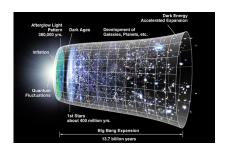
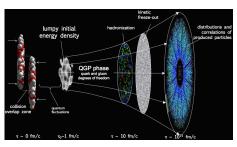
Fluctuations in the quark-gluon plasma and in the cosmological fluid

Stefan Floerchinger (U. Heidelberg)

CERN, The big bang and the little bangs, 08/2016.

Biq banq - little banq analogy



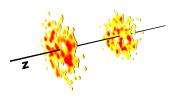


- cosmol. scale: MPc= 3.1×10^{22} m nuclear scale: fm= 10^{-15} m
- Gravity + QED + Dark sector
- one big event

- QCD
- very many events
- initial conditions not directly accessible
- all information must be reconstructed from final state
- dynamical description as a fluid

$Symmetries\ in\ a\ statistical\ sense$

- Concrete realization breaks symmetry
- Statistical properties are symmetric



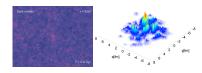
Cosmology

- Cosmological principle: universe homogeneous and isotropic
- 3D translation and rotation
- → 3D Fourier expansion

Heavy ion collisions

- 1D azimuthal rotation for central collisions
- 1D Bjorken boost (approximate)
- → Bessel-Fourier expansion [Floerchinger & Wiedemann (2013)]

The problem of initial conditions



 Problem for cosmology and heavy ion physics: precise initial conditions for fluid dynamic description not known

	Planck+WP	Planck+WP	WMAP9+eCMB	
	$+\mathrm{highL}$	$_{\rm +highL+BAO}$	+BAO	PDG.
$\Omega_b h^2$	0.02207 ± 0.00027	0.02214 ± 0.00024	0.02211 ± 0.00034	particle data group
$\Omega_c h^2$	0.1198 ± 0.0026	0.1187 ± 0.0017	0.1162 ± 0.0020	July 2014
$100 \theta_{\mathrm{MC}}$	1.0413 ± 0.0006	1.0415 ± 0.0006	-	PARTICLE
$n_{\rm s}$	0.958 ± 0.007	0.961 ± 0.005	0.958 ± 0.008	
τ	$0.091^{+0.013}_{-0.014}$	0.092 ± 0.013	$0.079^{+0.011}_{-0.012}$	PHYSICS
$\ln(10^{10}\Delta_R^2)$	3.090 ± 0.025	3.091 ± 0.025	3.212 ± 0.029	BOOKLET
h	0.673 ± 0.012	0.678 ± 0.008	0.688 ± 0.008	Extracted from the Review of Particle Physics K.A. Clive et al. [Particle Data Group], Chin. Phys. C. 35, (2000) (2014)
σ_8	0.828 ± 0.012	0.826 ± 0.012	$0.822^{+0.013}_{-0.014}$	See http://pdg.bl.gov/ for Porticle Listings. complete reviews and pdgLive (our interactive database)
Ω_{m}	$0.315^{+0.016}_{-0.017}$	0.308 ± 0.010	0.293 ± 0.010	Chinese Physics C
Ω_{Λ}	$0.685^{+0.017}_{-0.016}$	0.692 ± 0.010	0.707 ± 0.010	Available from PDG of LBNL and CERN

- Nevertheless, cosmology is now a precision science...
- How is that possible ?

Initial conditions in cosmology

- Perturbations are classified into scalars, vectors, tensors
- Vector modes are decaying, need not be specified
- Tensor modes are gravitational waves, can be neglected for most purposes
- Decaying scalar modes also not relevant
- Growing scalar modes are further classified by wavelength
- For relevant range of wavelength: close to Gaussian probability distribution
- Almost scale invariant initial spectrum

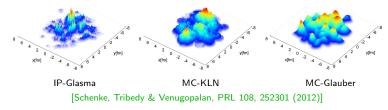
$$\langle \delta(\mathbf{k}) \, \delta(\mathbf{k}') \rangle = P(k) \, \delta^{(3)}(\mathbf{k} + \mathbf{k}')$$

with

$$P(k) \sim k^{n_s - 1}$$
 $n_s = 0.968 \pm 0.006$ [Planck (2015)]

Initial conditions heavy ion collisions

• State of the art: Explicit realizations in terms of Monte-Carlo models



- Can heavy ion physics follow the successful approach used in cosmology?
 - Characterize statistical properties rather than explicit realizations
 - Focus on relevant wavelengths
- First attempts in this direction have been made
 [Teaney & Yan (2011), Coleman-Smith, Petersen & Wolpert (2012), Floerchinger & Wiedemann (2013), Yan & Ollitrault (2014), Bzdak & Skokov (2014), ...]

Mode expansion for fluid fields

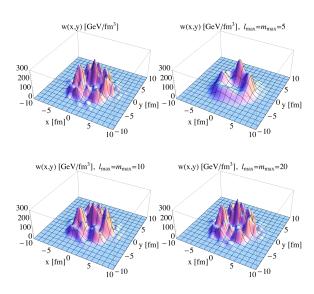
Bessel-Fourier expansion at fixed time au

[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012, Floerchinger & Wiedemann 2014]

$$w(r, \phi, \eta) = w_{\text{BG}}(r) + w_{\text{BG}}(r) \sum_{m,l} \int_{k} w_{l}^{(m)}(k) e^{im\phi + ik\eta} J_{m} \left(z_{l}^{(m)} \rho(r) \right)$$

- ullet azimuthal wavenumber m, radial wavenumber l, rapidity wavenumber k
- $w_l^{(m)}$ dimensionless
- ullet higher m and l correspond to finer spatial resolution
- ullet coefficients $w_{l}^{(m)}$ can be related to eccentricienies
- works similar for vectors (velocity) and tensors (shear stress)

Transverse density from Glauber model



Statistics of initial density perturbations

Independent point-sources model (IPSM)

$$w(\vec{x}) = \left[rac{1}{ au_0} rac{dW_{\mathsf{BG}}}{d\eta}
ight] rac{1}{N} \sum_{j=1}^N \delta^{(2)} (\vec{x} - \vec{x}_j)$$

- random positions \vec{x}_i , independent and identically distributed
- probability distribution $p(\vec{x}_j)$ reflects collision geometry
- possible to determine correlation functions analytically for central and non-central collisions [Floerchinger & Wiedemann (2014)]
- ullet Long-wavelength modes (small m and l) that don't resolve differences between point-like and extended sources have universal statistics.

Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]

- Solves evolution equations for fluid + gravity
- Expands in perturbations around homogeneous background
- Detailed understanding how different modes evolve
- Diagramatic formalism for non-linear mode-mode interactions
- Very simple equations of state $p = w \epsilon$
- Viscosities usually neglected $\eta = \zeta = 0$
- Photons and neutrinos are free streaming

Fluid dynamic perturbation theory for heavy ions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

- goal: understand dynamics of heavy ion collisions and determine QCD transport properties experimentally
- so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]
- new: solve fluid equations for smooth and symmetric background and order-by-order in perturbations
- good convergence properties [Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007 (2015)]

Perturbative expansion

Write the hydrodynamic fields $h=(T,u^{\mu},\pi^{\mu\nu},\pi_{\rm Bulk},\ldots)$

ullet at initial time au_0 as

$$h = h_0 + \epsilon h_1$$

with background h_0 , fluctuation part $\epsilon\,h_1$

• at later time $au > au_0$ as

$$h = h_0 + \epsilon h_1 + \epsilon^2 h_2 + \epsilon^3 h_3 + \dots$$

Solve for time evolution in this scheme

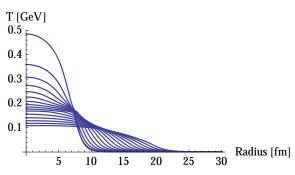
- h₀ is solution of full, non-linear hydro equations in symmetric situation: azimuthal rotation and Bjorken boost invariant
- ullet h_1 is solution of linearized hydro equations around h_0 , can be solved mode-by-mode
- \bullet h_2 can be obtained by from interactions between modes etc.

Background evolution

System of coupled 1+1 dimensional non-linear partial differential equations for

- ullet enthalpy density w(au,r) (or temperature T(au,r))
- fluid velocity $u^{\tau}(\tau,r), u^{r}(\tau,r)$
- \bullet two independent components of shear stress $\pi^{\mu\nu}(\tau,r)$

Can be easily solved numerically

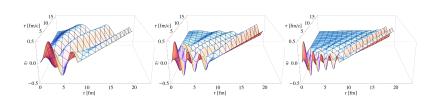


Evolving perturbation modes

- \bullet Linearized hydro equations: set of coupled 3+1 dimensional, linear, partial differential equations.
- Use Fourier expansion

$$h_j(\tau, r, \phi, \eta) = \sum_m \int \frac{dk_\eta}{2\pi} h_j^{(m)}(\tau, r, k_\eta) e^{i(m\phi + k_\eta \eta)}.$$

- Reduces to 1+1 dimensions.
- Can be solved numerically for each initial Bessel-Fourier mode.



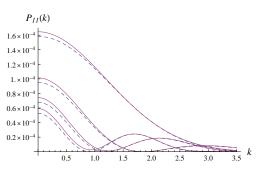
Mode interactions

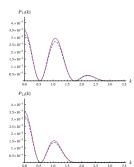
- Non-linear terms in the evolution equations lead to mode interactions.
- Quadratic and higher order in initial perturbations.
- Can be determined from iterative solution but has not been fully worked out yet.
- Convergence can be tested with numerical solution of full hydro equations.

Evolution of spectrum of density perturbations

Density-density spectrum

$$P_{11}(\vec{k}) = \int d^2x \, e^{-i\vec{k}(\vec{x}-\vec{y})} \, \langle \, d(\vec{x}_1) \, d(\vec{x}_2) \, \rangle_c$$





dashed: linear evolution, solid: including first non-linear correction left: $\eta/s=0.08,~\tau=1.5,2.5,3.5,4.5~{\rm fm/c},~{\rm right:}~\eta/s=0.08~{\rm and}~\eta/s=0.8,~\tau=7.5~{\rm fm/c}$ [Brouzakis, Floerchinger, Tetradis & Wiedemann, PRD 91, 065007 (2015)]

Backreaction: General idea

• for 0+1 dimensional, non-linear dynamics

$$\dot{\varphi} = f(\varphi) = f_0 + f_1 \varphi + \frac{1}{2} f_2 \varphi^2 + \dots$$

ullet one has for expectation values $ar{arphi}=\langle arphi
angle$

$$\dot{\bar{\varphi}} = f_0 + f_1 \,\bar{\varphi} + \frac{1}{2} f_2 \,\bar{\varphi}^2 + \frac{1}{2} f_2 \,\langle (\varphi - \bar{\varphi})^2 \rangle + \dots$$

- evolution equation for expectation value $\bar{\varphi}$ depends on two-point correlation function or spectrum $P_2 = \langle (\varphi \bar{\varphi})^2 \rangle$
- evolution equation for spectrum depends on bispectrum and so on
- more complicated for higher dimensional theories
- more complicated for gauge theories such as gravity

Backreaction in gravity

- Einstein's equations are non-linear.
- Important question [G. F. R. Ellis (1984)]: If Einstein's field equations describe small scales, including inhomogeneities, do they also hold on large scales?
- Is there a sizable backreaction from inhomogeneities to the cosmological expansion?
- Difficult question, has been studied by many people
 [Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998);
 Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003);
 Räsänen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009);
 Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ...]
- Recent reviews: [Buchert & Räsänen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green & Wald, Class. Quant. Grav. 31, 234003 (2014)]
- No general consensus but most people believe now that gravitational backreaction is rather small.
- In the following we look at a new backreaction on the matter side of Einstein's equations.

Fluid equation for energy density

First order viscous fluid dynamics

$$u^{\mu}\partial_{\mu}\epsilon + (\epsilon + p)\nabla_{\mu}u^{\mu} - \zeta\Theta^{2} - 2\eta\sigma^{\mu\nu}\sigma_{\mu\nu} = 0$$

For
$$\vec{v}^2 \ll c^2$$
 and Newtonian potentials $\Phi, \Psi \ll 1$

$$\dot{\epsilon} + \vec{v} \cdot \vec{\nabla} \epsilon + (\epsilon + p) \left(3 \frac{\dot{a}}{a} + \vec{\nabla} \cdot \vec{v} \right)$$

$$= \frac{\zeta}{a} \left[3 \frac{\dot{a}}{a} + \vec{\nabla} \cdot \vec{v} \right]^2 + \frac{\eta}{a} \left[\partial_i v_j \partial_i v_j + \partial_i v_j \partial_j v_i - \frac{2}{3} (\vec{\nabla} \cdot \vec{v})^2 \right]$$

Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density $\bar{\epsilon} = \langle \epsilon \rangle$

$$\frac{1}{a}\dot{\bar{\epsilon}} + 3H\left(\bar{\epsilon} + \bar{p} - 3\bar{\zeta}H\right) = D$$

with dissipative backreaction term

$$D = \frac{1}{a^2} \langle \eta \left[\partial_i v_j \partial_i v_j + \partial_i v_j \partial_j v_i - \frac{2}{3} \partial_i v_i \partial_j v_j \right] \rangle$$

+
$$\frac{1}{a^2} \langle \zeta [\vec{\nabla} \cdot \vec{v}]^2 \rangle + \frac{1}{a} \langle \vec{v} \cdot \vec{\nabla} (p - 6\zeta H) \rangle$$

- D vanishes for unperturbed homogeneous and isotropic universe
- D has contribution from shear & bulk viscous dissipation and thermodynamic work done by contraction against pressure gradients
- ullet dissipative terms in D are positive semi-definite
- for spatially constant viscosities and scalar perturbations only

$$D = \frac{\bar{\zeta} + \frac{4}{3}\bar{\eta}}{a^2} \int d^3q \ P_{\theta\theta}(q)$$

$Dissipation\ of\ perturbations$

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Dissipative backreaction does not need negative effective pressure

$$\frac{1}{a}\dot{\bar{\epsilon}} + 3H\left(\bar{\epsilon} + \bar{p}_{\text{eff}}\right) = D$$

- D is an integral over perturbations, could become large at late times.
- Can it potentially accelerate the universe?
- ullet Need additional equation for scale parameter a
- Use trace of Einstein's equations $R=8\pi G_{\mathrm{N}}T^{\mu}_{\ \mu}$

$$\frac{1}{a}\dot{H} + 2H^2 = \frac{4\pi G_{\rm N}}{3} \left(\bar{\epsilon} - 3\bar{p}_{\rm eff}\right)$$

does not depend on unknown quantities like $\langle (\epsilon + p_{\text{eff}}) u^{\mu} u^{\nu} \rangle$

• To close the equations one needs equation of state $\bar{p}_{\rm eff}=\bar{p}_{\rm eff}(\bar{\epsilon})$ and dissipation parameter D

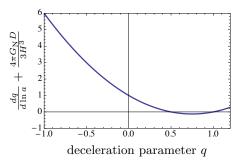
$Deceleration\ parameter$

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

- ullet assume now vanishing effective pressure $ar{p}_{ ext{eff}}=0$
- \bullet obtain for deceleration parameter $q=-1-\frac{\dot{H}}{aH^2}$

$$-\frac{dq}{d \ln a} + 2(q-1)\left(q - \frac{1}{2}\right) = \frac{4\pi G_{\rm N} D}{3H^3}$$

- for D=0 attractive fixed point at $q_*=\frac{1}{2}$ (deceleration)
- for D > 0 fixed point shifted towards $q_* < 0$ (acceleration)



Estimating viscous backreaction D

- For $\frac{4\pi G_{
 m N}D}{3H^3}pprox 4$ one could explain the current accelerated expansion (qpprox -0.6) by dissipative backreaction.
- Is this possible?
- ullet In principle one can determine D for given equation of state and viscous properties from dynamics of structure formation.
- So far only rough estimates. If shear viscosity dominates:

$$D = \frac{1}{a^2} \langle \eta \left[\partial_i v_j \partial_i v_j + \partial_i v_j \partial_j v_i - \frac{2}{3} \partial_i v_i \partial_j v_j \right] \rangle \approx c_D \bar{\eta} H^2$$

with $c_D=\mathcal{O}(1).$ Corresponds to $\Delta v \approx 100\,\mathrm{km/s}$ for $\Delta x \approx 1\,\mathrm{MPc}$

Leads to

$$\frac{4\pi G_{\rm N}D}{3H^3} \approx \frac{c_D\bar{\eta}H}{2\rho_c}$$

with
$$ho_c=rac{3H^2}{8\pi G_{
m N}}$$

Viscosities

Relativistic particles / radiation contribute to shear viscosity

$$\eta = c_{\eta} \, \epsilon_R \, \tau_R$$

- prefactor $c_{\eta} = \mathcal{O}(1)$
- energy density of radiation ϵ_R
- mean free time au_R
- Bulk viscosity vanishes in situations with conformal symmetry but can be large when conformal symmetry is broken.
- For massive scalar particles with $\lambda \varphi^4$ interaction [Jeon & Yaffe (1996)]

$$\zeta \sim \frac{m^6}{\lambda^4 T^3} e^{2m/T}, \qquad \qquad \eta \sim \frac{m^{5/2} T^{1/2}}{\lambda^2} \qquad \qquad \text{for} \qquad \qquad \frac{T}{m} \ll 1$$

$$\eta \sim rac{m^{5/2}T^{1/2}}{\lambda^2}$$

$$\frac{T}{m} \ll$$

Estimating viscous backreaction D

Consider shear viscosity from radiation

$$\eta = c_{\eta} \epsilon_R \tau_R$$

Backreaction term

$$\frac{4\pi G_{\rm N}D}{3H^3} \approx \frac{c_D c_\eta}{2} \frac{\epsilon_R}{\rho_c} \tau_R H$$

- fluid approximation needs $\tau_R H < 1$
- for sizeable effect one would need $\epsilon_R/\rho_c=\mathcal{O}(1)$
- ullet unlikely that D becomes large enough in this scenario

Needed refinements:

- full dynamics of perturbations
- second order fluid dynamics
- complete model(s)

Dissipation from the effective action

- Dissipative effects are usually discusses on the level of equations of motion.
- For some questions one would like to have a formulation in terms of an effective action
 - causality & stability analysis
 - fluctuations
 - renormalization
 - effective field theories
 - coupling to gravity
- One possibility: Schwinger-Keldysh double time path formalism
- Another possibility: Analytic continuation of the 1PI effective action [Floerchinger, 1603.07148]
 - Theories in approximate local equilibrium
 - General covariance and energy-momentum conservation
 - Local form of second law of thermodynamics
 - Effective action for fluid dynamics including viscosity terms

$Local\ equilibrium\ \mathcal{E}\ partition\ function$

• Local equilibrium description with T(x) and $u^{\mu}(x)$

$$\beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

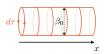
• Use similarity between local density matrix and translation operator

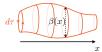
$$e^{\beta^{\mu}(x)\mathscr{P}_{\mu}} \longleftrightarrow e^{i\Delta x^{\mu}\mathscr{P}_{\mu}}$$

to represent partition function as functional integral with periodicity in imaginary direction such that

$$\phi(x^{\mu} - i\beta^{\mu}(x)) = \pm \phi(x^{\mu})$$

- (a) Global thermal equilibrium
- (b) Local thermal equilibrium





 \bullet Partition function Z[J], Schwinger functional W[J] in Euclidean domain

$$Z[J] = e^{W_E[J]} = \int D\phi \, e^{-S_E[\phi] + \int_x J\phi}$$

One particle irreducible effective action

In Euclidean domain defined by standard Legendre transform

$$\Gamma_E[\Phi] = \int_x J_a(x)\Phi_a(x) - W_E[J]$$

with expectation values

$$\Phi_a(x) = \frac{1}{\sqrt{g}(x)} \frac{\delta}{\delta J_a(x)} W_E[J]$$

Euclidean field equation

$$\frac{\delta}{\delta \Phi_a(x)} \Gamma_E[\Phi] = \sqrt{g}(x) J_a(x)$$

resembles classical equation of motion for J=0.

Need analytic continuation to obtain a viable equation of motion.

Analytic continuation 1

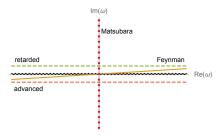
Define for homogeneous background field and in global equilibrium

$$\frac{\delta^{2}}{\delta J_{a}(-p)\delta J_{b}(q)}W_{E}[J] = G_{ab}(p) (2\pi)^{4} \delta^{(4)}(p-q)$$
$$\frac{\delta^{2}}{\delta \Phi_{a}(-p)\delta \Phi_{b}(q)} \Gamma_{E}[\Phi] = P_{ab}(p) (2\pi)^{4} \delta^{(4)}(p-q)$$

From definition of effective action

$$\sum_{b} G_{ab}(p) P_{bc}(p) = \delta_{ac}$$

- \bullet Correlation functions can be analytically continued in $\omega = -u^\mu p_\mu.$
- Branch cut on real frequency axis $\omega \in \mathbb{R}$.



Analytic continuation 2

Decompose inverse two-point function

$$P_{ab}(p) = P_{1,ab}(p) - is_{\mathsf{I}}(-u^{\mu}p_{\mu}) P_{2,ab}(p),$$

with $s_{\mathsf{I}}(\omega) = \mathsf{sign}(\mathsf{Im}\ \omega)$.

• In position space, replace

$$\begin{split} s_{\rm I} \left(-u^\mu p_\mu \right) &= {\rm sign} \left({\rm Im} (-u^\mu p_\mu) \right) \\ &\to {\rm sign} \left({\rm Im} \left(i u^\mu \frac{\partial}{\partial x^\mu} \right) \right) = {\rm sign} \left({\rm Re} \left(u^\mu \frac{\partial}{\partial x^\mu} \right) \right) = s_{\rm R} \left(u^\mu \frac{\partial}{\partial x^\mu} \right) \end{split}$$

- ullet This symbol appears also in $\Gamma[\Phi]$
- Real and causal field equations follow from [Floerchinger, 1603.07148]

$$\left. \frac{\delta \Gamma[\Phi]}{\delta \Phi_a(x)} \right|_{\text{ret}} = 0$$

with certain algebraic rules for $s_{\mathsf{R}}\left(u^{\mu}\frac{\partial}{\partial x^{\mu}}\right)\to\pm1.$

• Energy momentum conservation, entropy production, fluid dynamics, ...

Gravitational growth of perturbations

• Small initial density perturbations

$$\delta = \frac{\Delta \epsilon}{\bar{\epsilon}} \ll 1$$

• At photon decoupling (CMB)

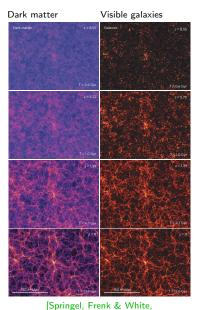
$$\delta \approx 10^{-5}$$

- Structure growth due to attractive gravitational interaction
- Perturbative treatment possible up to

$$\delta \approx 1$$

• For late times and small wavelengths

$$\delta \gg 1$$



Nature 440, 1137 (2006)]

The dark matter fluid

Heavy ion collisions

$$\mathscr{L}_{\mathsf{QCD}} \ \ o \ \ \mathsf{fluid} \ \mathsf{properties}$$

Late time cosmology

fluid properties
$$ightarrow \mathscr{L}_{\mathsf{dark}\ \mathsf{matter}}$$

Until direct detection of dark matter, it can only be observed via

$$T_{\mathsf{dark}\ \mathsf{matter}}^{\mu
u}$$

Formation of large scale structure

- Formation of large scale structure is interesting
 - tests physics of dark matter
 - tests physics of dark energy
 - gets tested by missions like Euclid, ...
- Cosmological perturbation theory breaks down when density contrast

$$\delta(\mathbf{k}) = \frac{\delta \rho(\mathbf{k})}{\bar{\rho}} \gg 1$$

grows large at late times and for small scales.

- \bullet Numerical simulations (N-body) are expensive and time-consuming
- One would like to have better analytical understanding

Renormalization group apprach

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)] [Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

- Start from ideal fluid approximation
- Large scale structure formation can be formulated as classical field theory with stochastic initial conditions
- Leads to classical statistical field theory
- Initial state fluctuations can be treated by functional renormalization group, similar to thermal or quantum fluctuations in other contexts [Matarrese & Pietroni (2007)]
- Modify theory by cutting off the initial spectrum in the IR

$$P_k^0(\mathbf{q}) = P^0(\mathbf{q}) \Theta(|\mathbf{q}| - k)$$

• Use flow equation for 1PI effective action [Wetterich (1993)]

$$\partial_k \Gamma_k [\phi,\chi] = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_k^{(2)} [\phi,\chi] - i \left(P_k^0 - P^0 \right) \right)^{-1} \partial_k P_k^0 \right\}$$

Renormalization of effective viscosity and pressure

- ullet Effective theory at scale k has additional terms in equations of motion
- Order them by derivative expansion.
- Lowest order: ideal fluid
- Next-to-lowest order: effective sound velocity parameter

$$\gamma_s = \frac{c_s^2}{\mathcal{H}^2} = \frac{dp/d\rho}{\mathcal{H}^2}.$$

and effective viscosity parameter

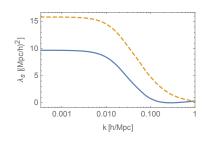
$$\gamma_{\nu} = \frac{4\eta/3 + \zeta}{(\rho + p)\mathcal{H}a}.$$

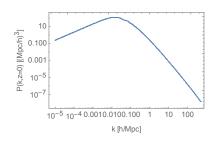
ullet Both depend on cosmological time or scale factor a

$$\gamma_s = \lambda_s \, a^{\kappa}, \qquad \gamma_{\nu} = \lambda_{\nu} \, a^{\kappa}$$

with exponent $\kappa \approx 2$.

RG flow of effective sound velocity parameter



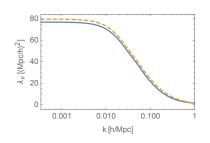


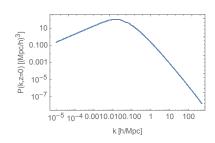
- left: RG flow of effective sound velocity today $\lambda_s=rac{c_s^2}{H_0^2}=rac{dp/d
 ho}{H_0^2}$
 - dashed line: one-loop approximation

$$\partial_k \lambda_s = -\frac{4\pi}{3} \frac{31}{70} P^0(k)$$

- solid line: functional RG
- right: linear density power spectrum

$RG\ flow\ of\ effective\ viscosity\ parameter$



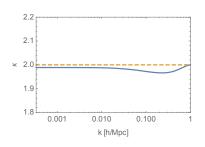


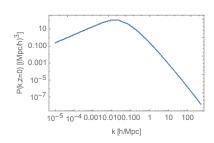
- left: RG flow of effective viscosity today $\lambda_{
 u}=rac{4\eta/3+\zeta}{(
 ho+p)_0H_0}$
 - dashed line: one-loop approximation

$$\partial_k \lambda_\nu = -\frac{4\pi}{3} \frac{78}{35} P^0(k)$$

- solid line: functional RG
- right: linear density power spectrum

RG flow of exponent κ



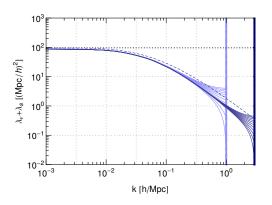


- ullet left: RG flow of exponent κ
 - dashed line: one-loop approximation

$$\partial_k \kappa = \frac{4\pi}{3} P^0(k) \frac{78(\kappa - 2)}{35\tilde{\lambda}_{\nu}}$$

- solid line: functional RG
- right: linear density power spectrum

Fixed point behavior

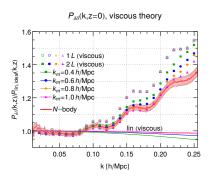


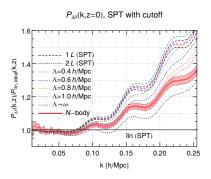
- ullet growing mode is sensitive to $\lambda_s + \lambda_
 u$
- functional RG has IR fixed points

Functional RG + perturbation theory

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)] [Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

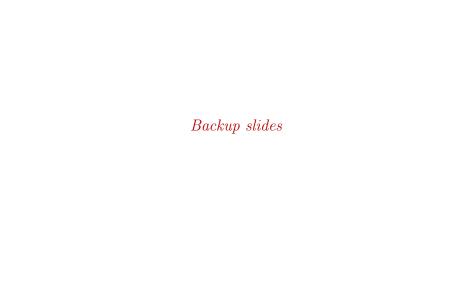
- \bullet RG evolution to determine effective viscosity and sound velocity at intermediate scale k_m
- Perturbation theory for power spectrum for scales $0 < |\mathbf{q}| < k_m$
- Theory with effective parameters





Conclusions

- Interesting parallels between cosmology and heavy ion collisions.
- Analog of cosmological perturbation theory can help to solve the fluid dynamics of heavy ion collisions.
- Dissipation of perturbations can have interesting effects in cosmology.
- Analytically continued one-particle irreducible effective action contains dissipative effects.
- Modified variational principle leads to real and causal equations of motion.
- Renormalization group and description as an effective fluid can help to understand large scale structure formation.



Ideal fluid versus collision-less gas

 Many codes used in cosmology describe dark matter as ideal, cold and pressure-less fluid

$$T^{\mu\nu}=\epsilon\;u^\mu u^\nu$$

- Equation of state p=0
- ullet No shear stress and bulk viscous pressure $\pi^{\mu
 u} = \pi_{
 m bulk} = 0$
- Dark matter is also modeled as collision-less gas of massive particles, interacting via gravity only
- Two pictures are in general not consistent

$Dissipative\ properties$

Viscosities

- Diffusive transport of momentum [Maxwell (1860)]
- Depend strongly on interaction properties
- Example: non-relativistic gas of particles with mass m, mean peculiar velocity \bar{v} , elastic $2 \to 2$ cross-section $\sigma_{\rm el}$

$$\eta = \frac{m \, \bar{v}}{3 \, \sigma_{\rm el}} \qquad \qquad \zeta = 0$$

Interesting additional information about dark matter

How is structure formation modified?

Linear dynamics

ullet energy conservation $(heta=ec
abla\cdotec v)$

$$\dot{\delta\epsilon} + 3\frac{\dot{a}}{a}\delta\epsilon + \bar{\epsilon}\theta = 0$$

Navier-Stokes equation

$$\bar{\epsilon} \left[\dot{\theta} + \frac{\dot{a}}{a} \theta - k^2 \psi \right] + \frac{1}{a} \left(\zeta + \frac{4}{3} \eta \right) k^2 \theta = 0$$

Poisson equation

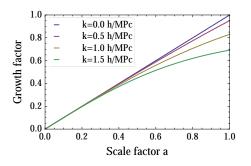
$$-k^2\psi = 4\pi G_{\rm N}a^2\delta\epsilon$$

Scalar perturbations $(\delta = \frac{\delta \epsilon}{\bar{\epsilon}})$

$$\ddot{\delta} + \left[\frac{\dot{a}}{a} + \frac{\zeta + \frac{4}{3}\eta}{a\bar{\epsilon}}k^2\right]\dot{\delta} - 4\pi G_{N}\bar{\epsilon}\,\delta = 0$$

Viscosites slow down gravitational collapse but do not wash out structure

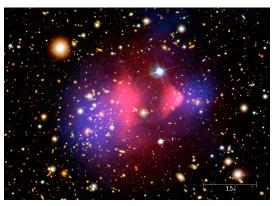
Structure formation with viscosities



[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

- k-dependent growth factor for scalar modes
- Could be tested by observation of large scale structure
- Depends on $\zeta + \frac{4}{3}\eta$ as function of time (or density)

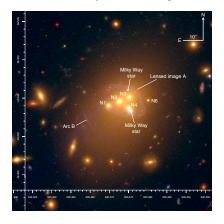
Material properties of dark matter

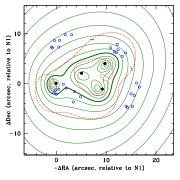


Gravitational lensing and x-ray image of "bullet cluster" 1E0657-56

- ullet so far: dark matter is non-interacting o can collide without stopping
- Future decade: analysis of colliding galaxy clusters will refine this picture
- Dark energy self interacting
 - → modification of equation of state
 - → dissipation

Is dark matter self-interacting?





Galaxy cluster Abell 3827 [Massey et al., MNRAS 449, 3393 (2015)]

- Offset between stars and dark matter falling into cluster
- Is this a first indication for a dark matter self interaction?
 [Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]

$$\frac{\sigma}{m_{
m DM}} pprox 3 rac{{
m cm}^2}{{
m g}} pprox 0.5 rac{{
m b}}{{
m GeV}}$$
 (under debate)

Precision cosmology can measure shear stress

Scalar excitations in gravity

$$ds^{2} = a^{2} \left[-(1+2\psi)d\eta^{2} + (1-2\phi)dx_{i}dx_{i} \right]$$

with two Newtonian potentials ψ and ϕ .

Einsteins equations imply

$$\left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \partial_k^2\right) (\phi - \psi) = 8\pi G_{\mathsf{N}} a^2 \left. \pi_{ij} \right|_{\mathsf{scalar}}$$

with scalar part of shear stress

$$\pi_{ij}\big|_{\mathsf{scalar}} = \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \partial_k^2\right) \tilde{\pi}$$

- Detailed data at small redshift e.g. from Euclid satellite (esa, 2020)
 [Amendola et al. (2012)]
 - ullet ψ can be measured via acceleration of matter
 - ullet $\psi+\phi$ can be meaured by weak lensing and Sachs-Wolfe effect
 - fluid velocity can be accessed by redshift space distortions
- New quantitative precise insights into fluid properties of dark matter!

Relativistic fluid dynamics

Energy-momentum tensor and conserved current

$$\begin{split} T^{\mu\nu} &= (\epsilon + p + \pi_{\text{bulk}}) u^\mu u^\nu + (p + \pi_{\text{bulk}}) g^{\mu\nu} + \pi^{\mu\nu} \\ N^\mu &= n \, u^\mu + \nu^\mu \end{split}$$

- ullet tensor decomposition w. r. t. fluid velocity u^{μ}
- pressure $p = p(\epsilon, n)$
- constitutive relations for viscous terms in derivative expansion
 - ullet bulk viscous pressure $\pi_{
 m bulk} = -\zeta \;
 abla_{\mu} u^{\mu} + \dots$
 - $\bullet \ \ \text{shear stress} \ \pi^{\mu\nu} = -\eta \left[\Delta^{\mu\alpha} \nabla_\alpha u^\nu + \Delta^{\nu\alpha} \nabla_\alpha u^\mu \tfrac{2}{3} \Delta^{\mu\nu} \nabla_\alpha u^\alpha \right] + \dots$
 - diffusion current $\nu^{\alpha} = -\kappa \left[\frac{nT}{\epsilon+p}\right]^2 \Delta^{\alpha\beta} \partial_{\beta} \left(\frac{\mu}{T}\right) + \dots$

Fluid dynamic equations from covariant conservation laws

$$\nabla_{\mu} T^{\mu\nu} = 0, \qquad \nabla_{\mu} N^{\mu} = 0.$$

Bulk viscosity

Bulk viscous pressure is negative for expanding universe

$$\pi_{\mathsf{bulk}} = -\zeta \, \nabla_{\mu} u^{\mu} = -\zeta \, 3H < 0$$

Negative effective pressure

$$p_{\mathsf{eff}} = p + \pi_{\mathsf{bulk}} < 0$$

would act similar to dark energy in Friedmann's equations

[Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006), Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

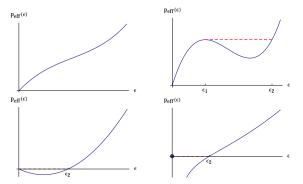
- Is negative effective pressure physical?
- In context of heavy ion physics: instability for $p_{\rm eff} < 0$ ("cavitation") [Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein (2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]
- What precisely happens at the instability?

Is negative effective pressure physical?

Kinetic theory

$$p_{\text{eff}}(x) = \int \frac{d^3p}{(2\pi)^3} \frac{\vec{p}^2}{3E_{\vec{p}}} f(x, \vec{p}) \ge 0$$

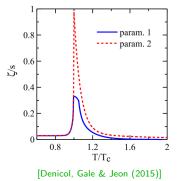
Stability argument



If there is a vacuum with $\epsilon=p_{\rm eff}=0$, phases with $p_{\rm eff}<0$ cannot be mechanically stable. (But could be metastable.)

Bulk viscosity in heavy ion physics

- In heavy ion physics people start now to consider bulk viscosity.
- Becomes relevant close to chiral crossover



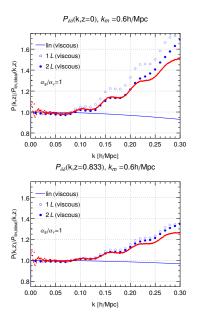
- Is there a first-order phase transition triggered by the expansion?
- What is the relation to chemical and kinetic freeze-out?
- More detailed understanding needed, both for heavy ion physics and cosmology

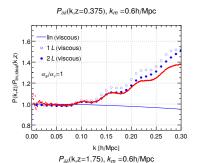
"Fundamental" and "effective" viscosity

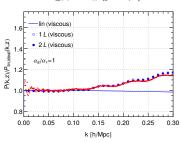
Two types of viscosities for cosmological fluid

- Momentum transport by particles or radiation
 - governed by interactions
 - from linear response theory [Green (1954), Kubo (1957)]
 - close to equilibrium
- Momentum transport in the inhomogeneous, coarse-grained fluid
 - governed by non-linear fluid mode couplings
 - determined perturbatively [Blas, Floerchinger, Garny, Tetradis & Wiedemann]
 - non-equilibrium
 - heavy ions: anomalous plasma viscosity [Asakawa, Bass & Müller (2006)]
 eddy viscosity [Romatschke (2008)]

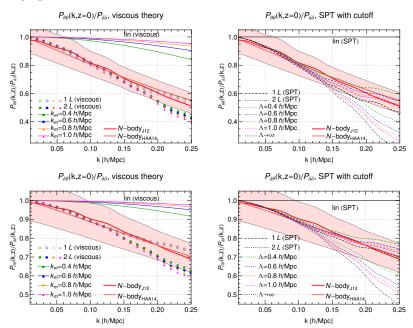
Power spectrum at different redshifts



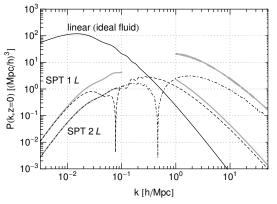




Velocity spectra



Power spectrum, standard perturbation theory



[D. Blas, M. Garny and T. Konstandin, JCAP 1309 (2013) 024]

Could viscous backreaction lead to Λ CDM-type expansion?

[Floerchinger, Tetradis & Wiedemann, 1506.00407]

- Backreaction term D(z) will be *some* function of redshift.
- ullet For given dissipative properties D(z) can be determined, but calculation is involved.
- ullet One may ask simpler question: For what form of D(z) would the expansion be as in the Λ CDM model?
- \bullet The $\mathit{ad\ hoc}$ ansatz $D(z) = \mathsf{const} \cdot H(z)$ leads to modified Friedmann equations

$$\bar{\epsilon} - \frac{D}{4H} = \frac{3}{8\pi G_{\rm N}} H^2, \qquad \bar{p}_{\rm eff} - \frac{D}{12H} = -\frac{1}{8\pi G_{\rm N}} \left(2\frac{1}{a}\dot{H} + 3H^2 \right)$$

• In terms of $\hat{\epsilon} = \bar{\epsilon} - \frac{D}{3H}$ one can write

$$\frac{1}{a}\dot{\hat{\epsilon}} + 3H(\hat{\epsilon} + \bar{p}_{\rm eff}) = 0, \qquad \qquad R + \frac{8\pi G_{\rm N}D}{3H} = -8\pi G_{\rm N}(\hat{\epsilon} - 3\bar{p}_{\rm eff})$$

ullet For $ar{p}_{ ext{eff}}=0$ these are standard equations for $\Lambda ext{CDM}$ model with

$$\Lambda = \frac{2\pi G_{\mathsf{N}} D}{3H}$$

Modification of Friedmann's equations by backreaction 1

- For universe with fluid velocity inhomogeneities one cannot easily take direct average of Einstein's equations.
- However, fluid equation for energy density and trace of Einstein's equations can be used.
- By integration one finds modified Friedmann equation

$$H(\tau)^{2} = \frac{8\pi G_{\rm N}}{3} \left[\bar{\epsilon}(\tau) - \int_{\tau_{\rm I}}^{\tau} d\tau' \left(\frac{a(\tau')}{a(\tau)} \right)^{4} a(\tau') D(\tau') \right]$$

- Additive deviation from Friedmann's law for $D(\tau')>0$
- Part of the total energy density is due to dissipative production

$$\bar{\epsilon} = \bar{\epsilon}_{\sf nd} + \bar{\epsilon}_{\sf d}$$

Assume for dissipatively produced part

$$\dot{\bar{\epsilon}}_{\mathsf{d}} + 3\frac{\dot{a}}{a}(1+\hat{w}_{\mathsf{d}})\bar{\epsilon}_{\mathsf{d}} = aD$$

Modification of Friedmann's equations by backreaction 2

Leads to another variant of Friedmann's equation

$$H(\tau)^2 = \frac{8\pi G_{\rm N}}{3} \left[\bar{\epsilon}_{\rm nd}(\tau) + \int_{\tau_{\rm I}}^{\tau} d\tau' \left[\left(\frac{a(\tau')}{a(\tau)} \right)^{3+3\hat{w}_{\rm d}} - \left(\frac{a(\tau')}{a(\tau)} \right)^4 \right] a(\tau') D(\tau') \right]$$

- If the dissipative backreaction D produces pure radiation, $\hat{w}_{\rm d}=1/3$, it does not show up in effective Friedmann equation at all!
- For $\hat{w}_d < 1/3$ there is a new component with positive contribution on the right hand side of the effective Friedmann equation.
- To understand expansion, parametrize for late times

$$D(\tau) = H(\tau) \left(\frac{a(\tau)}{a(\tau_0)}\right)^{-\kappa} \tilde{D}$$

with constants \tilde{D} and κ .

• Hubble parameter as function of $(a_0/a) = 1 + z$

$$H(a) = H_0 \sqrt{\Omega_{\Lambda} + \Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_R \left(\frac{a_0}{a}\right)^4 + \Omega_D \left(\frac{a_0}{a}\right)^{\kappa}}$$

• For $\kappa \approx 0$ the role of Ω_{Λ} and Ω_{D} would be similar.

Inhomogeneities in heavy ion collisions

Inhomogeneities are main source of information in cosmology.

Similarly, in heavy ion collisions:

- Initial fluid perturbations: Event-by-event fluctuations around averaged fluid fields at time τ_0 and their evolution:
 - energy density ϵ
 - fluid velocity u^{μ}
 - shear stress $\pi^{\mu\nu}$
 - more general also: baryon number density n, electric charge density, electromagnetic fields, ...
- governed by universal evolution equations
- determine particle distributions after freeze-out, e.g. $v_n(p_T)$
- usefull to constrain thermodynamic and transport properties of QCD
- contain interesting information from early times

First steps towards fluid dynamic perturbation or response theory

- Linear perturbations around Bjorken flow [Floerchinger & Wiedemann (2011)]
- Linear perturbations around Gubser solution for conformal fluids
 [Gubser & Yarom (2010), Staig & Shuryak (2011), Springer & Stephanov (2013)]
- More detailed investigation of linear perturbations and first steps towards non-linear perturbations around Gubser solution
 [Hatta, Noronha, Torrieri, Xiao (2014)]
- Linear perturbations around general azimuthally symmetric initial state, realistic equation of state
 [Floerchinger & Wiedemann (2013)]
- Characterization of initial conditions by Bessel-Fourier expansion
 [Coleman-Smith, Petersen & Wolpert (2012), Floerchinger & Wiedemann (2013)]
- Comparison to full numerical solution shows good convergence properties of perturbative expansion
 - [Floerchinger, Wiedemann, Beraudo, Del Zanna, Inghirami, Rolando (2013)]
- Related response formalism for expansion in eccentricities
 [Teaney & Yan (2012), Yan & Ollitrault (2015]

Gravity and thermalization

Consider ensemble of massive particles interacting via gravity only. Start with some velocity distribution. Is there **equilibration/thermalization.**..

- ... in Newtonian gravity?
- ... in classical General relativity?
- ... in quantized gravity?

Analogy to other gauge theories suggests that quantum properties are important for thermalization

Dissipation by gravity

Gravitational waves in viscous fluid have life time [Hawking (1966)]

$$\tau_G = \frac{1}{16\pi G_{\rm N} \eta}$$

Diffusive momentum transport by graviton radiation induces viscosity

$$\eta \approx \epsilon_G \, \tau_G$$

with energy density of gravitational field ϵ_G

• Can be solved for η and τ_G [Weinberg (1972)]

$$\eta = \sqrt{\frac{\epsilon_G}{16\pi G_{\rm N}}}, \qquad \qquad \tau_G = \sqrt{\frac{1}{16\pi G_{\rm N}\epsilon_G}}$$

- Can this really be independent of dark matter mass and density?
- ullet Thermalization time $\sim m_{
 m P}/T^2$ is very large
- What determines dissipation on shorter time scales, when classical fields dominate?