistic Boltzmann equation for an expanding gas 
with constant cross section in a spatially flat FRW spacetime.  
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Basics of the FRW universe



  

Metric of the (flat) FRW spacetime
For a spatially flat universe that 
expands homogeneously and 
isotropically 

Some important properties of the FRW metric are 
● Scale factor depends on time (i. e. a=a(t)) 
and the equation of state

● Invariant under the rescaling symmetry

● Invariant under spatial rotations & translations
● We will focus on the case of massless particles 



  

Conservation laws in the FRW universe
The most generic forms for the particle current and the 
energy momentum tensor in the FRW spacetime are 

For massless particles (P=3ρ1) the conservation laws read as 

whose solutions are 

In the LRF



  

Nonlinear Boltzmann equation in the FRW 
universe



  

The Boltzmann equation in the FRW universe

Spatial rotations + translations of the FRW metric 
    



  

The Boltzmann equation in the FRW universe

Thus, the Boltzmann equation in the FRW spacetime is  

Spatial rotations + translations of the FRW metric 
    



  

The Boltzmann equation in the FRW universe

Thus, the Boltzmann equation in the FRW spacetime is  

The collisional kernel is

Nonlinear terms ∼ f² 

Spatial rotations + translations of the FRW metric 
    



  

The Boltzmann equation in the FRW universe

Thus, the Boltzmann equation in the FRW spacetime is  

The collisional kernel is

Transition rate. For a constant cross section σ

Spatial rotations + translations of the FRW metric 
    



  

Non-linear evolution of the moments

● If f is the equilibrium distribution function ⇒ Mn = 1

● Deviations from equilibrium corresponds to  Mn ≠ 1

Different moments probe the distribution function in 
different kinematic regions of momentum space  

The n-th normalized moment of the distribution function read 
as 



  

Non-linear evolution of the moments
The evolution equation for the normalized energy moments

● This evolution equation was found 40 years ago by Krook, Wu and 
Bobylev (BKW) for a non-relativistic, spatially homogeneous and 
isotropic gas (static box).

●  Positivity condition: Mn(τ)>0 iff Mn(0)>0

● The equation of the n-th moment only couples to moments of the 
same or lower order. Thus, one can solve order by order!!!

● Conservation laws imply that M0(τ)=M1(τ)=1

● The fixed point of this evolution equation is Mn → 1 for all n.  

Absorbs the information about 
the expansion of the universe 



  

Laguerre moments
It is convenient to introduce the Laguerre moments 

Assoc. Laguerre polynomial 



  

Laguerre moments
It is convenient to introduce the Laguerre moments 

The Laguerre moments cn satisfy the differential equation  

Assoc. Laguerre polynomial 



  

Laguerre moments
It is convenient to introduce the Laguerre moments 

The Laguerre moments cn satisfy the differential equation  

Assoc. Laguerre polynomial 

● Conservation laws imply that c0(τ)=1 and c1(τ)=0

● The fixed point of this evolution equation is 

cn → δn0 for n⩾2  



  

Asymptotic behavior
The general solution of the Laguerre moments is    

Dominant at
late times Sizable contributions at 

early times

For instance, up to n=5, the solutions of the 
Laguerre moments look like    



  

Reconstructing the distr. function
The distribution function can be reconstructed from 
its moments as follows    

● The distribution function can be entirely reconstructed from 
either the Laguerre moments or the normalized moments 

● The thermal equilibrium is characterized by is Mn → 1 or  cn → δn0 

● The distribution function can be fully reconstructed for 
arbitrarily initial conditions once the moments' equations are 
solved.



  

Reconstructing the distr. function
The generic solution of the Laguerre moments 
implies    

● The distribution function is dominated by its linear part at late 
times. This component describes the dynamics of the slowest 
decaying modes.

● The non-linear component is important at early times. It carries 
the information of the thermalization of the high energy modes



  

An exact analytical solution to the nonlinear 
Boltzmann equation in the FRW spacetime



  

Exact analytical solution
An exact analytical solution to the moments' equation can 
be found for a particular non-equilibrated initial condition 
(Bobylev-Krook-Wu)   

Thus, we get 



  

Exact sol. of the energy moments

Late time behaviour:

● Mn     1 when            ∞τ  

● Moments with large n 

thermalize later.     
  

Early time behaviour:

● Mn  << 1 when  τ ≳ 0 

● System is far from        
equilibrium

     



  

Evolution of the distribution function 

● Soft modes thermalize 
first than the hard 
ones (“bottom-up”) 

● Formation of transient 
high energy tails   

● When          ∞  τ the 
system reaches 
equilibrium   

HARD 
MODES

SOFT 
MODES



  

Exact analytical solution
Warning: 

● the τ variable hides the information about the expansion of the system. 

● For massless particles, the scaling factor is 

and thus

● Notice that 

Non thermal energy tail



  

Linearized Boltzmann equation in the FRW 
universe



  

Linearized Boltzmann equation
It is common to expand around equilibrium f= feq +δf 

Conservation laws imply 

δM0=δM1=δc0=δc1=0



  

Linearized Boltzmann equation
It is common to expand around equilibrium f= feq +δf 

There is no mode by mode coupling 
in the linear approximation

Conservation laws imply 

δM0=δM1=δc0=δc1=0



  

Linearized Boltzmann equation
It is common to expand around equilibrium f= feq +δf 

There is no mode by mode coupling 
in the linear approximation

Conservation laws imply 

δM0=δM1=δc0=δc1=0



  

Linearized Boltzmann equation
It is common to expand around equilibrium f= feq +δf 

There is no mode by mode coupling 
in the linear approximation

No mode by mode coupling + full 
decoupling among different modes

Conservation laws imply 

δM0=δM1=δc0=δc1=0



  

Linearized Boltzmann equation

The decoupling among different moments means

● δcn are eigenfunction of the linearized collisional 
kernel with eigenvalues wn = (n-1)/(n+1)

● The distribution function can be entirely 
reconstructed from the linearized Laguerre moments 
  



  

Linearized Boltzmann equation

The decoupling among different moments means

● δcn are eigenfunction of the linearized collisional 
kernel with eigenvalues wn = (n-1)/(n+1)

● The distribution function can be entirely 
reconstructed from the linearized Laguerre moments 
  

● Depends only on the initial values of 
the Laguerre moments

● Asymptotic behavior depends on the 
slowest initially occupied Laguerre mode 

Each mode decays at a 
different decay rate wn 



  

RTA Boltzmann equation in the FRW universe



  

RTA Boltzmann equation
The relaxation time approximation reads as

relaxation time is given by 

● The general solution of the RTA Boltzmann is

● The moments of the RTA distribution function read    
 

Denicol et. al. :



  

Comparing nonlinear, linear and 
RTA predictions



  

Numerical results
We compare the evolution of the distribution function 
obtained from the nonlinear, linear and RTA Boltzmann 
equation for the following initial conditions

● ES-IC

● 1M-IC

● 2M-IC



  

Comparing energy moments 

● Differences increase 
as the order n of the 
moment increases

● All moments relax to 
the unity 
asymptotically

● RTA energy moments 
relax faster than the 
linear and nonlinear



  

Comparing energy moments 

● In the linear and nonlinear cases, energy moments mix Laguerre moments of 
different orders that decay with different rates. 

⇛ the asymptotic behavior of the energy moments in the linear and nonlinear 
case is determined by the first non-vanishing non-hydrodynamical mode 

For the ES-IC and 1M-IC the first non-vanishing non-hydro mode is c2 while 
for the 2M-IC is c3

● At late times the linear and nonlinear evolution converge



  

Comparing energy moments 

For the ES-IC

linear energy moments become 
negative which is unphysical. 



  

Comparing Laguerre moments 

Slowest modes are well described by the linear approximation and 
fairly well by the RTA.



  

Comparing Laguerre moments 

Mode by mode is responsible for exciting higher modes for n>2. This 
effect is absent in the RTA and linear approximation.



  

Linear vs. non-linear distribution 



  

Linear vs. non-linear distribution 

The transient energy 
tail behaviour is not 
capture by neither 
the linear nor the 
RTA approximation 

The thermal equilibrium state is 
achieved faster by the RTA, followed 
by the linear approx. and then the 
full nonlinear distribution fucntion 

The high energy tail 
behavior is not 
capture by neither 
the linear nor the 
RTA approximation 



  

Linear vs. non-linear distribution 

● The linear approximation can lead to unphysical results since f < 0 for 
far-from equilibrium initial conditions 

● Similar findings observed for the exact solution of the RTA Boltzmann 
equation in a system undergoing Gubser flow

Denicol et. al. PRD90, 125026 (2014), Heinz & Martinez, NPA943, 26 (2015)



  

Linear vs. non-linear distribution 

● For the RTA the rate of convergence to equilibrium is 1/α for all 
momentum.

● For the linear and nonlinear Boltzmann equation, the rate of convergence to 
equilibrium is controlled by the lowest (and slowest) non vanishing non-
hydrodynamic moment 



  

Entropy and non hydro modes



  

Entropy and non hydro modes
● Entropy is a statistical quantity (L. Boltzmann)

● From the four entropy flow one can study the entropy 
production rate 

● If we use the generic solution of the Boltzmann equation 
in the FRW we get 

   



  

Entropy and non hydro modes
● Entropy is a statistical quantity (L. Boltzmann)

● From the four entropy flow one can study the entropy 
production rate 

● If we use the generic solution of the Boltzmann equation 
in the FRW we get 

   

Remember that

● n=0,1 are determined by conservation laws (hydro modes)

● n ⩾2 correspond to higher moments whose evolution equation is 
obtained from the Boltzmann equation (non-hydro modes)



  

Entropy and non hydro modes
● Entropy is a statistical quantity (L. Boltzmann)

● From the four entropy flow one can study the entropy 
production rate

● If we use the generic solution of the Boltzmann equation 
in the FRW we get 

   

Thus

● The energy momentum tensor and particle density evolve 
according to the ideal hydrodynamics.  

● Entropy can be produced due to the presence of non-
hydrodynamical modes  



  

Entropy production

● The approach of the total entropy towards its 
equilibration value is fastest in the RTA.

● The rate of entropy production slows down at the 
rate of the lowest initially non hydro Laguerre 
moment for the linear and nonlinear Boltzmann 
equation

● There are no sizable differences for the total 
entropy produced between the linear and nonlinear 
Boltzmann eq. 

⇒ High energy tails do not contribute significantly 
to the total entropy produced by the system.

● The amount of entropy produced depends on the 
initial state   



  

Conclusions
● The mathematical problem of solving the nonlinear Boltzmann equation is 
recast into an infinite set of nonlinear ordinary differential equations for the 
moments of the distribution function.

● The expansion of the FLRW spacetime is slow enough for the system to move 
towards (and not away from) local thermal equilibrium, it is not sufficiently 
slow for the system to actually ever reach complete local equilibrium.

● The evolution of the high energy tails is not captured entirely neither by the 
linear nor RTA Boltzmann equation. Linear approximation probes additional 
high momentum details which are not resolved by the RTA approximation.

● Equilibration is achieved faster in the RTA, followed, in turn, by the linear 
and a fully nonlinear Boltzmann equation.

● Asymptotic behavior of the linear and nonlinear Boltzmann equation is not 
universal. Thermalization happens at a rate corresponding to the slowest 
initially nonzero non-hydrodynamical mode.

● Non-hydrodynamical modes decouple completely from the slowest 
hydrodynamical degrees of freedom. This results in the system flowing as an 
ideal fluid while at the same time producing entropy.      



  

Outlook

 It would be interesting

● Extend these studies for highly anisotropic systems: 

In heavy-ions: Bjorken and Gubser flow.

In cosmology: Bianchi universes.

● Study of weak turbulence (work in progress): adding source and sink 
term to the Boltzmann equation. The nonrelativistic case was studied 
by Nazarenko et. al. (2012)

Furthermore

● The exact analytical solution obtained here can be used as a test of 
numerical algorithms that solve the Boltzmann equation (e.g. in heavy 
ion collsions URQMD)
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