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Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid
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Symmetries in a statistical sense

Concrete realization breaks symmetry

Statistical properties are symmetric

Cosmology

Cosmological principle: universe homogeneous and isotropic

3D translation and rotation

→ 3D Fourier expansion

Heavy ion collisions

1D azimuthal rotation for central collisions

1D Bjorken boost (approximate)

→ Bessel-Fourier expansion [Floerchinger & Wiedemann (2013)]
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The problem of initial conditions
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larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.
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where ta are the generators of SU(Nc) in the fundamental
representation (The cell index j is omitted here). The
N2

c −1 equations (4) are highly non-linear and for Nc = 3
are solved iteratively.

The total energy density on the lattice at τ = 0 is given
by

ε(τ = 0) =
2

g2a4
(Nc − Re tr U!) +

1

g2a4
tr E2

η , (5)

where the first term is the longitudinal magnetic energy,
with the plaquette given by U j

! = Ux
j Uy

j+x̂ Ux†
j+ŷ Uy†

j .
The explicit lattice expression for the longitudinal elec-
tric field in the second term can be found in Refs. [32, 34].
We note that the boost-invariant CYM framework ne-
glects fluctuations in the rapidity direction. Anisotropic
flow at mid-rapdity is dominated by fluctuations in the
transverse plane but fluctuations in rapidity could have
an effect on the dissipative evolution; the framework to
describe these effects has been developed [35] and will
be addressed in future work. Other rapidity dependent
initial conditions are discussed in Ref. [36].

In Fig. 1 we show the event-by-event fluctuation in
the initial energy per unit rapidity. The mean was ad-
justed to reproduce particle multiplicities after hydro-
dynamic evolution. This and all following results are for
Au+Au collisions at RHIC energies (

√
s = 200 AGeV) at

midrapidity. The best fit is given by a negative binomial
(NBD) distribution, as predicted in the Glasma flux tube
framework [37]; our result adds further confirmation to a
previous non-perturbative study [38]. The fact that the
Glasma NBD distribution fits p+p multiplicity distribu-
tions over RHIC and LHC energies [24] lends confidence
that our picture includes fluctuations properly.

We now show the energy density distribution in the
transverse plane in Fig. 2. We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [4, 8]. In the latter, for ev-
ery participant nucleon, a Gaussian distributed energy
density is added. Its parameters are the same for ev-
ery nucleon in every event, with the width chosen to be
0.4 fm to best describe anisotropic flow data. We will
also present results for a model where the same Gaus-
sians are assigned to each binary collision. The resulting
initial energy densities differ significantly. In particular,
fluctuations in the IP-Glasma occur on the length-scale
Q−1

s (x⊥), leading to finer structures in the initial energy
density relative to the other models. As noted in [25],
this feature of CGC physics is missing in the MC-KLN
model.

We next determine the participant ellipticity ε2 and
triangularity ε3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective εn

[39], which makes these eccentricities a good indicator of
what to expect for vn. We define

εn =

√
⟨rn cos(nφ)⟩2 + ⟨rn sin(nφ)⟩2

⟨rn⟩ , (6)

FIG. 2. (Color online) Initial energy density (arbitrary units)
in the transverse plane in three different heavy-ion collision
events: from top to bottom, IP-Glasma, MC-KLN and MC-
Glauber [8] models.

where ⟨·⟩ is the energy density weighted average. The re-
sults from averages over ∼ 600 events for each point plot-
ted are shown in Fig. 3. The ellipticity is largest in the
MC-KLN model and smallest in the MC-Glauber model
with participant scaling of the energy density (Npart).
The result of the present calculation lies in between,
agreeing well with the MC-Glauber model using binary
collision scaling (Nbinary). We note however that this
agreement is accidental; binary collision scaling of eccen-
tricities, as shown explicitly in a previous work applying
average CYM initial conditions [40], does not imply bi-
nary collision scaling of multiplicities.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact pa-
rameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There
is no parameter dependence of eccentricities and trian-
gularities in the IP-Glasma results shown in Fig. 3. It
is reassuring that both are close to those from the MC-
Glauber model because the latter is tuned to reproduce
data even though it does not have dynamical QCD fluc-
tuations.

We have checked that our results for ε2, ε3 are insensi-

Problem for cosmology and heavy ion physics: precise initial conditions for
fluid dynamic description not known

240 24. The Cosmological Parameters

Table 24.1: Parameter constraints reproduced from Ref. 2 (Table
5) and Ref. 4 (Table 4), with some additional rounding. All columns
assume the ΛCDM cosmology with a power-law initial spectrum, no
tensors, spatial flatness, and a cosmological constant as dark energy.
Above the line are the six parameter combinations actually fit to the
data in the Planck analysis (θMC is a measure of the sound horizon
at last scattering); those below the line are derived from these. Two
different data combinations including Planck are shown to highlight
the extent to which additional data improve constraints. The first
column is a combination of CMB data only — Planck temperature
plus WMAP polarization data plus high-resolution data from ACT
and SPT — while the second column adds BAO data from the SDSS,
BOSS, 6dF, and WiggleZ surveys. For comparison the last column
shows the final nine-year results from the WMAP satellite, combined
with the same BAO data and high-resolution CMB data (which they
call eCMB). Uncertainties are shown at 68% confidence.

Planck+WP Planck+WP WMAP9+eCMB

+highL +highL+BAO +BAO

Ωbh2 0.02207 ± 0.00027 0.02214 ± 0.00024 0.02211 ± 0.00034

Ωch
2 0.1198 ± 0.0026 0.1187 ± 0.0017 0.1162 ± 0.0020

100 θMC 1.0413 ± 0.0006 1.0415 ± 0.0006 −

ns 0.958 ± 0.007 0.961 ± 0.005 0.958 ± 0.008

τ 0.091+0.013
−0.014 0.092 ± 0.013 0.079+0.011

−0.012

ln(1010∆2
R) 3.090 ± 0.025 3.091 ± 0.025 3.212 ± 0.029

h 0.673 ± 0.012 0.678 ± 0.008 0.688 ± 0.008

σ8 0.828 ± 0.012 0.826 ± 0.012 0.822+0.013
−0.014

Ωm 0.315+0.016
−0.017 0.308 ± 0.010 0.293 ± 0.010

ΩΛ 0.685+0.017
−0.016 0.692 ± 0.010 0.707 ± 0.010

scale-invariant density perturbations. But it is disappointing that there is
no sign of primordial gravitational waves, with the CMB data compilation
providing an upper limit r < 0.11 at 95% confidence [2] (weakening to
0.26 if running is allowed). The spectral index is clearly required to be less
than one by this data, though the strength of that conclusion can weaken
if additional parameters are included in the model fits.

For further details and all references, see the full Review of Particle
Physics. See also “Astrophysical Constants,” Table 2.1 in this Booklet.

Nevertheless, cosmology is now a precision science...

How is that possible ?
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Initial conditions in cosmology

Perturbations are classified into scalars, vectors, tensors

Vector modes are decaying, need not be specified

Tensor modes are gravitational waves, can be neglected for most purposes

Decaying scalar modes also not relevant

Growing scalar modes are further classified by wavelength

For relevant range of wavelength: close to Gaussian probability distribution

Almost scale invariant initial spectrum

〈δ(k) δ(k′)〉 = P (k) δ(3)(k + k′)

with

P (k) ∼ kns−1 ns = 0.968± 0.006 [Planck (2015)]
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Initial conditions heavy ion collisions

State of the art: Explicit realizations in terms of Monte-Carlo models

for a model where the same Gaussians are assigned to each
binary collision. The resulting initial energy densities
differ significantly. In particular, fluctuations in the impact
parameter dependent Glasma (IP-Glasma) occur on the
length scale Q!1

s ðx?Þ, leading to finer structures in the
initial energy density relative to the other models. As noted
in [26], this feature of CGC physics is missing in the MC-
KLN model.

We next determine the participant ellipticity "2 and
triangularity "3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective "n
[47], which makes these eccentricities a good indicator of
what to expect for vn. We define

"n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrn cosðn!Þi2 þ hrn sinðn!Þi2

p

hrni ; (6)

where h&i is the energy density weighted average. The
results from averages over '600 events for each point
plotted are shown in Fig. 3. The ellipticity is largest in
the MC-KLN model and smallest in the MC-Glauber
model with participant scaling of the energy density
(Npart). The result of the present calculation lies in
between, agreeing well with the MC-Glauber model using
binary collision scaling (Nbinary). We note, however, that
this agreement is accidental; binary collision scaling of
eccentricities, as shown explicitly in a previous work
applying average CYM initial conditions [48], does not
imply binary collision scaling of multiplicities.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact
parameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There is
no parameter dependence of eccentricities and triangular-
ities in the IP-Glasma results shown in Fig. 3. It is reassuring

that both are close to those from the MC-Glauber model
because the latter is tuned to reproduce data even though it
does not have dynamical QCD fluctuations.
We have checked that our results for "2, "3 are insensi-

tive to the choice of the lattice spacing a, despite a loga-
rithmic ultraviolet divergence of the energy density at
" ¼ 0 [49]. They are furthermore insensitive to the choice
of g, the ratio g2#=Qs, and the uncertainty in Bjorken x at
a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal pions
after evolution using MUSIC [5,50] with boost-invariant
initial conditions and shear viscosity to entropy density
ratio $=s ¼ 0:08. Average maximal energy densities of all
models were normalized to assure similar final multiplic-
ities. More pronounced hot spots, as emphasized previ-
ously [51], affect the particle spectra obtained from flow,
leading to harder momentum spectra in the present calcu-
lation compared to MC-KLN and MC-Glauber models.

FIG. 2 (color online). Initial energy density (arbitrary units) in
the transverse plane in three different heavy ion collision events:
from top to bottom, IP-Glasma, MC-KLN, and MC-Glauber [9]
models.
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FIG. 1 (color online). The IP-Glasma event-by-event distribu-
tion in energy for b ¼ 9 fm on the lattice compared to different
functional forms. The negative binomial distribution (NBD)
gives the best fit.

PRL 108, 252301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

252301-3

for a model where the same Gaussians are assigned to each
binary collision. The resulting initial energy densities
differ significantly. In particular, fluctuations in the impact
parameter dependent Glasma (IP-Glasma) occur on the
length scale Q!1

s ðx?Þ, leading to finer structures in the
initial energy density relative to the other models. As noted
in [26], this feature of CGC physics is missing in the MC-
KLN model.

We next determine the participant ellipticity "2 and
triangularity "3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective "n
[47], which makes these eccentricities a good indicator of
what to expect for vn. We define

"n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrn cosðn!Þi2 þ hrn sinðn!Þi2

p

hrni ; (6)

where h&i is the energy density weighted average. The
results from averages over '600 events for each point
plotted are shown in Fig. 3. The ellipticity is largest in
the MC-KLN model and smallest in the MC-Glauber
model with participant scaling of the energy density
(Npart). The result of the present calculation lies in
between, agreeing well with the MC-Glauber model using
binary collision scaling (Nbinary). We note, however, that
this agreement is accidental; binary collision scaling of
eccentricities, as shown explicitly in a previous work
applying average CYM initial conditions [48], does not
imply binary collision scaling of multiplicities.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact
parameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There is
no parameter dependence of eccentricities and triangular-
ities in the IP-Glasma results shown in Fig. 3. It is reassuring

that both are close to those from the MC-Glauber model
because the latter is tuned to reproduce data even though it
does not have dynamical QCD fluctuations.
We have checked that our results for "2, "3 are insensi-

tive to the choice of the lattice spacing a, despite a loga-
rithmic ultraviolet divergence of the energy density at
" ¼ 0 [49]. They are furthermore insensitive to the choice
of g, the ratio g2#=Qs, and the uncertainty in Bjorken x at
a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal pions
after evolution using MUSIC [5,50] with boost-invariant
initial conditions and shear viscosity to entropy density
ratio $=s ¼ 0:08. Average maximal energy densities of all
models were normalized to assure similar final multiplic-
ities. More pronounced hot spots, as emphasized previ-
ously [51], affect the particle spectra obtained from flow,
leading to harder momentum spectra in the present calcu-
lation compared to MC-KLN and MC-Glauber models.

FIG. 2 (color online). Initial energy density (arbitrary units) in
the transverse plane in three different heavy ion collision events:
from top to bottom, IP-Glasma, MC-KLN, and MC-Glauber [9]
models.

 11001

 dE/dy [GeV/fm]τ1/
0 200 400 600

E
ve

nt
s

1

210

310

 11001

b= 9 fm
NBD

Gaussian
Poisson

10

FIG. 1 (color online). The IP-Glasma event-by-event distribu-
tion in energy for b ¼ 9 fm on the lattice compared to different
functional forms. The negative binomial distribution (NBD)
gives the best fit.

PRL 108, 252301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

252301-3

for a model where the same Gaussians are assigned to each
binary collision. The resulting initial energy densities
differ significantly. In particular, fluctuations in the impact
parameter dependent Glasma (IP-Glasma) occur on the
length scale Q!1

s ðx?Þ, leading to finer structures in the
initial energy density relative to the other models. As noted
in [26], this feature of CGC physics is missing in the MC-
KLN model.

We next determine the participant ellipticity "2 and
triangularity "3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective "n
[47], which makes these eccentricities a good indicator of
what to expect for vn. We define

"n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrn cosðn!Þi2 þ hrn sinðn!Þi2

p

hrni ; (6)

where h&i is the energy density weighted average. The
results from averages over '600 events for each point
plotted are shown in Fig. 3. The ellipticity is largest in
the MC-KLN model and smallest in the MC-Glauber
model with participant scaling of the energy density
(Npart). The result of the present calculation lies in
between, agreeing well with the MC-Glauber model using
binary collision scaling (Nbinary). We note, however, that
this agreement is accidental; binary collision scaling of
eccentricities, as shown explicitly in a previous work
applying average CYM initial conditions [48], does not
imply binary collision scaling of multiplicities.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact
parameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There is
no parameter dependence of eccentricities and triangular-
ities in the IP-Glasma results shown in Fig. 3. It is reassuring

that both are close to those from the MC-Glauber model
because the latter is tuned to reproduce data even though it
does not have dynamical QCD fluctuations.
We have checked that our results for "2, "3 are insensi-

tive to the choice of the lattice spacing a, despite a loga-
rithmic ultraviolet divergence of the energy density at
" ¼ 0 [49]. They are furthermore insensitive to the choice
of g, the ratio g2#=Qs, and the uncertainty in Bjorken x at
a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal pions
after evolution using MUSIC [5,50] with boost-invariant
initial conditions and shear viscosity to entropy density
ratio $=s ¼ 0:08. Average maximal energy densities of all
models were normalized to assure similar final multiplic-
ities. More pronounced hot spots, as emphasized previ-
ously [51], affect the particle spectra obtained from flow,
leading to harder momentum spectra in the present calcu-
lation compared to MC-KLN and MC-Glauber models.

FIG. 2 (color online). Initial energy density (arbitrary units) in
the transverse plane in three different heavy ion collision events:
from top to bottom, IP-Glasma, MC-KLN, and MC-Glauber [9]
models.

 11001

 dE/dy [GeV/fm]τ1/
0 200 400 600

E
ve

nt
s

1

210

310

 11001

b= 9 fm
NBD

Gaussian
Poisson

10

FIG. 1 (color online). The IP-Glasma event-by-event distribu-
tion in energy for b ¼ 9 fm on the lattice compared to different
functional forms. The negative binomial distribution (NBD)
gives the best fit.

PRL 108, 252301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

252301-3

IP-Glasma MC-KLN MC-Glauber

[Schenke, Tribedy & Venugopalan, PRL 108, 252301 (2012)]

Can heavy ion physics follow the successful approach used in cosmology?
Characterize statistical properties rather than explicit realizations
Focus on relevant wavelengths

First attempts in this direction have been made
[Teaney & Yan (2011), Coleman-Smith, Petersen & Wolpert (2012), Floerchinger &

Wiedemann (2013), Yan & Ollitrault (2014), Bzdak & Skokov (2014), ...]
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Mode expansion for fluid fields

Bessel-Fourier expansion at fixed time τ
[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012,

Floerchinger & Wiedemann 2014]

w(r, φ, η) = wBG(r) + wBG(r)
∑
m,l

∫
k

w
(m)
l (k) eimφ+ikη Jm

(
z

(m)
l ρ(r)

)

azimuthal wavenumber m, radial wavenumber l, rapidity wavenumber k

w
(m)
l dimensionless

higher m and l correspond to finer spatial resolution

coefficients w
(m)
l can be related to eccentricienies

works similar for vectors (velocity) and tensors (shear stress)
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Transverse density from Glauber model
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Statistics of initial density perturbations

Independent point-sources model (IPSM)

w(~x) =

[
1

τ0

dWBG

dη

]
1

N

N∑
j=1

δ(2)(~x− ~xj)

random positions ~xj , independent and identically distributed

probability distribution p(~xj) reflects collision geometry

possible to determine correlation functions analytically for central and
non-central collisions [Floerchinger & Wiedemann (2014)]

Long-wavelength modes (small m and l) that don’t resolve differences
between point-like and extended sources have
universal statistics.
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Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]

Solves evolution equations for fluid + gravity

Expands in perturbations around homogeneous background

Detailed understanding how different modes evolve

Diagramatic formalism for non-linear mode-mode interactions

Very simple equations of state p = w ε

Viscosities usually neglected η = ζ = 0

Photons and neutrinos are free streaming
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Fluid dynamic perturbation theory for heavy ions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

goal: understand dynamics of heavy ion collisions and determine QCD
transport properties experimentally

so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]

new: solve fluid equations for smooth and symmetric background and
order-by-order in perturbations

good convergence properties [Floerchinger et al., PLB 735, 305 (2014), Brouzakis et

al. PRD 91, 065007 (2015)]
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Perturbative expansion

Write the hydrodynamic fields h = (T, uµ, πµν , πBulk, . . .)

at initial time τ0 as

h = h0 + ε h1

with background h0, fluctuation part ε h1

at later time τ > τ0 as

h = h0 + ε h1 + ε2h2 + ε3h3 + . . .

Solve for time evolution in this scheme

h0 is solution of full, non-linear hydro equations in symmetric situation:
azimuthal rotation and Bjorken boost invariant

h1 is solution of linearized hydro equations around h0,
can be solved mode-by-mode

h2 can be obtained by from interactions between modes etc.
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Background evolution

System of coupled 1 + 1 dimensional non-linear partial differential equations for

enthalpy density w(τ, r) (or temperature T (τ, r))

fluid velocity uτ (τ, r), ur(τ, r)

two independent components of shear stress πµν(τ, r)

Can be easily solved numerically

5 10 15 20 25 30
Radius @fmD

0.1

0.2

0.3

0.4

0.5
T @GeVD
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Evolving perturbation modes

Linearized hydro equations: set of coupled 3 + 1 dimensional, linear,
partial differential equations.

Use Fourier expansion

hj(τ, r, φ, η) =
∑
m

∫
dkη
2π

h
(m)
j (τ, r, kη) ei(mφ+kηη).

Reduces to 1 + 1 dimensions.

Can be solved numerically for each initial Bessel-Fourier mode.
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Mode interactions

Non-linear terms in the evolution equations lead to mode interactions.

Quadratic and higher order in initial perturbations.

Can be determined from iterative solution but has not been fully worked
out yet.

Convergence can be tested with numerical solution of full hydro equations.
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Evolution of spectrum of density perturbations

Density-density spectrum

P11(~k) =

∫
d2x e−i

~k(~x−~y) 〈 d(~x1) d(~x2) 〉c
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dashed: linear evolution, solid: including first non-linear correction

left: η/s = 0.08, τ = 1.5, 2.5, 3.5, 4.5 fm/c, right: η/s = 0.08 and η/s = 0.8, τ = 7.5 fm/c

[Brouzakis, Floerchinger, Tetradis & Wiedemann, PRD 91, 065007 (2015)]
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Backreaction: General idea

for 0 + 1 dimensional, non-linear dynamics

ϕ̇ = f(ϕ) = f0 + f1 ϕ+ 1
2
f2 ϕ

2 + . . .

one has for expectation values ϕ̄ = 〈ϕ〉

˙̄ϕ = f0 + f1 ϕ̄+ 1
2
f2 ϕ̄

2 + 1
2
f2 〈(ϕ− ϕ̄)2〉+ . . .

evolution equation for expectation value ϕ̄ depends on two-point
correlation function or spectrum P2 = 〈(ϕ− ϕ̄)2〉
evolution equation for spectrum depends on bispectrum and so on

more complicated for higher dimensional theories

more complicated for gauge theories such as gravity
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Backreaction in gravity

Einstein’s equations are non-linear.

Important question [G. F. R. Ellis (1984)]: If Einstein’s field equations describe
small scales, including inhomogeneities, do they also hold on large scales?

Is there a sizable backreaction from inhomogeneities to the cosmological
expansion?

Difficult question, has been studied by many people
[Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998);

Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003);

Räsänen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009);

Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ...]

Recent reviews: [Buchert & Räsänen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green

& Wald, Class. Quant. Grav. 31, 234003 (2014)]

No general consensus but most people believe now that gravitational
backreaction is rather small.

In the following we look at a new backreaction on the matter side of
Einstein’s equations.
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Fluid equation for energy density

First order viscous fluid dynamics

uµ∂µε+ (ε+ p)∇µuµ − ζΘ2 − 2ησµνσµν = 0

For ~v2 � c2 and Newtonian potentials Φ,Ψ� 1

ε̇+ ~v · ~∇ε+ (ε+ p)
(

3 ȧ
a

+ ~∇ · ~v
)

= ζ
a

[
3 ȧ
a

+ ~∇ · ~v
]2

+ η
a

[
∂ivj∂ivj + ∂ivj∂jvi − 2

3
(~∇ · ~v)2

]
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Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density ε̄ = 〈ε〉
1
a

˙̄ε+ 3H (ε̄+ p̄− 3ζ̄H) = D

with dissipative backreaction term

D = 1
a2
〈η
[
∂ivj∂ivj + ∂ivj∂jvi − 2

3
∂ivi∂jvj

]
〉

+ 1
a2
〈ζ[~∇ · ~v]2〉+ 1

a
〈~v · ~∇ (p− 6ζH)〉

D vanishes for unperturbed homogeneous and isotropic universe

D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

dissipative terms in D are positive semi-definite

for spatially constant viscosities and scalar perturbations only

D =
ζ̄+ 4

3
η̄

a2

∫
d3q Pθθ(q)
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Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Dissipative backreaction does not need negative effective pressure

1
a

˙̄ε+ 3H (ε̄+ p̄eff) = D

D is an integral over perturbations, could become large at late times.

Can it potentially accelerate the universe?

Need additional equation for scale parameter a

Use trace of Einstein’s equations R = 8πGNT
µ
µ

1
a
Ḣ + 2H2 = 4πGN

3
(ε̄− 3p̄eff)

does not depend on unknown quantities like 〈(ε+ peff)uµuν〉
To close the equations one needs equation of state p̄eff = p̄eff(ε̄)
and dissipation parameter D

20 / 40



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

assume now vanishing effective pressure p̄eff = 0

obtain for deceleration parameter q = −1− Ḣ
aH2

− dq
d ln a

+ 2(q − 1)
(
q − 1

2

)
= 4πGND

3H3

for D = 0 attractive fixed point at q∗ = 1
2

(deceleration)

for D > 0 fixed point shifted towards q∗ < 0 (acceleration)

-1.0 -0.5 0.0 0.5 1.0
-1

0

1

2

3

4

5

6

deceleration parameter q

d
q

d
ln

a
+

4
⇡

G
N

D
3
H

3
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Estimating viscous backreaction D

For 4πGND
3H3 ≈ 4 one could explain the current accelerated expansion

(q ≈ −0.6) by dissipative backreaction.

Is this possible?

In principle one can determine D for given equation of state and viscous
properties from dynamics of structure formation.

So far only rough estimates. If shear viscosity dominates:

D = 1
a2
〈η
[
∂ivj∂ivj + ∂ivj∂jvi − 2

3
∂ivi∂jvj

]
〉 ≈ cD η̄H2

with cD = O(1). Corresponds to ∆v ≈ 100 km/s for ∆x ≈ 1 MPc

Leads to
4πGND

3H3
≈ cD η̄H

2ρc

with ρc = 3H2

8πGN
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Viscosities

Relativistic particles / radiation contribute to shear viscosity

η = cη εR τR

prefactor cη = O(1)
energy density of radiation εR
mean free time τR

Bulk viscosity vanishes in situations with conformal symmetry but can be
large when conformal symmetry is broken.

For massive scalar particles with λϕ4 interaction [Jeon & Yaffe (1996)]

ζ ∼ m6

λ4T3 e
2m/T , η ∼ m5/2T1/2

λ2 for T
m
� 1
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Estimating viscous backreaction D

Consider shear viscosity from radiation

η = cη εR τR

Backreaction term
4πGND

3H3
≈ cDcη

2

εR
ρc
τRH

fluid approximation needs τRH < 1

for sizeable effect one would need εR/ρc = O(1)

unlikely that D becomes large enough in this scenario

Needed refinements:

full dynamics of perturbations

second order fluid dynamics

complete model(s)
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Dissipation from the effective action

Dissipative effects are usually discusses on the level of equations of motion.

For some questions one would like to have a formulation in terms of an
effective action

causality & stability analysis
fluctuations
renormalization
effective field theories
coupling to gravity

One possibility: Schwinger-Keldysh double time path formalism

Another possibility: Analytic continuation of the 1PI effective action
[Floerchinger, 1603.07148]

Theories in approximate local equilibrium
General covariance and energy-momentum conservation
Local form of second law of thermodynamics
Effective action for fluid dynamics including viscosity terms
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Local equilibrium & partition function

Local equilibrium description with T (x) and uµ(x)

βµ(x) =
uµ(x)

T (x)

Use similarity between local density matrix and translation operator

eβ
µ(x)Pµ ←→ ei∆x

µPµ

to represent partition function as functional integral with periodicity in
imaginary direction such that

φ(xµ − iβµ(x)) = ±φ(xµ)

x

�0

x

�(x)d� d�

(a) Global thermal equilibrium (b) Local thermal equilibrium

FIG. 2. Comparison between the global thermal equilibrium (a) and local thermal equilibrium

states (b).

where aī ⌘ �e��uī, �
0
īj̄ ⌘ �īj̄ + uīuj̄, and we used g̃0̄0̄ = �Ñ2 + ÑīÑ

ī = �e2�. In this

parametrization, the square root of determinant of metric becomes
p�g̃ = Ñ

p
� = e�

p
�0.

This parametrization of the Massieu-Planck functional was discussed in Ref. [28]. Following

Ref. [28], we can easily see that this metric is invariant under the local transformation (the

Kaluza-Klein gauge transformation),
8
>>>><
>>>>:

t̃ ! t̃ + �(x̄),

x̄ ! x̄,

aī(x̄) ! aī(x̄) � @ī�(x̄),

(42)

where �(x̄) is an arbitrary function of the spatial coordinates. We note that �īj̄ nonlinearly

transforms under this transformation since �0īj̄ does not change, so that � is not gauge

invariant. This symmetry enables us to restrict possible terms that appear in the Massieu-

Planck functional [28]. For example, aī appears in the Massieu-Planck functional only

through the gauge invariant combination such as the field strength, fīj̄ ⌘ @īaj̄ � @j̄aī.

In addition to the above symmetry associated with the imaginary time translation, the

Massieu-Planck functional has the (d � 1)-dimensional spatial di↵eomorphism, x̄ ! x̄0(x̄).

This spatial di↵eomorphism invariance also restricts possible terms that could appear in the

Massieu-Planck functional. For example, �0 appears only in combination with dd�1x̄, i.e.,

dd�1x̄
p
�0 = d⌃t̄Ne��. In Sec. IV, we will write down the possible form of the Massieu-

Planck functional within the derivative expansion using these symmetric properties.

Although we only consider the neutral scalar field, the extension to a system with finite

chemical potential is straightforward: We may replace the partial derivative @⌧ with the

covariant one, D⌧ ⌘ (@⌧ � e�µ), in which the additional term e�µ = ⌫/�0 is Kaluza-Klein

11

Partition function Z[J ], Schwinger functional W [J ] in Euclidean domain

Z[J ] = eWE [J] =

∫
Dφe−SE [φ]+

∫
x Jφ
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One particle irreducible effective action

In Euclidean domain defined by standard Legendre transform

ΓE [Φ] =

∫
x

Ja(x)Φa(x)−WE [J ]

with expectation values

Φa(x) =
1

√
g(x)

δ

δJa(x)
WE [J ]

Euclidean field equation

δ

δΦa(x)
ΓE [Φ] =

√
g(x) Ja(x)

resembles classical equation of motion for J = 0.

Need analytic continuation to obtain a viable equation of motion.
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Analytic continuation 1

Define for homogeneous background field and in global equilibrium

δ2

δJa(−p)δJb(q)
WE [J ] = Gab(p) (2π)4δ(4)(p− q)

δ2

δΦa(−p)δΦb(q)
ΓE [Φ] = Pab(p) (2π)4δ(4)(p− q)

From definition of effective action∑
b

Gab(p)Pbc(p) = δac

Correlation functions can be analytically continued in ω = −uµpµ.
Branch cut on real frequency axis ω ∈ R.

Re(ω)

Im(ω)

Matsubara

retarded

advanced

Feynman
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Analytic continuation 2

Decompose inverse two-point function

Pab(p) = P1,ab(p)− isI(−uµpµ)P2,ab(p),

with sI(ω) = sign(Im ω).

In position space, replace

sI (−uµpµ) = sign (Im(−uµpµ))

→ sign
(
Im
(
iuµ ∂

∂xµ

))
= sign

(
Re
(
uµ ∂

∂xµ

))
= sR

(
uµ ∂

∂xµ

)
This symbol appears also in Γ[Φ]

Real and causal field equations follow from [Floerchinger, 1603.07148]

δΓ[Φ]

δΦa(x)

∣∣∣
ret

= 0

with certain algebraic rules for sR

(
uµ ∂

∂xµ

)
→ ±1.

Energy momentum conservation, entropy production, fluid dynamics, ...
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Gravitational growth of perturbations

Small initial density perturbations

δ =
∆ε

ε̄
� 1

At photon decoupling (CMB)

δ ≈ 10−5

Structure growth due to attractive
gravitational interaction

Perturbative treatment possible up to

δ ≈ 1

For late times and small wavelengths

δ � 1

Dark matter Visible galaxies

© 2006 Nature Publishing Group 

 

larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.

Dark matter Galaxiesz = 8.55

T = 0.6 Gyr

z = 5.72

T = 1.0 Gyr

z = 1.39

T = 4.7 Gyr

z = 0

T = 13.6 Gyr

z = 0

T = 13.6 Gyr

z = 1.39

T = 4.7 Gyr

z = 5.72

T = 1.0 Gyr

z = 8.55

T = 0.6 Gyr

150 h–1 Mpc 150 h–1 Mpc
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[Springel, Frenk & White,

Nature 440, 1137 (2006)]
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The dark matter fluid

Heavy ion collisions

LQCD → fluid properties

Late time cosmology

fluid properties → Ldark matter

Until direct detection of dark matter, it can only be observed via

Tµνdark matter
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Formation of large scale structure

Formation of large scale structure is interesting
tests physics of dark matter
tests physics of dark energy
gets tested by missions like Euclid, ...

Cosmological perturbation theory breaks down when density contrast

δ(k) =
δρ(k)

ρ̄
� 1

grows large at late times and for small scales.

Numerical simulations (N -body) are expensive and time-consuming

One would like to have better analytical understanding
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Renormalization group apprach

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

Start from ideal fluid approximation

Large scale structure formation can be formulated as classical field theory
with stochastic initial conditions

Leads to classical statistical field theory

Initial state fluctuations can be treated by functional renormalization
group, similar to thermal or quantum fluctuations in other contexts
[Matarrese & Pietroni (2007)]

Modify theory by cutting off the initial spectrum in the IR

P 0
k (q) = P 0(q) Θ(|q| − k)

Use flow equation for 1PI effective action [Wetterich (1993)]

∂kΓk[φ, χ] =
1

2
Tr

{(
Γ

(2)
k [φ, χ]− i

(
P 0
k − P 0))−1

∂kP
0
k

}
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Renormalization of effective viscosity and pressure

Effective theory at scale k has additional terms in equations of motion

Order them by derivative expansion.

Lowest order: ideal fluid

Next-to-lowest order: effective sound velocity parameter

γs =
c2s
H2

=
dp/dρ

H2
.

and effective viscosity parameter

γν =
4η/3 + ζ

(ρ+ p)Ha .

Both depend on cosmological time or scale factor a

γs = λs a
κ, γν = λν a

κ

with exponent κ ≈ 2.
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RG flow of effective sound velocity parameter
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RG flow of effective viscosity parameter
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RG flow of exponent κ
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Fixed point behavior
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growing mode is sensitive to λs + λν

functional RG has IR fixed points
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Functional RG + perturbation theory

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

RG evolution to determine effective viscosity and sound velocity at
intermediate scale km

Perturbation theory for power spectrum for scales 0 < |q| < km

Theory with effective parameters
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Conclusions

Interesting parallels between cosmology and heavy ion collisions.

Analog of cosmological perturbation theory can help to solve the fluid
dynamics of heavy ion collisions.

Dissipation of perturbations can have interesting effects in cosmology.

Analytically continued one-particle irreducible effective action contains
dissipative effects.

Modified variational principle leads to real and causal equations of motion.

Renormalization group and description as an effective fluid can help to
understand large scale structure formation.

40 / 40



Backup slides



Ideal fluid versus collision-less gas

Many codes used in cosmology describe dark matter as
ideal, cold and pressure-less fluid

Tµν = ε uµuν

Equation of state p = 0

No shear stress and bulk viscous pressure πµν = πbulk = 0

Dark matter is also modeled as collision-less gas of massive particles,
interacting via gravity only

Two pictures are in general not consistent



Dissipative properties

Viscosities

Diffusive transport of momentum [Maxwell (1860)]

Depend strongly on interaction properties

Example: non-relativistic gas of particles with mass m, mean peculiar
velocity v̄, elastic 2→ 2 cross-section σel

η =
m v̄

3 σel
ζ = 0

Interesting additional information about dark matter



How is structure formation modified?

Linear dynamics

energy conservation (θ = ~∇ · ~v)

δ̇ε+ 3 ȧ
a
δε+ ε̄ θ = 0

Navier-Stokes equation

ε̄
[
θ̇ + ȧ

a
θ − k2ψ

]
+ 1

a

(
ζ + 4

3
η
)
k2θ = 0

Poisson equation
−k2ψ = 4πGNa

2δε

Scalar perturbations (δ = δε
ε̄

)

δ̈ +

[
ȧ

a
+
ζ + 4

3
η

aε̄
k2

]
δ̇ − 4πGNε̄ δ = 0

Viscosites slow down gravitational collapse but do not wash out structure



Structure formation with viscosities
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[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

k-dependent growth factor for scalar modes

Could be tested by observation of large scale structure

Depends on ζ + 4
3
η as function of time (or density)



Material properties of dark matter

Gravitational lensing and x-ray image of “bullet cluster” 1E0657-56

so far: dark matter is non-interacting → can collide without stopping

Future decade: analysis of colliding galaxy clusters will refine this picture

Dark energy self interacting
→ modification of equation of state
→ dissipation



Is dark matter self-interacting?
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[Massey et al., MNRAS 449, 3393 (2015)]

Offset between stars and dark matter falling into cluster

Is this a first indication for a dark matter self interaction?
[Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]

σ

mDM
≈ 3

cm2

g
≈ 0.5

b

GeV
(under debate)



Precision cosmology can measure shear stress

Scalar excitations in gravity

ds2 = a2 [−(1 + 2ψ)dη2 + (1− 2φ)dxidxi
]

with two Newtonian potentials ψ and φ.

Einsteins equations imply(
∂i∂j − 1

3
δij∂

2
k

)
(φ− ψ) = 8πGNa

2 πij
∣∣

scalar

with scalar part of shear stress

πij
∣∣

scalar
=
(
∂i∂j − 1

3
δij∂

2
k

)
π̃

Detailed data at small redshift e.g. from Euclid satellite (esa, 2020)
[Amendola et al. (2012)]

ψ can be measured via acceleration of matter
ψ + φ can be meaured by weak lensing and Sachs-Wolfe effect
fluid velocity can be accessed by redshift space distortions

New quantitative precise insights into fluid properties of dark matter!



Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = (ε+ p+ πbulk)uµuν + (p+ πbulk)gµν + πµν

Nµ = nuµ + νµ

tensor decomposition w. r. t. fluid velocity uµ

pressure p = p(ε, n)

constitutive relations for viscous terms in derivative expansion

bulk viscous pressure πbulk = −ζ ∇µuµ + . . .

shear stress πµν = −η
[
∆µα∇αuν + ∆να∇αuµ − 2

3
∆µν∇αuα

]
+ . . .

diffusion current να = −κ
[
nT
ε+p

]2
∆αβ∂β

( µ
T

)
+ . . .

Fluid dynamic equations from covariant conservation laws

∇µTµν = 0, ∇µNµ = 0.



Bulk viscosity

Bulk viscous pressure is negative for expanding universe

πbulk = −ζ∇µuµ = −ζ 3H < 0

Negative effective pressure

peff = p+ πbulk < 0

would act similar to dark energy in Friedmann’s equations
[Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006),

Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

Is negative effective pressure physical?

In context of heavy ion physics: instability for peff < 0 (“cavitation”)
[Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein

(2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]

What precisely happens at the instability?



Is negative effective pressure physical?

Kinetic theory

peff(x) =

∫
d3p

(2π)3
~p2

3E~p
f(x, ~p) ≥ 0

Stability argument

Ε

peff HΕL

Ε1 Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

If there is a vacuum with ε = peff = 0, phases with peff < 0 cannot be
mechanically stable. (But could be metastable.)



Bulk viscosity in heavy ion physics

In heavy ion physics people start now to consider bulk viscosity.

Becomes relevant close to chiral crossover

[Denicol, Gale & Jeon (2015)]

Is there a first-order phase transition triggered by the expansion?

What is the relation to chemical and kinetic freeze-out?

More detailed understanding needed, both for heavy ion physics and
cosmology



“Fundamental” and “effective” viscosity

Two types of viscosities for cosmological fluid

1 Momentum transport by particles or radiation
governed by interactions
from linear response theory [Green (1954), Kubo (1957)]

close to equilibrium

2 Momentum transport in the inhomogeneous, coarse-grained fluid
governed by non-linear fluid mode couplings
determined perturbatively [Blas, Floerchinger, Garny, Tetradis & Wiedemann]

non-equilibrium
heavy ions: anomalous plasma viscosity [Asakawa, Bass & Müller (2006)]

eddy viscosity [Romatschke (2008)]



Power spectrum at different redshifts
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Velocity spectra

• The matching we performed was based on our assumption about the form of the

effective energy-momentum tensor. The guiding principle was the number of field

derivatives, which led to the use of the first-order formalism at the current level of

approximation. On the other hand, a systematic procedure for performing the match-

ing, like the one in quantum field theory, needs to be developed. The framework must

be expanded in the presence of conserved currents, such as the ones corresponding

to baryon or dark-matter particle number, along the lines of ref. [47].

• The current matching seems remarkably accurate. On the other hand, an open issue

is how it can be made exact through the inclusion of additional couplings. Enlarging

the parameter space is also expected to lift the degeneracy between sound velocity

and shear viscosity in eq. (4.4).

• A particular point concerns the definition of the effective couplings. In the current

analysis they are specified through the effective propagator. However, it is also pos-

sible to define them through higher derivatives of the generating functional or the

effective action. The two definitions must be equivalent when all the underlying sym-

metries of the system are taken into account. At the practical level, we point out

that the higher-order couplings (2.9), (2.11) give numerically negligible contributions

for αs, αν given by eq. (4.4). Also the breaking of the degeneracy between them,

which must be done arbitrarily at the current level of the analysis, has a negligible

effect on the spectra, as has been shown in ref. [1].

5 The velocity spectra
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Power spectrum, standard perturbation theory
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Could viscous backreaction lead to ΛCDM-type expansion?

[Floerchinger, Tetradis & Wiedemann, 1506.00407]

Backreaction term D(z) will be some function of redshift.

For given dissipative properties D(z) can be determined, but calculation is
involved.

One may ask simpler question: For what form of D(z) would the
expansion be as in the ΛCDM model?

The ad hoc ansatz D(z) = const ·H(z) leads to modified Friedmann
equations

ε̄− D
4H

= 3
8πGN

H2, p̄eff − D
12H

= − 1
8πGN

(
2 1
a
Ḣ + 3H2

)
In terms of ε̂ = ε̄− D

3H
one can write

1
a

˙̂ε+ 3H(ε̂+ p̄eff) = 0, R+ 8πGND
3H

= −8πGN(ε̂− 3p̄eff)

For p̄eff = 0 these are standard equations for ΛCDM model with

Λ = 2πGND
3H



Modification of Friedmann’s equations by backreaction 1

For universe with fluid velocity inhomogeneities one cannot easily take
direct average of Einstein’s equations.

However, fluid equation for energy density and trace of Einstein’s
equations can be used.

By integration one finds modified Friedmann equation

H(τ)2 = 8πGN
3

[
ε̄(τ)−

∫ τ

τI

dτ ′
(
a(τ ′)
a(τ)

)4
a(τ ′)D(τ ′)

]

Additive deviation from Friedmann’s law for D(τ ′) > 0

Part of the total energy density is due to dissipative production

ε̄ = ε̄nd + ε̄d

Assume for dissipatively produced part

˙̄εd + 3
ȧ

a
(1 + ŵd)ε̄d = aD



Modification of Friedmann’s equations by backreaction 2

Leads to another variant of Friedmann’s equation

H(τ)2 = 8πGN
3

[
ε̄nd(τ) +

∫ τ

τI

dτ ′
[(

a(τ ′)
a(τ)

)3+3ŵd −
(
a(τ ′)
a(τ)

)4
]
a(τ ′)D(τ ′)

]

If the dissipative backreaction D produces pure radiation, ŵd = 1/3, it
does not show up in effective Friedmann equation at all!

For ŵd < 1/3 there is a new component with positive contribution on the
right hand side of the effective Friedmann equation.

To understand expansion, parametrize for late times

D(τ) = H(τ)
(
a(τ)
a(τ0)

)−κ
D̃

with constants D̃ and κ.

Hubble parameter as function of (a0/a) = 1 + z

H(a) = H0

√
ΩΛ + ΩM

(a0
a

)3
+ ΩR

(a0
a

)4
+ ΩD

(a0
a

)κ
For κ ≈ 0 the role of ΩΛ and ΩD would be similar.



Inhomogeneities in heavy ion collisions

Inhomogeneities are main source of information in cosmology.

Similarly, in heavy ion collisions:

Initial fluid perturbations: Event-by-event fluctuations around
averaged fluid fields at time τ0 and their evolution:

energy density ε
fluid velocity uµ

shear stress πµν

more general also: baryon number density n,
electric charge density, electromagnetic fields, ...

governed by universal evolution equations

determine particle distributions after freeze-out, e.g. vn(pT )

usefull to constrain thermodynamic and transport properties of QCD

contain interesting information from early times



First steps towards fluid dynamic perturbation or response theory

Linear perturbations around Bjorken flow [Floerchinger & Wiedemann (2011)]

Linear perturbations around Gubser solution for conformal fluids
[Gubser & Yarom (2010), Staig & Shuryak (2011), Springer & Stephanov (2013)]

More detailed investigation of linear perturbations and first steps towards
non-linear perturbations around Gubser solution
[Hatta, Noronha, Torrieri, Xiao (2014)]

Linear perturbations around general azimuthally symmetric initial state,
realistic equation of state
[Floerchinger & Wiedemann (2013)]

Characterization of initial conditions by Bessel-Fourier expansion
[Coleman-Smith, Petersen & Wolpert (2012), Floerchinger & Wiedemann (2013)]

Comparison to full numerical solution shows good convergence properties
of perturbative expansion
[Floerchinger, Wiedemann, Beraudo, Del Zanna, Inghirami, Rolando (2013)]

Related response formalism for expansion in eccentricities
[Teaney & Yan (2012), Yan & Ollitrault (2015]



Gravity and thermalization

Consider ensemble of massive particles interacting via gravity only. Start with
some velocity distribution. Is there equilibration/thermalization...

... in Newtonian gravity?

... in classical General relativity?

... in quantized gravity?

Analogy to other gauge theories suggests that quantum properties are
important for thermalization



Dissipation by gravity

Gravitational waves in viscous fluid have life time [Hawking (1966)]

τG =
1

16πGNη

Diffusive momentum transport by graviton radiation induces viscosity

η ≈ εG τG

with energy density of gravitational field εG

Can be solved for η and τG [Weinberg (1972)]

η =

√
εG

16πGN
, τG =

√
1

16πGNεG

Can this really be independent of dark matter mass and density?

Thermalization time ∼ mP/T
2 is very large

What determines dissipation on shorter time scales, when classical fields
dominate?


