Reheating Process after Inflation

Kyohei Mukaida

Kavli IPMU, Univ. of Tokyo

Based on 1312.3097, 1402.2846, 1506.07661, 1602.00483, 1605.04974 Collaborators: Ema, Harigaya, Kawasaki, Nakayama, Yamada, Yanagida

Introduction

Cosmic Inflation: accelerated expansion of Universe

- Solve Horizon/Flatness problem
- Generate primordial density perturbations
- Dilute unwanted relics
- Suggested by the slightly red-tilted spectrum of CMB:

Thermal History of Universe

- Creation of hot Universe after inflation: (p)reheating
- Inflaton, Φ, must convert its energy into radiation.

Thermal History of Universe

- Creation of hot Universe after inflation: (p)reheating
- Inflaton, Φ, must convert its energy into radiation.

Kyohei Mukaida - Kavli IPMU

Baryon density $\Omega_b h^2$

0.27

0.25 Y_p _{0.24}

0.23

⁴He

Thermal History of Universe Energy contents [Planck] Creation of hot Universe after inflation: (p)reheating Inflaton, Φ, must convert its energy into radiation. 26.8% Dark Matter - Production of super horizon - Production of radiation: (p)reheating Ordinary Matter 4.9% - Baryo/Leptogensis ? χ and h_{ij} 68.3% Dark Energy - Dark Matter production ? - . . . Inflaton oscillation Radiation Inflation dominated dominated Non-thermal equil. Thermal equil. Convert Radiation

Thermal History of Universe

- Creation of hot Universe after inflation: (p)reheating
- Inflaton, Φ, must convert its energy into radiation.

- Reheating processes after inflation
 - Interaction between inflaton and radiation is required.

Typical processes of reheating

Metastable EW vacuum and Chaotic Inflation

Metastable EW Vacuum

Near-criticality of the Standard Model?

Chaotic Inflation

- Large Hubble parameter during inflation: H_{inf} ~ 10¹³⁻¹⁴ GeV.
- Smoking gun signature: large tensor to scalar ratio: $r \sim 0.1 \left(\frac{H_{\text{inf}}}{10^{14} \,\text{GeV}}\right)^2$
- Simple, solve initial condition problem, but require a Planckian field excursion.

- r > 0.1 : disfavored; $r \sim O(0.01)$: now being constrained.
- $r \sim 10^{-3}$: may be probed in the future (e.g. LiteBIRD, PIXIE).

Metastability v.s. Cosmology

Metastable EW vacuum in inflationary cosmology

Higgs-Inflaton Coupling

Light fields, $m \ll H_{inf}$, acquire fluctuations during inflation.

 $m_{H:h}^2 = 12\xi H_{\inf}^2$

- Curvature coupling

Kyohei Mukaida - Kavli IPMU

 h_{\max}

 $m_{H;h}$

Outlook during Inflation

High scale inflation v.s. Metastable EW vacuum

• Lower bound on the couplings from m_{H;h} > 3H_{inf}/2

Quartic coupling
Curvature coupling
Curvature coupling $\xi \gtrsim \frac{3H_{\text{inf}}}{2\phi_{\text{inf}}} \sim 3 \times 10^{-6} \left(\frac{m_{\phi}}{10^{13} \text{ GeV}}\right)$ $\xi \gtrsim \frac{3}{16} \sim 0.2$

• Small Higgs-inflaton coupling can save the EW vacuum

Parametric Resonance

Non perturbative Higgs production

• However, inflaton oscillates after inflation...

• Non-adiabatic change of the effective mass \rightarrow Large Higgs fluctuations

 $\left|\frac{\dot{\omega}_{k;h}}{\omega_{k;h}^2}\right| > 1 \longrightarrow$ Condition for explosive Higgs Production q(t) > 1

• Typical distribution function for q(t) > I:

Parametric Resonance

Non perturbative Higgs production

• However, inflaton oscillates after inflation...

 \odot Non-adiabatic change of the effective mass \rightarrow Large Higgs fluctuations

 $\left|\frac{\dot{\omega}_{k;h}}{\omega_{k;h}^2}\right| > 1 \longrightarrow$ Condition for explosive Higgs Production q(t) > 1

• Quartic coupling

Resonance is Inevitable

- Higgs production via **Parametric Resonance:** $-\mathscr{L}_{int}(\phi,h) = \frac{1}{2}c^2\phi^2h^2$
- Parametric resonance is almost inevitable!
- Required coupling $c\Phi_{ini} \gtrsim H_{inf}$ - Condition for resonance $q(t_{ini}) > 1 \rightarrow c\Phi_{ini} \gtrsim m_{\phi}$ Unstable during Parametric Resonance $c\Phi_{ini}$ Resonance $c\Phi_{ini}$
- Higgs production via Tachyonic Resonance:

$$-\mathscr{L}_{\rm int}(\phi,h) = \frac{1}{2}\xi Rh^2$$

- Tachyonic resonance is almost inevitable!
 - Required coupling
 - $\xi\gtrsim 0.2$
 - Condition for resonance

$$q(t_{\rm ini}) > 1 \rightarrow \xi \gtrsim M_{\rm pl}^2 / \Phi_{\rm ini}^2$$

[Ema, KM, Nakayama 1602.00483]

- Vacuum decay **during** resonance: $1 < q(t) \propto \Phi^2(t)$
- Tachyonic effective mass < Inflaton induced mass.

$$|\delta m_{\text{self;h}}^{2}| \equiv 3|\lambda| \langle h^{2} \rangle \propto |\lambda| p_{*}^{2} \left\{ e^{2\mu_{\text{qtc}}m_{\phi}t} e^{\frac{1}{2}\mu_{\text{crv}}} \mathbf{V.S.} \quad m_{H;h}^{2} = \left\{ \frac{\frac{c^{2}\Phi^{2}(t)}{2} \left[\cos(2m_{\phi}t) + 1\right]}{\frac{\xi m_{\phi}^{2}\Phi^{2}(t)}{2M_{\text{pl}}^{2}} \left[3\cos(2m_{\phi}t) + 1\right] \right\} \right\}$$

• Upper bounds on Higgs-inflaton coupling.

- Setup of classical lattice simulation
- To confirm our estimation, we performed a classical lattice simulation.
 - The Lagrangian: $\mathscr{L} = \mathscr{L}_{inf}(\phi) + \mathscr{L}_{Higgs}(h) + \mathscr{L}_{int}(\phi, h),$

[Polarsky, Starobinsky, CQG13 (1996); Khlebnikov, Tkachev, PRL77(1996)]

- Properties of our discretized world

Grid Number = 128³, Time step = $10^{-3}/m_{\Phi}$, Length of box = $10/m_{\Phi}$ (20/m_{Φ}), periodic bdry.

- Numerically solve the Einstein equation w/ Gaussian initial conditions mimicking vacuum fluctuations.

[Ema, KM, Nakayama 1602.00483] Vacuum decay via Parametric Resonance: $-\mathscr{L}_{int}(\phi,h) = \frac{1}{2}c^2\phi^2h^2$ • To check $c \lesssim 10^{-4} \times \left[\frac{0.1}{\mu_{otc}}\right] \left[\frac{m_{\phi}}{10^{13} \,\text{GeV}}\right]$, we performed a classical lattice simulation. - Stable: $c = 1 \times 10^{-4}$ - Unstable: $c = 2 \times 10^{-4}$ $a^{3}(<\phi^{2}>-<\phi>^{2})$ 10² 10² $a^3 \langle \phi \rangle^2_{10^{-2}}$ 10^{-4} $\frac{a^{3}\left\langle h^{2}\right\rangle ^{10^{-6}}}{a^{3}\left\langle \delta\phi^{2}\right\rangle ^{10^{-8}}}$ 10⁻⁶ 10⁻⁸ 100 20 60 80 20 30 40 10 50 0 $\mathbf{P} m_{\phi} t$ m₀t $m_{\phi}t$ m_⊸t Resonance is over: **Resonance is over: p**∗ < m_Φ $p_* < m_{\Phi}$

Kyohei Mukaida - Kavli IPMU

- Vacuum decay via Parametric Resonance: $-\mathscr{L}_{int}(\phi,h) = \frac{1}{2}c^2\phi^2h^2$
 - Evolution of comoving phase space number density of Higgs, $n_{k;h}(t)$.

- Vacuum decay via Tachyonic Resonance: $-\mathcal{L}_{int}(\phi, h) = \frac{1}{2}\xi Rh^2$
 - Evolution of comoving phase space number density of Higgs, $n_{k;h}(t)$.

Summary of the 1st part

- Preheating may destabilize the EW vacuum.
- We have obtained upper bounds on Higgs-inflaton couplings.
 - Bounds could be severer if you look at all the observable patches ~ e^{3N} .
 - Towards precise bounds \rightarrow Full inclusion of EW gauges on the lattice.

$$-\mathscr{L}_{int}(\phi,h) = \frac{1}{2}\xi Rh^2$$
 ~ 0.2 ~ 10 ξ

It is not easy to reheat the universe "adiabatically".

[[]Ema, KM, Nakayama 1602.00483]

DM Production in Late Time Reheating

Perturbative Reheating

Reheating temperature T_R

• Temperature when inflaton decays completely.

$$\Gamma_{\phi} \sim H \longleftrightarrow T_{\rm R} \sim \left(\frac{90}{\pi^2 g_*}\right)^{1/4} \sqrt{\Gamma_{\phi} M_{\rm pl}}$$

Assumption I. Resonance does not take place;
Assumption 2. Radiation is thermalized.

• Relation between T_R and q for q < 1.

- Boson:

$$\Delta m_{\chi}^{2}(\phi)\chi\chi \sim \frac{q(\Phi)m_{\phi}^{2}}{\Phi}\phi\chi\chi$$

$$\Gamma_{\phi}\sim \left(\frac{q^{2}(\Phi)m_{\phi}^{2}}{\Phi^{2}}\right)m_{\phi}$$

$$\left(\frac{q^{2}(\Phi_{\mathrm{ini}})m_{\phi}^{2}}{\Phi_{\mathrm{ini}}^{2}}\right)m_{\phi}$$
- Fermion:

$$\Delta m_{\psi}(\phi)\bar{\psi}\psi\sim \frac{\sqrt{q(\Phi)}m_{\phi}}{\Phi}\phi\bar{\psi}\psi$$

$$\Gamma_{\phi}\sim \left(\frac{q(\Phi)m_{\phi}^{2}}{\Phi^{2}}\right)m_{\phi}$$

$$\left(\frac{q(\Phi_{\mathrm{ini}})m_{\phi}^{2}}{\Phi_{\mathrm{ini}}^{2}}\right)m_{\phi}$$

• T_R could be low for $q_{\rm ini} \ll 1$ and/or $m_{\phi} \ll \Phi_{\rm ini} \sim M_{\rm pl}$.

$$T_{\rm R} \sim 100 \,{\rm GeV} \left(\frac{\tilde{q}}{10^{-17}}\right)^{1/2} \left(\frac{m_{\phi}}{10^{13} \,{\rm GeV}}\right)^{3/2} \left(\frac{M_{\rm pl}}{\Phi_{\rm ini}}\right), \quad \tilde{q} \equiv q^2(\Phi_{\rm ini}) \,{\rm or} \, q(\Phi_{\rm ini})$$

Perturbative Reheating

Schematic picture

• Evolution of energy densities (obtained from Boltzmann eqs.)

1) Thermal freeze-out

• DM was in thermal equilibrium \rightarrow decoupled later by the cosmic expansion.

$$n_{\rm DM}^{\rm eq}(T_{\rm F}) \langle \sigma_{\rm ann} v \rangle \simeq H(T_{\rm F}), \ T_{\rm F} \sim \frac{m_{\phi}}{20}$$

 ${\scriptstyle \bullet \mbox{Question: production of DM with } m_{\rm DM} \gg T_{\rm R}}$

(2) "Heavy" DM production with $m_{ m DM} \gg T_{ m R}$

• Production from direct inflaton decay

$$\frac{n_{\rm DM}^{\rm dir}}{s} \bigg|_{\rm now} \simeq T_{\rm R} \frac{3n_{\rm DM}^{\rm dir}}{4\rho_{\phi}} \bigg|_{T \simeq T_{\rm R}} \simeq \frac{3T_{\rm R}}{4m_{\phi}} {\rm Br}(\phi \to {\rm DM})$$

- Production from thermal plasma with T > $m_{DM} \gg T_R$
 - Radiation with $T \gg T_R$; (assume radiation is thermalized)

Kyohei Mukaida - Kavli IPMU

"Heavy" DM production with $m_{\rm DM} \gg T_{\rm R}$

- Contour plot of DM density as a function of T_R and $m_{\Phi_{\cdot}}$
- Processes: (i) Production from inflaton decay, (ii) Thermal production,
 (iii) Production via splittings [K. Harigaya, M. Kawasaki, KM and M. Yamada, 1312.3097]

$Br(inflaton \rightarrow DMs) = I$

Kyohei Mukaida - Kavli IPMU

"Heavy" DM production with $m_{\rm DM} \gg T_{\rm R}$

- Contour plot of DM density as a function of T_R and $m_{\Phi_{\cdot}}$
- Processes: (i) Production from inflaton decay, (ii) Thermal production,
 (iii) Production via splittings [K. Harigaya, M. Kawasaki, KM and M. Yamada, 1312.3097]

Br(inflaton \rightarrow DMs) = 0.02

Kyohei Mukaida - Kavli IPMU

Summary of the 2nd part

- For an extremely small decay rate of inflaton (e.g. Planck-suppressed), primary particles are under occupied.
- Splittings of hard primaries play important roles in particle production (also in thermalization). [K. Harigaya and KM, 1312.3097]
- "Heavy" DM with m_{DM} > T can be produced via splittings of hard primaries.
 [K. Harigaya, M. Kawasaki, KM and M. Yamada, 1312.3097]

[[]Ema, KM, Nakayama 1602.00483]

[K. Harigaya, M. Kawasaki, KM and M.Yamada, 1312.3097]

Kyohei Mukaida - Kavli IPMU

EW gauges and Top quarks

- Production of EW gauge bosons/top quark might affect the dynamics of Higgs via gauge and Yukawa couplings.
- **Two ways** to produce them.
 - Schematic figure of the setup we have discussed.

EW gauges and Top quarks

- Production of EW gauge bosons/top quark might affect the dynamics of Higgs via gauge and Yukawa couplings.
- **Two ways** to produce them.
 - Schematic figure of the setup we would like to discuss.

Electroweak gauges

EW gauge production from Higgs

- g²A²h² might stabilize the Higgs.
- To mimic it, we have introduced another scalar χ via $g^2\chi^2h^2$.

- χ -production is suppressed due to $g(\langle h^2 \rangle)^{1/2} \rightarrow Higgs dynamics is not altered.$
- Same for the curvature coupling.

Electroweak gauges

EW gauge production from Higgs

- g²A²h² might stabilize the Higgs.
- To mimic it, we have introduced another scalar χ via $g^2\chi^2h^2$.

- χ -production is suppressed due to $g(\langle h^2 \rangle)^{1/2} \rightarrow Higgs dynamics is not altered.$
- Same for the curvature coupling.

Inflaton decays into other SMs

- *Caution*: relevant time scales are quite short, and thus
 instantaneous thermalization assumption is questionable...
 - Quartic coupling $(10^{13} \, \text{GeV})$

- Curvature coupling

$$m_{\phi}t \lesssim \mathcal{O}(10) \times \left(\frac{c}{10^{-4}}\right) \left(\frac{10^{13} \,\text{GeV}}{m_{\phi}}\right) \qquad \qquad m_{\phi}t \lesssim 10 \times \left(\frac{\xi}{10}\right)^{\frac{1}{2}}$$

- I. Perturbative inflaton decay: $T_R < 10^{10}$ GeV.
- Thermal mass is always smaller: $p_*(t) > m_\phi \gtrsim g T_{\text{max}} \simeq 10^{13} \text{ GeV} \times g \left(\frac{T_{\text{R}}}{10^{10} \text{ GeV}}\right)^{\frac{1}{2}} \left(\frac{H_{\text{inf}}}{10^{14} \text{ GeV}}\right)^{\frac{1}{4}}$

* Here we naively assume instantaneous thermalization, but T_{max} may be much lower.

[Harigaya, KM, JHEP05(2014)006 ;KM, Yamada, JCAP02(2016)003; (cf.) Ellis+, JCAP03(2016)008]

- 2. Non-perturbative inflaton decay: $T_R > 10^{10}$ GeV.
 - Parametric resonance of other SM particles (χ) becomes relevant.
 - Large χ fluctuations with long wave length modes are produced.
 - They might "kick" the Higgs towards True Vacuum(?).

- Vacuum decay **after** resonance in the case
- Initially, tachyonic effective mass < inflaton induced mass

$$\delta m_{\rm self;h}^2 = -3|\lambda| \left< h^2 \right> \propto a^{-2}$$

$$m_{\mathrm{H;h}}^2 \propto \Phi^2 \propto a^{-3}$$

- Vacuum decay **after** resonance in the case
- Eventually, tachyonic effective mass > inflaton induced mass !!

$$\delta m_{\rm self;h}^2 = -3|\lambda| \left< h^2 \right> \propto a^{-2}$$

$$m_{\mathrm{H;h}}^2 \propto \Phi^2 \propto a^{-3}$$

- Vacuum decay **after** resonance in the case
- Eventually, tachyonic effective mass > inflaton induced mass !!

$$5m_{\rm self;h}^2 = -3|\lambda|\langle h^2 \rangle \propto a^{-2} \qquad \qquad m_{\rm H;h}^2 \propto \Phi^2 \propto a^{-3}$$

- Production of EW gauge bosons and top quarks might save the vacuum:
 - Direct decay of inflaton into these particles (required for complete reheating) \rightarrow depend on T_R
 - Thermalization v.s. Vacuum decay...Further studies are required.

- Vacuum decay **after** resonance in the case
- Eventually, tachyonic effective mass > inflaton induced mass !!

$$\frac{\delta m_{\text{self;h}}^2 = -3|\lambda| \langle h^2 \rangle \propto a^{-2}}{m_{\text{H;h}}^2 \propto \Phi^2 \propto a^{-3}}$$

- Production of EW gauge bosons and top quarks might save the vacuum:
 - Direct decay of inflaton into these particles (required for complete reheating) \rightarrow depend on T_R
 - Thermalization v.s. Vacuum decay...Further studies are required.

- Vacuum decay **after** resonance in the case
- Eventually, tachyonic effective mass > inflaton induced mass !!

$$\frac{\delta m_{\text{self;h}}^2 = -3|\lambda| \langle h^2 \rangle \propto a^{-2}}{m_{\text{H;h}}^2 \propto \Phi^2 \propto a^{-3}}$$

- Production of EW gauge bosons and top quarks might save the vacuum:
 - Direct decay of inflaton into these particles (required for complete reheating) \rightarrow depend on T_R
 - Thermalization v.s. Vacuum decay...Further studies are required.

Unstable during
inflation Stable? Unstable during
preheating

$$--\mathscr{L}_{int}(\phi,h) = \frac{1}{2}c^2\phi^2h^2$$
 $\sim H_{inf}$
 $\sim H_{inf}$
 $\sim 10H_{inf}$
 ξ

- What we have discussed
 - Curvature coupling + Chaotic inflation
 - Curvature coupling: stabilize the EW vacuum during inflation
 - Chaotic inflation: solve initial condition + provide the density fluctuations observed by Planck

- Simple scenario consistent with the metastability
 - Curvature coupling + Chaotic inflation + New inflation
 - Curvature coupling: stabilize the EW vacuum during inflation
 - Chaotic inflation: solve initial condition + provide the density fluctuations observed by Planck
 - New inflation: avoid the resonance + provide the dominant component of DM as PBHs

Kyohei Mukaida - Kavli IPMU

- Simple scenario consistent with the metastability
 - Curvature coupling + Chaotic inflation + New inflation
 - Curvature coupling: stabilize the EW vacuum during inflation
 - Chaotic inflation: solve initial condition + provide the density fluctuations observed by Planck
 - New inflation: avoid the resonance + provide the dominant component of DM as PBHs

Kyohei Mukaida - Kavli IPMU

- Simple scenario consistent with the metastability
 - Curvature coupling + Chaotic inflation + New inflation
 - Curvature coupling: stabilize the EW vacuum during inflation
 - Chaotic inflation: solve initial condition + provide the density fluctuations observed by Planck
 - New inflation: avoid the resonance + provide the dominant component of DM as PBHs

Kyohei Mukaida - Kavli IPMU

- Simple scenario consistent with the metastability
 - Curvature coupling + Chaotic inflation + New inflation
 - Curvature coupling: stabilize the EW vacuum during inflation
 - Chaotic inflation: solve initial condition + provide the density fluctuations observed by Planck
 - New inflation: avoid the resonance + provide the dominant component of DM as PBHs

Kyohei Mukaida - Kavli IPMU

- Simple scenario consistent with the metastability
 - Curvature coupling + Chaotic inflation + New inflation
 - Curvature coupling: stabilize the EW vacuum during inflation
 - Chaotic inflation: solve initial condition + provide the density fluctuations observed by Planck
 - New inflation: avoid the resonance + provide the dominant component of DM as PBHs

Kyohei Mukaida - Kavli IPMU