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Big bang — little bang analogy
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Symmetries in a statistical sense

o Concrete realization breaks symmetry
@ Statistical properties are symmetric
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Cosmology
o Cosmological principle: universe homogeneous and isotropic
@ 3D translation and rotation
— 3D Fourier expansion
Heavy ion collisions
o 1D azimuthal rotation for central collisions
o 1D Bjorken boost (approximate)

— Bessel-Fourier expansion [Floerchinger & Wiedemann (2013)]



The problem of initial conditions

Dark mater

@ Problem for cosmology and heavy ion physics: precise initial conditions for
fluid dynamic description not known
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o Nevertheless, cosmology is now a precision science...

@ How is that possible ?




Initial conditions in cosmology

@ Perturbations are classified into scalars, vectors, tensors

@ Vector modes are decaying, need not be specified

o Tensor modes are gravitational waves, can be neglected for most purposes
@ Decaying scalar modes also not relevant

@ Growing scalar modes are further classified by wavelength

o For relevant range of wavelength: close to Gaussian probability distribution

@ Almost scale invariant initial spectrum
(5(k) 5(k')) = P(k) 6V (k + k)
with

P(k) ~ k™! ns = 0.968 + 0.006 [Planck (2015)]



Initial conditions heavy ion collisions

o State of the art: Explicit realizations in terms of Monte-Carlo models
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[Schenke, Tribedy & Venugopalan, PRL 108, 252301 (2012)]

@ Can heavy ion physics follow the successful approach used in cosmology?

o Characterize statistical properties rather than explicit realizations
o Focus on relevant wavelengths

o First attempts in this direction have been made
[Teaney & Yan (2011), Coleman-Smith, Petersen & Wolpert (2012), Floerchinger &
Wiedemann (2013), Yan & Ollitrault (2014), Bzdak & Skokov (2014), ...]
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Mode expansion for fluid fields

Bessel-Fourier expansion at fixed time 7

[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012,

Floerchinger & Wiedemann 2014]

lra0v1) = () +wse() 3 [l )4 g (£ 0t0)

@ azimuthal wavenumber m, radial wavenumber [, rapidity wavenumber k
o w™ dimensionless

I
@ higher m and [ correspond to finer spatial resolution

(m)

o coefficients w, "’ can be related to eccentricienies

@ works similar for vectors (velocity) and tensors (shear stress)



Transverse density from Glauber model
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Statistics of initial density perturbations

Independent point-sources model (IPSM)

N
| 1dWee| 1 @)= =
w(x)—L_O i }NZ(S (Z—Zy)

Jj=1

@ random positions Z;, independent and identically distributed
o probability distribution p(Z;) reflects collision geometry

@ possible to determine correlation functions analytically for central and
non-central collisions [Floerchinger & Wiedemann (2014)]

o Long-wavelength modes (small m and 1) that don't resolve differences
between point-like and extended sources have
universal statistics.



Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]
@ Solves evolution equations for fluid + gravity
@ Expands in perturbations around homogeneous background
@ Detailed understanding how different modes evolve
o Diagramatic formalism for non-linear mode-mode interactions
o Very simple equations of state p=we
o Viscosities usually neglected n=¢=0

@ Photons and neutrinos are free streaming



Fluid dynamic perturbation theory for heavy ions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

@ goal: understand dynamics of heavy ion collisions and determine QCD
transport properties experimentally

@ so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]

o new: solve fluid equations for smooth and symmetric background and
order-by-order in perturbations

° gOOd convergence properties [Floerchinger et al, PLB 735, 305 (2014), Brouzakis et
al. PRD 91, 065007 (2015)]



Perturbative expansion

Write the hydrodynamic fields h = (T, u*, 7"", wguK, - - .)

@ at initial time 7¢ as
h=ho+eh

with background hy, fluctuation part € hq

@ at later time 7 > 19 as

h=ho+ehi +€ehs+hs+ ...

Solve for time evolution in this scheme

@ hyo is solution of full, non-linear hydro equations in symmetric situation:
azimuthal rotation and Bjorken boost invariant

@ hy is solution of linearized hydro equations around ho,
can be solved mode-by-mode

@ ho can be obtained by from interactions between modes etc.



Background evolution

System of coupled 1+ 1 dimensional non-linear partial differential equations for
e enthalpy density w(r,r) (or temperature T'(7,7))
o fluid velocity u” (7, 7r),u"(7,7)
o two independent components of shear stress 7" (7, 1)

Can be easily solved numerically
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FEvolving perturbation modes

o Linearized hydro equations: set of coupled 3 + 1 dimensional, linear,
partial differential equations.

o Use Fourier expansion

hj(T’r’¢’n):Z/TT:h§ )(T,T,kn)e( ¢+knﬂ).

o Reduces to 1 + 1 dimensions.

@ Can be solved numerically for each initial Bessel-Fourier mode.
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Mode interactions

@ Non-linear terms in the evolution equations lead to mode interactions.
Quadratic and higher order in initial perturbations.

Can be determined from iterative solution but has not been fully worked
out yet.

o Convergence can be tested with numerical solution of full hydro equations.



FEvolution of spectrum of density perturbations

Density-density spectrum
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Backreaction: General idea

o for 0 + 1 dimensional, non-linear dynamics

o=fl@)=fotho+3f2e’+...

@ one has for expectation values ¢ = (p)

p=fo+tho+if@ +ifalle—0)")+...

@ evolution equation for expectation value ¢ depends on two-point
correlation function or spectrum Pz = {(¢ — @)?)

@ evolution equation for spectrum depends on bispectrum and so on
@ more complicated for higher dimensional theories

@ more complicated for gauge theories such as gravity



Backreaction in gravity

Einstein's equations are non-linear.

Important question [G. F. R. Ellis (1984)]: If Einstein's field equations describe
small scales, including inhomogeneities, do they also hold on large scales?

Is there a sizable backreaction from inhomogeneities to the cosmological
expansion?

Difficult question, has been studied by many people

[Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998);
Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003);
R&sanen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009);
Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ...]

Recent reviews: [Buchert & Réasdnen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green
& Wald, Class. Quant. Grav. 31, 234003 (2014)]

No general consensus but most people believe now that gravitational
backreaction is rather small.

In the following we look at a new backreaction on the matter side of
Einstein’s equations.



Fluid equation for energy density

First order viscous fluid dynamics

udpe + (e + p)V,ut — (0% — 206" 7, = 0

For 2 < ¢? and Newtonian potentials ®, ¥ < 1
e+ T Vet (e+p) (33+€~6)

=< [3% +V- 17]2 +12 [&‘Ujaﬂ)j + 0iv;0;vi — %(ﬁ : 17)2]



Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density € = (¢)
1é+3H(E+p—3CH)=D
with dissipative backreaction term
D = X (n[0iv;0iv; + 90,050 — 30i0:050;])
+ 5V 0% + 2TV (p— 6¢CH))

@ D vanishes for unperturbed homogeneous and isotropic universe

@ D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

o dissipative terms in D are positive semi-definite

o for spatially constant viscosities and scalar perturbations only

4o
D= C-:gn/d?)q Poo(q)



Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Dissipative backreaction does not need negative effective pressure

1€+ 3H (€4 per) = D

a

@ D is an integral over perturbations, could become large at late times.

o Can it potentially accelerate the universe?
o Need additional equation for scale parameter a

o Use trace of Einstein's equations R = 8mGNT"Y,
%H +2H? = 47rGN (€ — 3Pesr)

does not depend on unknown quantities like (€ + per)u’u")

@ To close the equations one needs equation of state Per = Pes(€)
and dissipation parameter D



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

@ assume now vanishing effective pressure pesr = 0

@ obtain for deceleration parameter ¢ = —1 — agz
d 1 4Gy D
— s +2(a—1) (- 3) =
e for D = 0 attractive fixed point at ¢. = 3 (deceleration)

e for D > 0 fixed point shifted towards g. < 0 (acceleration)
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4nGNnD
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FEstimating viscous backreaction D

o For ‘“’SGT@P ~ 4 one could explain the current accelerated expansion
(¢ &= —0.6) by dissipative backreaction.
@ Is this possible?

@ In principle one can determine D for given equation of state and viscous
properties from dynamics of structure formation.

@ So far only rough estimates. If shear viscosity dominates:
D= a%<77 [&L‘Ujai’l)j + aﬂ}jaj’vi — %&viajvj]) ~ CDﬁH2

with ¢cp = O(1). Corresponds to Av =~ 100 km/s for Az ~ 1 MPc

o Leads to
ArGnD - CDﬁH

3H3 ~ 2p.

3H?
8GN

with p. =



Viscosities

o Relativistic particles / radiation contribute to shear viscosity

7N =Cn€RTR

e prefactor ¢;, = O(1)
e energy density of radiation e¢g
e mean free time T

@ Bulk viscosity vanishes in situations with conformal symmetry but can be
large when conformal symmetry is broken.

o For massive scalar particles with Ap? interaction [Jeon & Yaffe (1996)]

6 5/21/2
¢~ ATTg,eQm/T n~ o for L <1

) A2 m



FEstimating viscous backreaction D

Consider shear viscosity from radiation
N =Ch€RTR

Backreaction term
4TI'GND CDCy €ER H
— = —T
3H3 2 po

o fluid approximation needs Tr H < 1

o for sizeable effect one would need er/p. = O(1)

@ unlikely that D becomes large enough in this scenario
Needed refinements:

o full dynamics of perturbations

@ second order fluid dynamics

o complete model(s)



Dissipation from the effective action

Dissipative effects are usually discusses on the level of equations of motion.

For some questions one would like to have a formulation in terms of an
effective action
o causality & stability analysis
o fluctuations
renormalization
effective field theories
coupling to gravity

One possibility: Schwinger-Keldysh double time path formalism

Another possibility: Analytic continuation of the 1P| effective action
[Floerchinger, 1603.07148]

o Theories in approximate local equilibrium

o General covariance and energy-momentum conservation

o Local form of second law of thermodynamics

o Effective action for fluid dynamics including viscosity terms



Local equilibrium & partition function

o Local equilibrium description with T'(z) and u*(x)

8 @) = )

@ Use similarity between local density matrix and translation operator
eB“(ac%@u JEEN eiAz“ Py

to represent partition function as functional integral with periodicity in
imaginary direction such that

P! —ip"(z)) = £o(z")

(a) Global thermal equilibrium (b) Local thermal equilibrium

1) <C 4D
T T

e Partition function Z[J], Schwinger functional W[J] in Euclidean domain

Z[J] = el _ /DqﬁeiszH-[x J¢

5
>
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One particle irreducible effective action

@ In Euclidean domain defined by standard Legendre transform
(@] = / o (@) (x) — WalJ]

with expectation values

D, (z) = J3@) 57a(@) WglJ]
o Euclidean field equation
1)
WFE[‘I’} =9(z) Ja()

resembles classical equation of motion for J = 0.

@ Need analytic continuation to obtain a viable equation of motion.



Analytic continuation 1
o Define for homogeneous background field and in global equilibrium
52
6Ja(=p)6Jv(q)
52
6@ (—p)d®s(q)

WelJ] = Gar(p) (21)*6 (p — q)
Tp[®] = Pas(p) (21)*6“ (p — q)

@ From definition of effective action
Z Gab Pbc - 5ac

o Correlation functions can be analytically continued in w = —u*p,.
@ Branch cut on real frequency axis w € R.

Im(w)

Matsubara

retarded Feynman

advanced




Analytic continuation 2

@ Decompose inverse two-point function

Pab(p) - Pl,ab(p) - Z'SI(—’U'MP;L) P2,ab(p)7

with si1(w) = sign(Im w).

In position space, replace

s1 (—u'py) = sign (Im(—u"p,))

 sign (Im (in" 52;)) = sign (Re (u" %)) = s (u %)

@ This symbol appears also in T'[®]

Real and causal field equations follow from [Floerchinger, 1603.07148]

OT[®]
0D, ()

ret

with certain algebraic rules for sg (u*‘ ) — +1.

o Energy momentum conservation, entropy production, fluid dynamics, ...



Gravitational growth of perturbations

o Small initial density perturbations

5:%<<1

At photon decoupling (CMB)

§~107°

o Structure growth due to attractive
gravitational interaction

Perturbative treatment possible up to

o~ 1

For late times and small wavelengths

i>1

Dark matter Visible galaxies

[Springel, Frenk & White,
Nature 440, 1137 (2006)]



The dark matter fluid

@ Heavy ion collisions

ZLqaco —  fluid properties

o Late time cosmology

fluid properties —  Zlark matter

@ Until direct detection of dark matter, it can only be observed via

T,uu

dark matter



Formation of large scale structure

o Formation of large scale structure is interesting

o tests physics of dark matter
o tests physics of dark energy
o gets tested by missions like Euclid, ...

o Cosmological perturbation theory breaks down when density contrast

grows large at late times and for small scales.

Numerical simulations (N-body) are expensive and time-consuming

@ One would like to have better analytical understanding



Renormalization group apprach

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]
[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

o Start from ideal fluid approximation

o Large scale structure formation can be formulated as classical field theory
with stochastic initial conditions

@ Leads to classical statistical field theory

@ Initial state fluctuations can be treated by functional renormalization
group, similar to thermal or quantum fluctuations in other contexts
[Matarrese & Pietroni (2007)]

o Modify theory by cutting off the initial spectrum in the IR

P(q) = P°(q) O(|q| — k)

@ Use flow equation for 1Pl effective action [Wetterich (1993)]

ourifo. ] = 5 To{ (Pkend - i (72 - ) aurt

15/ 4



Renormalization of effective viscosity and pressure

o Effective theory at scale k has additional terms in equations of motion
@ Order them by derivative expansion.
o Lowest order: ideal fluid

o Next-to-lowest order: effective sound velocity parameter

¢ dp/dp
’ys = HZ = HQ .
and effective viscosity parameter
_ 4n/3+¢
" (pt+p)Ha

@ Both depend on cosmological time or scale factor a
¥s = Asa”, YW =Aa”

with exponent x ~ 2.



RG flow of effective sound velocity parameter
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RG flow of effective viscosity parameter
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RG flow of exponent k
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Fixed point behavior
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@ growing mode is sensitive to A\s + A,

o functional RG has IR fixed points
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Functional RG + perturbation theory

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]
[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

@ RG evolution to determine effective viscosity and sound velocity at
intermediate scale k,,

@ Perturbation theory for power spectrum for scales 0 < |q| < km,

o Theory with effective parameters

P;5(k,z=0), viscous theory P;5(k,z=0), SPT with cutoff
16— T T 16— T T
L N L
L yomaH L
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Conclusions

@ Interesting parallels between cosmology and heavy ion collisions.

@ Analog of cosmological perturbation theory can help to solve the fluid
dynamics of heavy ion collisions.

o Dissipation of perturbations can have interesting effects in cosmology.

o Analytically continued one-particle irreducible effective action contains
dissipative effects.

@ Modified variational principle leads to real and causal equations of motion.

@ Renormalization group and description as an effective fluid can help to
understand large scale structure formation.



Backup slides



Ideal fluid versus collision-less gas

Many codes used in cosmology describe dark matter as
ideal, cold and pressure-less fluid

T = e uru”

o Equation of state p =0
@ No shear stress and bulk viscous pressure " = mpux = 0

o Dark matter is also modeled as collision-less gas of massive particles,
interacting via gravity only

@ Two pictures are in general not consistent



Dissipative properties

Viscosities
o Diffusive transport of momentum [Maxwell (1860)]
o Depend strongly on interaction properties

o Example: non-relativistic gas of particles with mass m, mean peculiar
velocity 7, elastic 2 — 2 cross-section o

m v

= :O
=35 ¢

Interesting additional information about dark matter



How is structure formation modified?

Linear dynamics

o energy conservation (§ = V - 7)
de+3%5e+€0=0
o Navier-Stokes equation
elo+20—kp|+1(C+4nK0=0

@ Poisson equation
—k*¢ = 4rGna’be

Scalar perturbations (5 = %)

C+3n
a€e

5+{ }5 4mGnESd =0

Viscosites slow down gravitational collapse but do not wash out structure



Structure formation with viscosities

1.0 ‘ ‘ ‘ ‘
- k=0.0 yMPc
_ 08} — k=0.5 h/MPc
S - k=1.0 hyMPc
E 06 — k=15 h/MPc
S
g 04}
O 02}
00 L L L L
0.0 0.2 0.4 0.6 0.8 1.0
Scalefactor a

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

o k-dependent growth factor for scalar modes
@ Could be tested by observation of large scale structure

e Depends on ¢ + 37 as function of time (or density)



Material properties of dark matter

Gravitational lensing and x-ray image of “bullet cluster” 1E0657-56

@ so far: dark matter is non-interacting — can collide without stopping

o Future decade: analysis of colliding galaxy clusters will refine this picture
o Dark energy self interacting

— modification of equation of state
— dissipation



Is dark matter self-interacting?

Milky Way
star Lensed image A

Milky Way
star

ADec (arcsec, relative to N1)

|
S

—ARA (arcsec, relative to N1)

Galaxy cluster Abell 3827
[Massey et al., MNRAS 449, 3393 (2015)]

o Offset between stars and dark matter falling into cluster

@ |s this a first indication for a dark matter self interaction?
[Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]
2
o cm b
~3— ~ 05—
mpMm g GeV

(under debate)



Precision cosmology can measure shear stress

@ Scalar excitations in gravity
ds® = a® [—(1+ 2¢)dn” + (1 — 2¢)dzidz;]

with two Newtonian potentials 1 and ¢.

o Einsteins equations imply

(0:0; — 16:;0%) (¢ — ) = 8nGna” mij|

scalar

with scalar part of shear stress

= (0:0; — £6:;07)

Tij | 3

scalar

@ Detailed data at small redshift e.g. from Euclid satellite (esa, 2020)
[Amendola et al. (2012)]
e 1 can be measured via acceleration of matter
e 1) + ¢ can be meaured by weak lensing and Sachs-Wolfe effect
o fluid velocity can be accessed by redshift space distortions

o New quantitative precise insights into fluid properties of dark matter!



Relativistic fluid dynamics

Energy-momentum tensor and conserved current
T" = (€ + p + mouk)u''u” + (p + Touk)g"” + 7"
N* =nut +0*

@ tensor decomposition w. r. t. fluid velocity u”
@ pressure p = p(e, n)
@ constitutive relations for viscous terms in derivative expansion

o bulk viscous pressure  mh = —¢ Vyub + ...
o shear stress 7Y = —1q [A”avau” + AV qut — gA‘“’Vau"‘} +

o diffusion current v = —k [:f] Aaﬁaﬁ (%)

Fluid dynamic equations from covariant conservation laws

v, T" =0, V,N"=0.



Bulk viscosity

o Bulk viscous pressure is negative for expanding universe

Touk = —C Vyut = —C3H <0

o Negative effective pressure
Deff = P + Thulk < 0

would act similar to dark energy in Friedmann's equations
[Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006),
Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

o Is negative effective pressure physical?

o In context of heavy ion physics: instability for pes < 0 (“cavitation”)
[Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein
(2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]

@ What precisely happens at the instability?



Is negative effective pressure physical?

o Kinetic theory

i

3 —2
poe) = [ b f ) 2 0

o Stability argument

Pt (© Petf (€)

Peif (€) Peit (€)

€2

If there is a vacuum with ¢ = peg = 0, phases with peg < 0 cannot be
mechanically stable. (But could be metastable.)



Bulk viscosity in heavy ion physics

@ In heavy ion physics people start now to consider bulk viscosity.
@ Becomes relevant close to chiral crossover
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[Denicol, Gale & Jeon (2015)]
o Is there a first-order phase transition triggered by the expansion?

@ What is the relation to chemical and kinetic freeze-out?

@ More detailed understanding needed, both for heavy ion physics and
cosmology



“Fundamental” and “effective” wviscosity

Two types of viscosities for cosmological fluid

©@ Momentum transport by particles or radiation

e governed by interactions
o from linear response theory [Green (1954), Kubo (1957)]

close to equilibrium

@ Momentum transport in the inhomogeneous, coarse-grained fluid

governed by non-linear fluid mode couplings

determined perturbatively [Blas, Floerchinger, Garny, Tetradis & Wiedemann]
non-equilibrium

heavy ions: anomalous plasma viscosity [Asakawa, Bass & Miiller (2006)]
eddy viscosity [Romatschke (2008)]



Power spectrum at different redshifts
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Velocity spectra

Pgo(k,z=0)/Ps5, viscous theory
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Power spectrum, standard perturbation theory
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[D. Blas, M. Garny and T. Konstandin, JCAP 1309 (2013) 024]



Could viscous backreaction lead to ACDM-type expansion?

[Floerchinger, Tetradis & Wiedemann, 1506.00407]

@ Backreaction term D(z) will be some function of redshift.

o For given dissipative properties D(z) can be determined, but calculation is
involved.

@ One may ask simpler question: For what form of D(z) would the
expansion be as in the ACDM model?

e The ad hoc ansatz D(z) = const - H(z) leads to modified Friedmann

equations
_ D _ 3 2 _ D _ 1 17 2
€~ aim = sy Peff — T30 = ~8xcy (2aH+3H)
@ In terms of € = € — % one can write
L&+ 3H(E + perr) = 0, R+ TP — 871G (€ — 3perr)

@ For peff = 0 these are standard equations for ACDM model with

__ 2nGND
A= 3H




Modification of Friedmann’s equations by backreaction 1

@ For universe with fluid velocity inhomogeneities one cannot easily take
direct average of Einstein's equations.

However, fluid equation for energy density and trace of Einstein's
equations can be used.
e By integration one finds modified Friedmann equation

H(r)? = 575n {E(T) - /TT ar' (40 a(T’)D(T/):|

Additive deviation from Friedmann's law for D(7') > 0

@ Part of the total energy density is due to dissipative production

€ = €nd + €d

Assume for dissipatively produced part

éd + 3%(1 + ﬁ)d)gd =aD



Modification of Friedmann’s equations by backreaction 2

Leads to another variant of Friedmann’s equation

H(r)? = S |:5nd(7—) + /TIT dr’ {(%)34—3% - (sz(<:’)))4] a(T')D(T’)}

o If the dissipative backreaction D produces pure radiation, wq = 1/3, it
does not show up in effective Friedmann equation at all!

o For wg < 1/3 there is a new component with positive contribution on the
right hand side of the effective Friedmann equation.

@ To understand expansion, parametrize for late times

D(r) = H(7) < a(r) )_ND

a(o)

with constants D and k.
@ Hubble parameter as function of (ap/a) =1+ 2

H(a) = Hoy/Qa + Qs (22)° + Qg (42)" + Qp (22)"

@ For k ~ 0 the role of Q4 and Qp would be similar.



Inhomogeneities in heavy ion collisions

Inhomogeneities are main source of information in cosmology.

Similarly, in heavy ion collisions:

o Initial fluid perturbations: Event-by-event fluctuations around
averaged fluid fields at time 79 and their evolution:

energy density €

fluid velocity u*

shear stress mH¥

more general also: baryon number density n,
electric charge density, electromagnetic fields, ...

o governed by universal evolution equations
o determine particle distributions after freeze-out, e.g. vn(pr)

usefull to constrain thermodynamic and transport properties of QCD

@ contain interesting information from early times



First steps towards fluid dynamic perturbation or response theory

o Linear perturbations around Bjorken flow [Floerchinger & Wiedemann (2011)]

o Linear perturbations around Gubser solution for conformal fluids
[Gubser & Yarom (2010), Staig & Shuryak (2011), Springer & Stephanov (2013)]

@ More detailed investigation of linear perturbations and first steps towards
non-linear perturbations around Gubser solution
[Hatta, Noronha, Torrieri, Xiao (2014)]

@ Linear perturbations around general azimuthally symmetric initial state,
realistic equation of state
[Floerchinger & Wiedemann (2013)]

o Characterization of initial conditions by Bessel-Fourier expansion
[Coleman-Smith, Petersen & Wolpert (2012), Floerchinger & Wiedemann (2013)]

o Comparison to full numerical solution shows good convergence properties
of perturbative expansion
[Floerchinger, Wiedemann, Beraudo, Del Zanna, Inghirami, Rolando (2013)]

o Related response formalism for expansion in eccentricities
[Teaney & Yan (2012), Yan & Ollitrault (2015]



Gravity and thermalization

Consider ensemble of massive particles interacting via gravity only. Start with
some velocity distribution. Is there equilibration/thermalization...

o ... in Newtonian gravity?
@ ... in classical General relativity?
@ ... in quantized gravity?

Analogy to other gauge theories suggests that quantum properties are
important for thermalization



Dissipation by gravity

o Gravitational waves in viscous fluid have life time [Hawking (1966)]
1
TG= ————
167Gnn

o Diffusive momentum transport by graviton radiation induces viscosity
n N eq TG

with energy density of gravitational field e¢

Can be solved for 7 and 7g [Weinberg (1972)]

T\ T6rGy’ ¢ =\ 16nGnea

o Can this really be independent of dark matter mass and density?

o Thermalization time ~ mp/T? is very large

What determines dissipation on shorter time scales, when classical fields
dominate?



