Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Inflation with Dissipation and Metastability

Alessio Notari¹

Universitat de Barcelona

August 2016, CERN Workshop, "Big Bang and the little bangs"

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

¹ In collaboration with Konrad Tywoniuk

And earlier work with: T. Biswas, F. di Marco, I. Masina

Outline

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

2 Dissipation

Metastability from Higgs potential?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • In FLRW metric, expansion described by *a*(*t*)

$$ds^2 = -dt^2 + a^2(t)d\vec{x}^2$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • In FLRW metric, expansion described by a(t)

$$ds^2 = -dt^2 + a^2(t)d\vec{x}^2$$

• Einstein equations for a homogeneous/isotropic space

$$egin{array}{rcl} {\cal H}^2 \equiv \left({{\dot a}\over a}
ight)^2 &=& {
ho\over 3M^2} \ \dot
ho &=& - 3 H(
ho +
ho) \end{array}$$

(日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • In FLRW metric, expansion described by a(t)

$$ds^2 = -dt^2 + a^2(t)d\vec{x}^2$$

Einstein equations for a homogeneous/isotropic space

$$\mathcal{H}^2 \equiv \left(rac{\dot{a}}{a}
ight)^2 = rac{
ho}{3M^2} \ \dot{
ho} = -3\mathcal{H}(
ho+
ho)$$

• $\rho \sim const \Rightarrow H \sim const$

•
$$\Rightarrow a(t) = e^{Ht}$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • In FLRW metric, expansion described by a(t)

$$ds^2 = -dt^2 + a^2(t)d\vec{x}^2$$

Einstein equations for a homogeneous/isotropic space

$$\mathcal{H}^2 \equiv \left(rac{\dot{a}}{a}
ight)^2 = rac{
ho}{3M^2} \ \dot{
ho} = -3\mathcal{H}(
ho+
ho)$$

• $\rho \sim const \Rightarrow H \sim const$

•
$$\Rightarrow a(t) = e^{Ht}$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• We need $p \sim -\rho$ dominating energy density

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

- $\bullet~$ We need ${\it p}\sim -\rho$ dominating energy density
- Simple approach: a new scalar field

$$ho = V(\phi) + rac{\dot{\phi}^2}{2} \qquad p = -V(\phi) + rac{\dot{\phi}^2}{2} \qquad (1)$$

(日)

 $(\dot{\phi}^2/2\ll V)$

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

- $\bullet\,$ We need ${\it p}\sim -\rho$ dominating energy density
- Simple approach: a new scalar field

$$ho = V(\phi) + rac{\dot{\phi}^2}{2} \qquad p = -V(\phi) + rac{\dot{\phi}^2}{2} \qquad (1)$$

 $(\dot{\phi}^2/2\ll V)$

Hubble friction dominates:

$$\ddot{\phi} + \mathbf{3}H\dot{\phi} + V_{\phi}(\phi) = 0$$
 (2)

 $(\ddot{\phi} \ll \mathbf{3}H\dot{\phi})$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- We need $\pmb{p}\sim -\rho$ dominating energy density
- Simple approach: a new scalar field

$$\rho = V(\phi) + \frac{\dot{\phi}^2}{2} \qquad p = -V(\phi) + \frac{\dot{\phi}^2}{2} \qquad (1)$$

 $(\dot{\phi}^2/2\ll V)$

Hubble friction dominates:

$$\ddot{\phi} + \mathbf{3}H\dot{\phi} + V_{\phi}(\phi) = \mathbf{0}$$
(2)

(日) (日) (日) (日) (日) (日) (日)

 $(\ddot{\phi} \ll \mathbf{3}H\dot{\phi})$

• \Rightarrow Slowly rolls for $\left(rac{a_l}{a_F}
ight)=e^N\gtrsim e^{60}$

Slow-roll

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• Then fast roll and decay to other particles ("Reheating")

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Slow-roll

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• Then fast roll and decay to other particles ("Reheating")

● It also fluctuates ⇒ Density fluctuations

Slow-roll

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• Then fast roll and decay to other particles ("Reheating")

- It also fluctuates ⇒ Density fluctuations
- May be also "multi-field"

Slow-roll Inflation: simple but...

Higgs & Inflation

Introduction

- Dissipation
- Metastability

Metastability from Higgs potential?

• Unknown V

- Unusually flat V
- Unknown couplings and Reheating process

• Unseen Inflaton particles

Slow-roll Inflation: simple but...

Higgs & Inflation

Introduction

- Dissipation
- Metastability

Metastability from Higgs potential?

- Unknown V
- Unusually flat V
- Unknown couplings and Reheating process

(日)

• Unseen Inflaton particles

Difficult to test:

- Usually at very high-energy
- Thermalization

Alternatives

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? Can we slow down φ by dissipation? (no flat potential)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Alternatives

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? Can we slow down φ by dissipation? (no flat potential)

 Can Inflation end with a phase transition? (additional signatures)

Alternatives

Higgs & Inflation

Introduction

- Dissipation
- Metastability
- Metastability from Higgs potential?

 Can we slow down φ by dissipation? (no flat potential)

 Can Inflation end with a phase transition? (additional signatures)

• Can we link to Standard Model and experiments?

(日)

Dissipation: the Rehating case

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Qualitatively reheating is described by:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0$$

with $\Gamma \gg H$ coming from decay into other particles: $\phi \rightarrow \mathbf{2}\psi$

Dissipation: the Rehating case

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Qualitatively reheating is described by:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0$$

with $\Gamma \gg H$ coming from decay into other particles: $\phi \rightarrow \mathbf{2}\psi$

• ϕ oscillates with frequency $\omega \rightarrow E_{\psi} = \omega/2$.

Dissipation: the Rehating case

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Qualitatively reheating is described by:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0$$

with ${\rm \Gamma}\gg {\rm H}$ coming from decay into other particles: $\phi\to {\rm 2}\psi$

- ϕ oscillates with frequency $\omega \rightarrow E_{\psi} = \omega/2$.
- Is it possible already during inflation?

Higgs & Inflation

Dissipation

Ouring inflation:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0$$
?

(日)

Higgs & Inflation

Dissipation

• During inflation:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0?$$

with $\Gamma \gg H$ coming from creation of other particles?

• Odd under time reversal *T*: only effective term!

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• During inflation:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0?$$

(日)

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• During inflation:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0?$$

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)
- If it works: decay product must be massless

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• During inflation:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0?$$

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)
- If it works: decay product must be massless

•
$$\mathcal{L}_{int} = \lambda \phi \psi^2 \rightarrow m_{\psi} = \lambda \langle \phi \rangle$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• During inflation:

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma\dot{\phi} = 0?$$

with $\Gamma \gg H$ coming from creation of other particles?

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)
- If it works: decay product must be massless

•
$$\mathcal{L}_{int} = \lambda \phi \psi^2 \rightarrow m_{\psi} = \lambda \langle \phi \rangle + m_{\psi}^0$$
 does NOT work

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • ϕ coupled to U(1) gauge fields:

$$S = \int d^4x \sqrt{-g} \left(rac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\phi) + rac{1}{4} F_{\mu
u} F^{\mu
u} + rac{\phi}{4f_\gamma} F_{\mu
u} ilde{F}^{\mu
u}
ight)$$

(日)

(Sorbo and Anber '2009)

• $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • ϕ coupled to U(1) gauge fields:

$$S=\int d^4x\sqrt{-g}\left(rac{1}{2}\partial_\mu\phi\partial^\mu\phi+V(\phi)+rac{1}{4}F_{\mu
u}F^{\mu
u}+rac{\phi}{4f_\gamma}F_{\mu
u} ilde{F}^{\mu
u}
ight)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

(Sorbo and Anber '2009)

•
$$F_{\mu
u} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}$$

•
$$F_{\mu
u} ilde{F}^{\mu
u}$$
 odd under *CP* (and so *T*)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • ϕ coupled to U(1) gauge fields:

$$S = \int d^4x \sqrt{-g} \left(rac{1}{2}\partial_\mu \phi \partial^\mu \phi + V(\phi) + rac{1}{4}F_{\mu
u}F^{\mu
u} + rac{\phi}{4f_\gamma}F_{\mu
u} ilde{F}^{\mu
u}
ight)$$

(Sorbo and Anber '2009)

•
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}$$

• $F_{\mu\nu}\tilde{F}^{\mu\nu}$ odd under *CP* (and so *T*)

Photons are massless (\(\phi\) coupled derivatively)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? (sorbo & Anber '09): in a time dependent φ and in FLRW (with conformal time adτ = dt):

$${f A}_{\pm}^{\prime\prime}+\left({f k}^2\mp {{f k}\phi^\prime\over f_\gamma}
ight){f A}_{\pm}=0\,,$$

(日)

•
$$\phi' = a \dot{\phi}
eq 0$$
 (and \pm positive (negative) helicity)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? (sorbo & Anber '09): in a time dependent φ and in FLRW (with conformal time adτ = dt):

$${f A}_{\pm}^{\prime\prime}+\left({f k}^2\mp{{f k}\phi^\prime\over f_\gamma}
ight){f A}_{\pm}=0\,,$$

• $\phi' = a \dot{\phi}
eq 0$ (and \pm positive (negative) helicity)

• One helicity is unstable: $\langle F\tilde{F} \rangle$ becomes quickly large

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? (sorbo & Anber '09): in a time dependent φ and in FLRW (with conformal time adτ = dt):

$${f A}_{\pm}^{\prime\prime}+\left({f k}^2\mp {{f k}\phi^\prime\over f_\gamma}
ight){f A}_{\pm}=0\,,$$

•
$$\phi'=a\dot{\phi}
eq$$
 0 (and \pm positive (negative) helicity)

- One helicity is unstable: $\langle F\tilde{F} \rangle$ becomes quickly large
- Assumed that its backreaction slows down φ:

$$\ddot{\phi}+3H\dot{\phi}+V_{,\phi}(\phi)+rac{\langle F ilde{F}
angle}{f_{\gamma}}=0\,,$$

Found inflationary solution

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

(日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- (Sorbo & Anber '09) assumed: $\dot{\phi} = const$ and $a(t) = e^{Ht} = -\frac{1}{H\tau}$
- Solution at $\tau = +\infty$:

$$A_{-}^{an} = \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/(aH)}}$$
(4)

(日)

$$\xi \equiv \frac{\dot{\phi}}{2f_{\gamma}H}$$
)
Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- (Sorbo & Anber '09) assumed: $\dot{\phi} = const$ and $a(t) = e^{Ht} = -\frac{1}{H\tau}$
- Solution at $\tau = +\infty$:

$$A_{-}^{an} = \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/(aH)}}$$
(4)
$$\left(\xi \equiv \frac{\dot{\phi}}{2f_{\gamma}H}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• "Almost" going to vacuum fluctuations $A_k = e^{ik\tau}\sqrt{2k}$ at $\tau = -\infty$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • (Sorbo & Anber '09) estimated:

$$\begin{array}{rcl} \frac{\langle F\tilde{F}\rangle}{4} & = & \displaystyle \frac{1}{2a^4}\int \frac{d^3k}{(2\pi)^3}\,k\frac{d\left[|A_+|^2-|A_-|^2\right]}{d\tau}\,,\\ & \approx & \displaystyle \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi} \end{array}$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • (Sorbo & Anber '09) estimated:

$$\begin{array}{rcl} \frac{\langle F\tilde{F}\rangle}{4} & = & \displaystyle \frac{1}{2a^4}\int \frac{d^3k}{(2\pi)^3}\,k\frac{d\left[|A_+|^2-|A_-|^2\right]}{d\tau}\,,\\ & \approx & \displaystyle \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi} \end{array}$$

• And used $\langle F\tilde{F} \rangle$ into:

$$\ddot{\phi}+\mathbf{3H}\dot{\phi}+oldsymbol{V}_{,\phi}(\phi)+rac{\langle oldsymbol{F} ilde{\mathcal{F}}
angle}{f_{\gamma}}=0\,,$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • (Sorbo & Anber '09) estimated:

$$\begin{array}{rcl} \frac{\langle F\tilde{F}\rangle}{4} & = & \displaystyle \frac{1}{2a^4}\int \frac{d^3k}{(2\pi)^3}\,k\frac{d\left[|A_+|^2-|A_-|^2\right]}{d\tau}\,,\\ & \approx & \displaystyle \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi} \end{array}$$

• And used $\langle F\tilde{F} \rangle$ into:

$$\ddot{\phi} + \mathbf{3} \mathcal{H} \dot{\phi} + \mathcal{V}_{,\phi}(\phi) + rac{\langle \mathcal{F} \widetilde{\mathcal{F}}
angle}{f_{\gamma}} = \mathbf{0} \,,$$

•
$$\rightarrow \xi \equiv \frac{\dot{\phi}}{2f_{\gamma}H} \approx cons$$

• $\rightarrow \dot{\phi} \approx 2\xi f_{\gamma}H$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? Valid for any V(φ)!
 (ξ depends only logarithmically on V(φ))

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Valid for any V(φ)! (ξ depends only logarithmically on V(φ))

•
$$\frac{d\phi}{dN} \equiv \frac{d\phi}{Hdt} \approx f_{\gamma} \rightarrow N_{TOT} \approx \frac{\Delta\phi}{f_{\gamma}}$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? Valid for any V(φ)!
 (ξ depends only logarithmically on V(φ))

•
$$\frac{d\phi}{dN} \equiv \frac{d\phi}{Hdt} \approx f_{\gamma} \rightarrow N_{TOT} \approx \frac{\Delta\phi}{f_{\gamma}}$$

• f_{γ} much smaller than the field excursion $\Delta \phi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • The above estimate *assumes* friction domination:

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?
- What is the flat spacetime, *H* → 0 limit? (infinite friction??)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?
- What is the flat spacetime, *H* → 0 limit? (infinite friction??)
- Do we actually get $\dot{\phi} \approx const$ and $H \approx const$?

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?
- What is the flat spacetime, *H* → 0 limit? (infinite friction??)
- Do we actually get $\dot{\phi} \approx const$ and $H \approx const$?

Cosmological Perturbations?

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• We solved numerically for A_{\pm} from an initial condition:

$$A(0) = \frac{1}{\sqrt{2k}}, \quad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \phi(0) = \phi_0, \quad \dot{\phi}(0) = 0.$$
 (5)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• We solved numerically for A_{\pm} from an initial condition:

$$\begin{aligned} A(0) &= \frac{1}{\sqrt{2k}}, & \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \\ \phi(0) &= \phi_0, & \dot{\phi}(0) = 0. \end{aligned}$$
(5)

• For discrete values of k (O(100) modes)

Approximated the integral as a sum

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• We solved numerically for A_{\pm} from an initial condition:

$$A(0) = \frac{1}{\sqrt{2k}}, \quad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \phi(0) = \phi_0, \quad \dot{\phi}(0) = 0.$$
 (5)

- For discrete values of k (O(100) modes)
- Approximated the integral as a sum
- Solved the coupled system for ϕ and A_{\pm}

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • We solved numerically for A_{\pm} from an initial condition:

$$A(0) = \frac{1}{\sqrt{2k}}, \quad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \phi(0) = \phi_0, \quad \dot{\phi}(0) = 0.$$
 (5)

- For discrete values of k (O(100) modes)
- Approximated the integral as a sum
- Solved the coupled system for ϕ and A_{\pm}
- For $k < f_{\gamma}$ (cutoff of the effective theory)

Flat spacetime case Higgs & Inflation • The simplest case H = 0: Dissipation

・ロト・日本・モト・モー ヨー わらぐ

Flat spacetime case

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • The simplest case H = 0:

Ä

$$\ddot{\phi} + V_{,\phi}(\phi) + \frac{\langle F\tilde{F} \rangle}{f} = 0$$
 (6)

$$\pm + \left(k^2 \mp \frac{k\phi}{f}\right) A_{\pm} = 0 \tag{7}$$

$$\langle F\tilde{F} \rangle = \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} k \frac{d \left[|A_+|^2 - |A_-|^2 \right]}{dt}$$
(8)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • The A_- and $\langle \tilde{F}F\rangle$ grow faster than the free evolution if $f_\gamma\ll\Delta\phi$

(日)

• Independently on $V(\phi)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $\dot{\phi} \approx f_{\gamma}^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(日)

Plus oscillations

Higgs & Inflation

. . . .

Dissipation

Metastabilit

Metastability from Higgs potential?

Spectra for: $\langle \tilde{F}F \rangle = E \cdot B$, $\rho_B = \frac{E^2 + B^2}{2}$

(日)

 $\langle \tilde{F}F \rangle \equiv \int P_{\mathcal{B}}(k) \frac{dk}{k}$ $\rho_R \equiv \int P_{\rho}(k) \frac{dk}{k}$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

 $\langle \tilde{F}F \rangle \equiv \int P_{\mathcal{B}}(k) \frac{dk}{k}$

 $\rho_B \equiv \int P_{\rho}(k) \frac{dk}{k}$

 $Flat spacetime, V(\phi) = \frac{1}{2} m^2 \phi^2 (m=4.5 \times 10^{-4}, \phi_0 = 1, f_1 = 0.02)$ = 0 =

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • If the scale of the potential $V_{\phi} \gg H^3$ and for a time $t \ll 1/H$, we can neglect the expansion

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • If the scale of the potential $V_{\phi} \gg H^3$ and for a time $t \ll 1/H$, we can neglect the expansion

• So we are back to the previous case:

• The A_- and $\langle \tilde{F}F \rangle$ grow faster than the free evolution if $f_\gamma \ll \Delta \phi$

(日) (日) (日) (日) (日) (日) (日)

• Independently on $V(\phi)$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• If the field is friction dominated Inflation starts: $H \approx const$

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

If the field is friction dominated Inflation starts:
 H ≈ const

- The modes are redshifted away
- New modes are excited

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

- If the field is friction dominated Inflation starts:
 H ≈ const
- The modes are redshifted away
- New modes are excited
- After about 1 efold we enter in the regime described before $\dot{\phi} \approx f_{\gamma} H$

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

- If the field is friction dominated Inflation starts:
 H ≈ const
- The modes are redshifted away
- New modes are excited
- After about 1 efold we enter in the regime described before $\dot{\phi} \approx f_{\gamma} H$

(日) (日) (日) (日) (日) (日) (日)

• So, we confirm $N_{TOT} \approx \frac{\Delta \phi}{f_{\gamma}}$

 $\dot{\phi} \approx f_{\gamma} H$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Oscillations in ϕ :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Oscillations in ϕ :

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- Period of about 4 efolds
- Amplitude $\propto f_{\gamma}$

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

◆□ → ◆□ → ◆三 → ∢□ → ◆□ →
FLRW case:Results

$\langle \tilde{F}F \rangle = E \cdot B$ and $\rho_R = \frac{E^2 + B^2}{2}$ spectra:

Dissipation

Metastabilit

Metastability from Higgs potential?

 k^4 behavior (suppression on large scales)

FLRW case:Results

Higgs & Inflation

Energy densities:

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

 $V \gg
ho_R \gg \dot{\phi}^2/2$

Reheating

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • There is no separation between reheating and inflation

(日)

• Model independent reheating

Reheating

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- There is no separation between reheating and inflation
- Model independent reheating

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Very involved: $\phi + A_{\mu} + \text{metric}$

Higgs & Inflation

Introduction

Dissipation

- Metastability
- Metastability from Higgs potential?

- Very involved: $\phi + A_{\mu} + \text{metric}$
- Sorbo & Anber '2010:
- Estimated the curvature perturbation using $\zeta \approx \frac{H}{\dot{\phi}} \delta \phi$ (spatially flat gauge)

(日)

Higgs & Inflation

Introduction

Dissipation

- Metastability
- Metastability from Higgs potential?

- Very involved: $\phi + A_{\mu} + \text{metric}$
- Sorbo & Anber '2010:
- Estimated the curvature perturbation using $\zeta \approx \frac{H}{\dot{\phi}} \delta \phi$ (spatially flat gauge)

(日)

• Estimated $\delta \phi_p$

Higgs & Inflation

Introduction

Dissipation

- Metastability
- Metastability from Higgs potential?

- Very involved: $\phi + A_{\mu} + \text{metric}$
- Sorbo & Anber '2010:
- Estimated the curvature perturbation using $\zeta \approx \frac{H}{\dot{\phi}} \delta \phi$ (spatially flat gauge)
- Estimated $\delta \phi_p$
- Found too large density fluctuations (unless a large number N of gauge fields is invoked)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Objections:

• $\zeta \neq \frac{H}{\dot{\phi}}\delta\phi$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}}\delta\phi$
- In fact: $\zeta = H \frac{\delta \rho}{\dot{\rho}}$ (spatially flat gauge) and $\dot{\rho} \approx \dot{\rho_R}$ (dominated by radiation)

(日)

• So,
$$\zeta = H \frac{\delta \rho}{4 H \rho_R} \approx \frac{V_{\phi}}{4 \rho_R} \delta \phi$$

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}}\delta\phi$
- In fact: $\zeta = H \frac{\delta \rho}{\dot{\rho}}$ (spatially flat gauge) and $\dot{\rho} \approx \dot{\rho_R}$ (dominated by radiation)
- So, $\zeta = H \frac{\delta \rho}{4 H \rho_R} \approx \frac{V_{\phi}}{4 \rho_R} \delta \phi$
- Also: must include metric fluctuations (coupled to radiation)

(日) (日) (日) (日) (日) (日) (日)

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}}\delta\phi$
- In fact: $\zeta = H \frac{\delta \rho}{\dot{\rho}}$ (spatially flat gauge) and $\dot{\rho} \approx \dot{\rho_R}$ (dominated by radiation)

• So,
$$\zeta = H \frac{\delta \rho}{4 H \rho_R} \approx \frac{V_{\phi}}{4 \rho_R} \delta \phi$$

• Also: must include metric fluctuations (coupled to radiation)

(日) (日) (日) (日) (日) (日) (日)

• Moreover: Sorbo & Anber '2010 considered:

•
$$\delta\ddot{\phi}_{p} + 3H\delta\dot{\phi}_{p} + \frac{p^{2}}{a^{2}}\delta\phi_{p} = \frac{(\tilde{F}F)_{p}}{f_{\gamma}}$$

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}}\delta\phi$
- In fact: $\zeta = H \frac{\delta \rho}{\dot{\rho}}$ (spatially flat gauge) and $\dot{\rho} \approx \dot{\rho_R}$ (dominated by radiation)

• So,
$$\zeta = H \frac{\delta \rho}{4 H \rho_R} \approx \frac{V_{\phi}}{4 \rho_R} \delta \phi$$

- Also: must include metric fluctuations (coupled to radiation)
- Moreover: Sorbo & Anber '2010 considered:

•
$$\delta\ddot{\phi}_{p} + \mathbf{3}H\delta\dot{\phi}_{p} + \frac{p^{2}}{a^{2}}\delta\phi_{p} = \frac{(\tilde{F}F)_{p}}{f_{\gamma}}$$

- Assumed $(\tilde{F}F)_{\rho} = \frac{\partial < \tilde{F}F >}{\partial \dot{\phi}} \delta \dot{\phi}_{\rho} + (\tilde{F}F)_{\rho}|_{\delta \phi = 0}$
- A dissipative term and a source term

Higgs & Inflation

ntroduction

Dissipation

Metastability

Metastability from Higgs potential?

So they wrote:

•
$$\ddot{\delta\phi_{\rho}} + (\mathbf{3H} - \frac{1}{f_{\gamma}} \frac{\partial \langle \tilde{F}F \rangle}{\partial \dot{\phi}}) \delta\dot{\phi}_{\rho} + \frac{p^2}{a^2} \delta\phi_{\rho} = \frac{1}{f_{\gamma}} (\tilde{F}F)_{\rho}|_{\delta\phi=0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Dissipation and source ("inverse decay")

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

So they wrote:

•
$$\ddot{\delta\phi_{\rho}} + (\mathbf{3H} - \frac{1}{f_{\gamma}} \frac{\partial \langle \tilde{F}F \rangle}{\partial \dot{\phi}}) \delta\dot{\phi}_{\rho} + \frac{p^2}{a^2} \delta\phi_{\rho} = \frac{1}{f_{\gamma}} (\tilde{F}F)_{\rho}|_{\delta\phi=0}$$

- Dissipation and source ("inverse decay")
- Objections:
 - Dissipation must be *p*-dependent: only on large scales $\delta \phi_p$ oscillates with large Amplitude (larger than f_{γ})

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

So they wrote:

•
$$\ddot{\delta\phi_{\rho}} + (\mathbf{3H} - \frac{1}{f_{\gamma}} \frac{\partial \langle \tilde{F}F \rangle}{\partial \dot{\phi}}) \delta\dot{\phi}_{\rho} + \frac{p^2}{a^2} \delta\phi_{\rho} = \frac{1}{f_{\gamma}} (\tilde{F}F)_{\rho}|_{\delta\phi=0}$$

- Dissipation and source ("inverse decay")
- Objections:
 - Dissipation must be *p*-dependent: only on large scales $\delta \phi_p$ oscillates with large Amplitude (larger than f_{γ})
 - At high *p* the mode oscillates and can decay into gauge fields ("direct decay")

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

So they wrote:

•
$$\ddot{\delta\phi_{\rho}} + (\mathbf{3H} - \frac{1}{f_{\gamma}} \frac{\partial \langle \tilde{F}F \rangle}{\partial \dot{\phi}}) \delta\dot{\phi}_{\rho} + \frac{p^2}{a^2} \delta\phi_{\rho} = \frac{1}{f_{\gamma}} (\tilde{F}F)_{\rho}|_{\delta\phi=0}$$

- Dissipation and source ("inverse decay")
- Objections:
 - Dissipation must be *p*-dependent: only on large scales $\delta \phi_p$ oscillates with large Amplitude (larger than f_{γ})
 - At high *p* the mode oscillates and can decay into gauge fields ("direct decay")

• On small scales: a term $\nabla \delta \phi \wedge \mathbf{A}'$ is present

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- We did not attempt yet a complete study of perturbations
- Usual slow-roll parameters related to $\epsilon \equiv \frac{\phi^2}{2H}$ and its time variation

(日)

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

- We did not attempt yet a complete study of perturbations
- Usual slow-roll parameters related to $\epsilon \equiv \frac{\phi^2}{2H}$ and its time variation
- We defined "radiation slow roll parameters": $\epsilon_R \equiv \frac{\rho_R}{H}$ and its time variation

(日) (日) (日) (日) (日) (日) (日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- We did not attempt yet a complete study of perturbations
- Usual slow-roll parameters related to $\epsilon \equiv \frac{\phi^2}{2H}$ and its time variation
- We defined "radiation slow roll parameters": $\epsilon_R \equiv \frac{\rho_R}{H}$ and its time variation

$$\begin{split} \epsilon_{\phi} &\equiv \quad \frac{\dot{\phi}^2}{2M_{Pl}^2 H^2} \,, \qquad \eta_{\phi} \equiv 2\epsilon_{\phi} + \frac{1}{2} \frac{d\log\epsilon_{\phi}}{dN} \,, \\ \epsilon_{R} &\equiv \quad \frac{2\rho_{R}}{3M_{Pl}^2 H^2} \,, \qquad \eta_{R} \equiv 2\epsilon_{R} + \frac{1}{2} \frac{d\log\epsilon_{R}}{dN} \end{split}$$

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • If $f_{\gamma} \ll \delta \phi$ the system is slowed down

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If $f_{\gamma} \ll \delta \phi$ the system is slowed down
- Even ignoring the expansion it slows down:

(日)

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

- If $f_{\gamma} \ll \delta \phi$ the system is slowed down
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.

(日)

• $N_{tot} \approx \Delta \phi / f_{\gamma}$

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

- If $f_{\gamma} \ll \delta \phi$ the system is slowed down
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.
- $N_{tot} \approx \Delta \phi / f_{\gamma}$
- Perturbations still have to be carefully understood

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

- If $f_{\gamma} \ll \delta \phi$ the system is slowed down
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.
- $N_{tot} \approx \Delta \phi / f_{\gamma}$
- Perturbations still have to be carefully understood

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

- If $f_{\gamma} \ll \delta \phi$ the system is slowed down
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.
- $N_{tot} \approx \Delta \phi / f_{\gamma}$
- Perturbations still have to be carefully understood
- Oscillations with about 4 efolds period should be present in all spectra

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If ϕ is an Axion
- $\frac{\phi}{f_{\gamma}}\tilde{F}F$ naturally present

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • If ϕ is an Axion

- $\frac{\phi}{f_c} \tilde{F} F$ naturally present
- And also $\frac{\phi}{f_G} \tilde{G} G$ (non-abelian) ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If ϕ is an Axion
- $\frac{\phi}{f_c}\tilde{F}F$ naturally present
- And also $\frac{\phi}{f_G} \tilde{G} G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi f_G})$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If ϕ is an Axion
- $\frac{\phi}{f_c}\tilde{F}F$ naturally present
- And also $\frac{\phi}{f_G} \tilde{G} G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi f_G})$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If ϕ is an Axion
- $\frac{\phi}{f_{c}}\tilde{F}F$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi f_G})$

(日) (日) (日) (日) (日) (日) (日)

• So we need $\frac{1}{f_{\gamma}} \gg \frac{1}{f_G}!$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If ϕ is an Axion
- $\frac{\phi}{f_c}\tilde{F}F$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi f_G})$
- So we need $\frac{1}{f_{\gamma}} \gg \frac{1}{f_G}!$
- It is possible: independent parameters. $\frac{1}{f_{\gamma}}$ does not induce corrections to $\frac{1}{f_G}$ (would break the shift symmetry)

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Inflation in a False Minimum

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Can we end Inflation with a tunneling from a False vacuum?

(日)

Inflation in a False Minimum

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- Can we end Inflation with a tunneling from a False vacuum?
- ...It was the first way to introduce Inflation ("Old" Inflation, Guth, 1982).

(日)
Inflation in a False Minimum

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- Can we end Inflation with a tunneling from a False vacuum?
- ...It was the first way to introduce Inflation ("Old" Inflation, Guth, 1982).

• Old Inflation does not have Graceful Exit: non-successful Bubble Nucleation

Nucleation of Bubbles

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Requirements:

• For sufficient inflation $\Gamma \ll H^4$

(日)

Higgs & Inflation

ntroduction

Dissipation

Metastability

Metastability from Higgs potential?

Requirements:

- For sufficient inflation $\Gamma \ll H^4$
- For transition to radiation $\Gamma \simeq H^4$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Requirements:

- For sufficient inflation $\Gamma \ll H^4$
- For transition to radiation $\Gamma \simeq H^4$
- Either Inflation too short or never ends.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Requirements:

- For sufficient inflation $\Gamma \ll H^4$
- For transition to radiation $\Gamma \simeq H^4$
- Either Inflation too short or never ends.

Way-out:

- Start with $\Gamma \ll H^4$
- And then $\Gamma \simeq H^4$

Higgs & Inflation

Introductio

Dissipation

Metastability

Metastability from Higgs potential? If a field χ is trapped in a false vacuum:

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? If a field χ is trapped in a false vacuum:

 Need additional degree of freedom φ to set time dependence in Γ/H⁴

(日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? If a field χ is trapped in a false vacuum:

 Need additional degree of freedom φ to set time dependence in Γ/H⁴

• Extra Scalar ϕ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? If a field χ is trapped in a false vacuum:

- Need additional degree of freedom φ to set time dependence in Γ/H⁴
- Extra Scalar ϕ
- Two possibilities
 - Make *H* variable (couple ϕ to gravity)

• Make Γ variable (couple ϕ to χ)

Variable H

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

• If H decreases with time

• At some point $\Gamma^{1/4} = H$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

	Modifying \mathcal{L}_G
Higgs & Inflation itroduction issipation letastability om Higgs otential?	Adding a Non-Minimally coupled scalar field (ϕ) \Rightarrow Graceful exit

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

F.Di Marco & A.N., Phys.Rev.D '05, T. Biswas & A.N. Phys.Rev.D '06

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• As a starting point we take the action

$$S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - f(\phi) R + V(\chi_0) \right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• As a starting point we take the action

$$\begin{split} S_1 &= \int d^4 x \sqrt{-g} \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - f(\phi) R + V(\chi_0) \right] \\ &+ \left[U(\phi) \right] \,, \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• As a starting point we take the action

$$\begin{split} S_1 &= \int d^4 x \sqrt{-g} \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - f(\phi) R + V(\chi_0) \right] \\ &+ \left[U(\phi) \right] \,, \end{split}$$

We assume

 $f(\phi) = M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \dots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• As a starting point we take the action $S = \int d^4x \left(-\frac{\pi}{2} \left[-\frac{1}{2} + \frac{2\pi}{2} + \frac{\pi}{2} \right] + \frac{\pi}{2} \left[-\frac{1}{2} + \frac{2\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} \right]$

$$S_{1} = \int d^{4}x \sqrt{-g} \left[-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - f(\phi) R + V(\chi_{0}) \right] \\ + \left[U(\phi) \right] ,$$

• We assume $f(\phi) = M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \dots$

• Two cases: β dominant or γ_n dominant

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• As a starting point we take the action $S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - f(\phi) R + V(\chi_0) \right] \\ + \left[U(\phi) \right],$

• We assume $f(\phi) = M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \dots$

- Two cases: β dominant or γ_n dominant
- Assume U(φ) to be negligible (U ≤ V(χ₀)) in the Early Universe.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right],$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

where $\gamma > 0$, n > 2.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] ,$$

(日)

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] ,$$

(日)

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right],$$

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2} ,$

(日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right],$$

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$, $R = 12H_I^2$

(日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right],$$

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$, $R = 12H_I^2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. ϕ grows due to driving force $\gamma \frac{\phi^n}{M^{n-2}} R$.

Higgs & Inflation

Metastability

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right],$$

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow \text{Exponential Inflation}$: $H_{L}^{2} = \frac{V(\chi_{0})}{2M^{2}}$, $R = 12H_{1}^{2}$

2. ϕ grows due to driving force $\gamma \frac{\phi^n}{Mn^{-2}} R$.

3. When $\gamma \frac{\phi^n}{M^{n-2}} \simeq M^2$ power-law expansion $a \sim t^{3/4}$.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

$$S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] ,$$

where $\gamma > 0$, n > 2.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$, $R = 12H_I^2$

2. ϕ grows due to driving force $\gamma \frac{\phi^n}{M^{n-2}} R$.

3. When $\gamma \frac{\phi^n}{M^{n-2}} \simeq M^2$ power-law expansion $a \sim t^{3/4}$. 4. $H \propto \frac{1}{t}$ and when $H = \Gamma^{1/4} \Rightarrow$ Graceful Exit.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If we regard *M* as the fundamental scale of the theory
- The full theory has operators like

$$S=\int d^4x\sqrt{-g}\left[M^2+eta\phi^2+\gamma_4rac{\phi^4}{M^2}+\gamma_6rac{\phi^6}{M^4}+...
ight]R\,,$$

(日)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If we regard *M* as the fundamental scale of the theory
- The full theory has operators like

$$S = \int d^4x \sqrt{-g} \left[M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \dots \right] R,$$

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

• Higher order operators important at $\phi \gg M$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If we regard *M* as the fundamental scale of the theory
- The full theory has operators like

$$S = \int d^4x \sqrt{-g} \left[M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \dots \right] R \,,$$

(日) (日) (日) (日) (日) (日) (日)

- Higher order operators important at φ ≫ M
- The transition is strong enough (decelerated expansion), for any f(φ) > φ²!

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- If we regard *M* as the fundamental scale of the theory
- The full theory has operators like

$$\mathcal{S}=\int d^4x\sqrt{-g}\left[M^2+eta\phi^2+\gamma_4rac{\phi^4}{M^2}+\gamma_6rac{\phi^6}{M^4}+...
ight]R\,,$$

- Higher order operators important at $\phi \gg M$
- The transition is strong enough (decelerated expansion), for any f(φ) > φ²!
- Without knowing exactly f(φ) (...an infinite number of couplings)!

Transition to radiation and Stabilization

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- When $H^4 \simeq \Gamma$ many bubbles of $\chi_{out} < \chi_0$ are nucleated
- They collide producing a nearly homogeneous field χ_{out}
Transition to radiation and Stabilization

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- When $H^4 \simeq \Gamma$ many bubbles of $\chi_{out} < \chi_0$ are nucleated
- They collide producing a nearly homogeneous field χ_{out}

(日)

• χ rolls down, produces radiation and relaxes to true minimum

Transition to radiation and Stabilization

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- When $H^4 \simeq \Gamma$ many bubbles of $\chi_{out} < \chi_0$ are nucleated
- They collide producing a nearly homogeneous field χ_{out}
- χ rolls down, produces radiation and relaxes to true minimum
- During radiation ϕ slows down:

$$R=6(2H^2+\dot{H})\approx 0\,.$$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Nonetheless we need to stabilize ϕ at late times:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Nonetheless we need to stabilize ϕ at late times:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• variation of *G_N* during matter domination.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Nonetheless we need to stabilize ϕ at late times:

• variation of *G_N* during matter domination.

(日)

• 5th force constraints

Higgs & Inflation

- Introduction
- Dissipation

Metastability

Metastability from Higgs potential?

- Nonetheless we need to stabilize ϕ at late times:
 - variation of *G_N* during matter domination.
 - 5th force constraints
- ...We can reintroduce the potential $U(\phi)$ in the original Lagrangian

(日) (日) (日) (日) (日) (日) (日)

• Assumed to be irrelevant before ($U \lesssim V(\chi_0)$).

Higgs & Inflation

- Introduction
- Dissipation

Metastability

Metastability from Higgs potential?

- Nonetheless we need to stabilize ϕ at late times:
 - variation of *G_N* during matter domination.
 - 5th force constraints
- ...We can reintroduce the potential $U(\phi)$ in the original Lagrangian
- Assumed to be irrelevant before ($U \lesssim V(\chi_0)$).
- Any potential which drives φ to a minimum (φ → 0) is good

Flat spectrum of ϕ fluctuations

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Fuctuations in ϕ that ends inflation.

(日)

Flat spectrum of ϕ fluctuations

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- Fuctuations in ϕ that ends inflation.
- In Einstein frame there is a potential ⇒ almost flat spectrum

$$ar{V} pprox V(\chi_0) \left[1 - 2\gamma \left(rac{\phi}{M}
ight)^n
ight].$$

$$n_S - 1 = 2\eta - 6\epsilon$$

 $\Delta_R^2 = \left(\frac{\bar{H}_l}{M}\right)^2 \frac{1}{8\pi^2 \epsilon} \bigg|_{\phi = \phi(\bar{\mathcal{N}} \approx \bar{\mathcal{N}}_{3000h^{-1}Mm})}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Parameter values (quadratic term absent)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • We predicted the spectral index:

$$n_{S} \simeq 1 + 2\eta \simeq 1 - rac{2}{ar{\mathcal{N}}_{3000h^{-1}\mathrm{Mpc}}} \left(rac{n-1}{n-2}
ight) = 0.95 - rac{0.04}{n-2}$$

(日)

Parameter values (quadratic term absent)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • We predicted the spectral index:

$$n_{S} \simeq 1 + 2\eta \simeq 1 - \frac{2}{\bar{\mathcal{N}}_{3000h^{-1}\mathrm{Mpc}}} \left(\frac{n-1}{n-2}\right) = 0.95 - \frac{0.04}{n-2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• For large *n*: $n_S \simeq 0.94 - 0.95$ (central value by WMAP)

Parameter values (quadratic term absent)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • We predicted the spectral index:

$$n_{S} \simeq 1 + 2\eta \simeq 1 - \frac{2}{\bar{\mathcal{N}}_{3000h^{-1}\mathrm{Mpc}}} \left(\frac{n-1}{n-2}\right) = 0.95 - \frac{0.04}{n-2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• For large *n*: $n_S \simeq 0.94 - 0.95$ (central value by WMAP)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • Reheating proceeds through bubble collisions.

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowski (1990-1995). 🖹 🕨 🚊 🔊 🤉 🔿

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves (GW)²

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowski (1990-1995). 🖹 > 🚊 🦿 🔍

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves (GW)² peaked at horizon scale (set by T_{BH} ≃ V(φ₀)^{1/4})

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowski (1990-1995). 💿 🔅 🔗 .

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves (GW)² peaked at horizon scale (set by T_{RH} ≃ V(φ₀)^{1/4})
- If $V(\phi_0)^{1/4}$ is some TeV

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowski (1990-1995) 💿 🛓 🔊 Q (

Higgs & Inflation

- Introduction
- Dissipation

Metastability

Metastability from Higgs potential?

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves (GW)² peaked at horizon scale (set by T_{RH} ≃ V(φ₀)^{1/4})
- If $V(\phi_0)^{1/4}$ is some TeV $\Rightarrow \nu_{\text{peak}} \approx \text{mHz}$ (close to best sensitivity of LISA)

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowskii (1990-1995). 💿 🕨 💿 🔍

Higgs & Inflation

- Introduction
- Dissipation

Metastability

Metastability from Higgs potential?

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves (GW)² peaked at horizon scale (set by T_{RH} ≃ V(φ₀)^{1/4})
- If $V(\phi_0)^{1/4}$ is some TeV $\Rightarrow \nu_{\text{peak}} \approx \text{mHz}$ (close to best sensitivity of LISA)
- Amplitude at the peak is big enough to be detectable:

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowski (1990-1995). 📑 🕨 🦉 🔍 🖓

Higgs & Inflation

- Introduction
- Dissipation

Metastability

Metastability from Higgs potential?

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves (GW)² peaked at horizon scale (set by T_{RH} ≃ V(φ₀)^{1/4})
- If $V(\phi_0)^{1/4}$ is some TeV $\Rightarrow \nu_{\text{peak}} \approx \text{mHz}$ (close to best sensitivity of LISA)
- Amplitude at the peak is big enough to be detectable:

 $\left\{ \begin{array}{ll} \text{Expected value at peak} & \Omega_{GW} h^2 \approx 10^{-7} \\ \text{LISA sensitivity} & \Omega_{GW} h^2 \approx 10^{-11} \end{array} \right.$

²M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. Kamionkowski (1990-1995). 🖹 🕨 🚊 🛷 🤇 🕐

GW detectors

Higgs Potential?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Higgs Potential?

- Dissipation
- Metastability
- Metastability from Higgs potential?

• Can we use Higgs potential to source such an Inflation?

(日)

• Link to Standard Model and experiments

٩

Metastability from Higgs potential? $V_{Higgs}(\chi) = rac{1}{24}\lambda(\chi^2-v^2)^2$

Higgs & Inflation

٩

Introductio

Dissipation

Metastability

Metastability from Higgs potential?

$$V_{Higgs}(\chi) = \frac{1}{24}\lambda(\chi^2 - v^2)^2$$

(日)

• $\lambda(\mu)$ depends on the scale $\mu \sim \chi$:

$$V_{Higgs}(\chi) = \frac{1}{24}\lambda(\chi)(\chi^2 - v^2)^2$$

Higgs & Inflation

٩

Introductio

Dissipation

Metastability

Metastability from Higgs potential?

$$V_{Higgs}(\chi) = rac{1}{24}\lambda(\chi^2 - v^2)^2$$

• $\lambda(\mu)$ depends on the scale $\mu \sim \chi$:

$$V_{ extsf{Higgs}}(\chi) = rac{1}{24}\lambda(\chi)(\chi^2 - oldsymbol{v}^2)^2 o \lambda(\chi)\chi^4$$

(日)

Higgs & Inflation

٩

Introductio

Dissipation

Metastability

Metastability from Higgs potential?

$$V_{Higgs}(\chi) = rac{1}{24}\lambda(\chi^2 - v^2)^2$$

• $\lambda(\mu)$ depends on the scale $\mu \sim \chi$:

$$V_{\text{Higgs}}(\chi) = \frac{1}{24}\lambda(\chi)(\chi^2 - \nu^2)^2 \to \lambda(\chi)\chi^4$$

• RGE equations
$$\frac{d\lambda}{d\log(\mu)} = \dots$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ●

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? The Higgs couples mostly through:

• Gauge couplings, $g_{U(1)}, g_{SU(2)}, g_{SU(3)}$ and h_{top}

(日)

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential? The Higgs couples mostly through:

• Gauge couplings, $g_{U(1)}, g_{SU(2)}, g_{SU(3)}$ and h_{top}

$$\frac{d}{dt}\lambda(t) = \beta_{\lambda}(\lambda, h, g_{1}, g_{2}, g_{3}), \quad (9)$$

$$\frac{d}{dt}h(t) = \beta_{h}(\lambda, h, g_{1}, g_{2}, g_{3}), \\
\frac{d}{dt}g_{1}(t) = \beta_{g_{1}}(\lambda, h, g_{1}, g_{2}, g_{3}), \\
\frac{d}{dt}g_{2}(t) = \beta_{g_{2}}(\lambda, h, g_{1}, g_{2}, g_{3}), \\
\frac{d}{dt}g_{3}(t) = \beta_{g_{3}}(\lambda, h, g_{1}, g_{2}, g_{3})$$

$$t \equiv \log(\mu/m_{Z}) \quad \mu \simeq \chi$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

• $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

• $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

(日)

- Largest experimental uncertainties:
 - $m_{\rm top} \propto h(0)v$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Largest experimental uncertainties:
 - $m_{\rm top} \propto h(0)v$
 - g₃(0)

Higgs & Inflation

Introductior

Dissipation

Metastability

Metastability from Higgs potential?

• $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

- Largest experimental uncertainties:
 - $m_{\rm top} \propto h(0)v$
 - g₃(0)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Instability & False Vacuum

 $V(\chi)^{1/4}$ [GeV]

m_H = 125.2, 125.158, 125.157663 GeV,
 m_t = 171.8 GeV

Higgs False vacuum Inflation?

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • In this minimum: $p = -\rho$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ りへで
Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- In this minimum: $p = -\rho$
- And V^{1/4} ~ 10¹⁶ 10¹⁷ GeV !

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- In this minimum: $p = -\rho$
- And V^{1/4} ~ 10¹⁶ 10¹⁷ GeV !

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- In this minimum: $p = -\rho$
- And $V^{1/4} \simeq 10^{16} 10^{17} \text{ GeV} !$
- "Minimal"? Need another scalar!

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

- In this minimum: $p = -\rho$
- And $V^{1/4} \simeq 10^{16} 10^{17} \text{ GeV} !$
- "Minimal"? Need another scalar!

(日)

• Experiments can decide!

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

A.N., I.Masina, PRL, PRD, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

- Having a metastable vacuum \Rightarrow
- Fixes a line in the plane $m_{top} m_H$

Requirements on Higgs, α_s and top mass

Dissipation

Metastability

Metastability from Higgs potential?

A.N., PRD, 2015

Requirements on Higgs, α_s and top mass

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Figure: Dashed (dotted) line corresponding to the experimental uncertainty in the top mass M_t (strong coupling constant), and the shaded yellow (pink) regions correspond to the total experimental error and theoretical uncertainty, with the latter estimated as [1.2]GeV ([2.5]GeV)

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Figure: Tevatron 68% and 95% experimentally allowed regions for and M_t are given by shaded areas. The dashed (dotted) lines correspond to [1]GeV ([2]GeV) uncertainty in the M_{min} theoretical determination. Red lines in the center: expected precision from a e^+e^- collider.

・ロン ・雪 と ・ ヨ と

= 900

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? From Bezrukov et al. JHEP '2012:

$$M_{\min} = \left[128.95 + \frac{M_t - [172.9]GeV}{[1.1]GeV} \times 2.2 - \frac{-0.1184}{0.0007} \times 0.56\right]GeV.$$

Source of uncertainty	Nature of estimate	∆ <i>M</i> _{min} , GeV
3-loop matching λ	Sensitivity to μ	1.0
3-loop matching y_t	Sensitivity to μ	0.2
4-loop to y_t	educated guess	0.4
confinement, <i>y</i> _t	educated guess $\sim \Lambda_{\text{QCD}}$	0.5
4-loop running $M_W o M_P$	educated guess	< 0.2
total uncertainty	sum of squares	1.2
total uncertainty	linear sum	2.3

Table: Theoretical uncertainties in the present M_{min} evaluation.

Higgs & Inflation

Introduction

Dissipation

Metastabilit

Metastability from Higgs potential? • From Degrassi et al. JHEP '2012:

Figure: RG evolution of λ varying M_t and α_s by $\pm 3\sigma$.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

・ロット (雪) (日) (日)

Figure: The three boundaries lines correspond to $\alpha_s(M_Z) = 0.1184 \pm 0.0007$.

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential? • From Degrassi et al. JHEP '2012:

Type of error	Estimate of the error	Impact on M
M_t	experimental uncertainty in M_t	\pm 1.4 GeV
$\alpha_{ m s}$	experimental uncertainty in $lpha_{ m s}$	\pm 0.5 GeV
Experiment	Total combined in quadrature	\pm 1.5 GeV
λ	scale variation in λ	\pm 0.7 GeV
y t	$\mathcal{O}(\Lambda_{\text{QCD}})$ correction to M_t	\pm 0.6 GeV
y t	QCD threshold at 4 loops	\pm 0.3 GeV
RGE	EW at 3 loops + QCD at 4 loops	\pm 0.2 GeV
Theory	Total combined in quadrature	\pm 1.0 GeV

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• From Degrassi et al. JHEP '2012:

Figure: Higgs potential around the critical top mass. The various curves correspond to variations in M_t by 0.1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Flat potential

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

• Require: almost flat potential

• Otherwise too suppressed tunneling rate

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Flat potential

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

Metastability from Higgs potential?

• Otherwise too suppressed tunneling rate

▲□ > ▲圖 > ▲目 > ▲目 > 目 のへで

Potential Height

Higgs & Inflation

Introduction

Dissipation

Metastability

Potential Height

Higgs & Inflation

- Introduction
- Dissipation
- Metastability

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Higgs & Inflation

Introduction

Dissipation

Metastability

• $P_T \simeq rac{V}{M_{Pl}^4}$

Higgs & Inflation

Introduction

Dissipation

Metastabilit

Metastability from Higgs potential?

• $P_T \simeq rac{V}{M_{Pl}^4}$, $P_S \simeq 10^{-9}$

Higgs & Inflation

Introduction

Dissipation

Metastability

• $P_T \simeq \frac{V}{M_{Pl}^4}$, $P_S \simeq 10^{-9} \Rightarrow r \equiv \frac{P_T}{P_S}$

Higgs & Inflation

Introduction

Dissipation

Metastabilit

Bound on $m_H - m_t$

Higgs & Inflation

Introduction

Dissipation

Metastability

Correlating $m_H - m_t - r$

Higgs & Inflation

Introduction

Dissipation

Metastability

Correlating $m_H - m_t - r_1$

Higgs & Inflation

- Introduction
- Dissipation

Metastability

Correlating $m_H - m_t - r$

Higgs & Inflation

Introduction

Dissipation

Metastability

Higgs & Inflation	
	3
Metastability from Higgs potential?	
	Figure: arxiv:1403.5244 based on De Grassi et al.

Shallow barrier

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• Requirement:

•
$$\Gamma\gtrsim H_{\rm nuc}^4\simeq 10^{-25} \text{GeV}$$

Shallow barrier

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• Requirement:

•
$$\Gamma\gtrsim H_{\rm nuc}^4\simeq 10^{-25} \text{GeV}$$

• $\Rightarrow S \lesssim 380$

Small action

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• $S \lesssim 380$ only if potential almost flat

Strong tuning!

m_{Higgs} = 125.2, 125.158, 125.157663 GeV,
 m_t = 171.8 GeV

Going to the Einstein frame

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

It is convenient to transform

$$\bar{g}_{\mu\nu}=f(\phi)g_{\mu\nu}\,,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Going to the Einstein frame

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

It is convenient to transform

$$\bar{g}_{\mu\nu}=f(\phi)g_{\mu\nu}\,,$$

• Get canonical gravity:

$$S_E = rac{1}{2} \int d^4x \sqrt{-ar{g}} [M^2 ar{R} - K(\phi) (ar{\partial} \phi)^2] + S_0 \, ,$$

Going to the Einstein frame

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

• It is convenient to transform

$$\bar{g}_{\mu\nu}=f(\phi)g_{\mu\nu}\,,$$

• Get canonical gravity:

$$S_E = \frac{1}{2} \int d^4x \sqrt{-\bar{g}} [M^2 \bar{R} - K(\phi)(\bar{\partial}\phi)^2] + S_0,$$

and the false vacuum energy, in this frame

$$-S_0=\int d^4x\;\sqrt{-ar{g}}rac{V(\chi_0)}{f^2(\phi)}\equiv\int d^4x\sqrt{ar{g}}\;ar{V}(\chi_0,\phi)\,.$$

becomes a potential (but it disappears after tunneling)

Phase I: $\phi \ll M$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Expand

$$f(\phi) \approx 1 + \gamma_n \left(\frac{\phi}{M}\right)^n$$

Phase I: $\phi \ll M$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Expand

$$f(\phi) pprox 1 + \gamma_n \left(rac{\phi}{M}
ight)^n$$

• Therefore:

$$K(\phi) \approx 1, \ \bar{V} \approx V(\chi_0) \left[1 - 2\gamma_n \left(\frac{\phi}{M} \right)^n \right]$$

•

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ
Phase I: $\phi \ll M$

Higgs & Inflation

Introduction

Dissipation

Metastability

Metastability from Higgs potential?

Expand

$$f(\phi) \approx 1 + \gamma_n \left(\frac{\phi}{M}\right)^n$$

• Therefore:

$$K(\phi) \approx 1, \ \bar{V} \approx V(\chi_0) \left[1 - 2\gamma_n \left(\frac{\phi}{M} \right)^n \right]$$

.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• it looks like slow roll on top of a hill

	Phase I: $\phi \ll M$
Higgs & Inflation	
	So in slow-roll approximation:
Metastability from Higgs potential?	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Phase I: $\phi \ll M$

Higgs & Inflation

Introduction

- Dissipation
- Metastability

Metastability from Higgs potential? • So in slow-roll approximation:

$$\epsilon \equiv \frac{M^2}{2} \left| \frac{1}{V} \frac{dV}{d\phi} \right|^2 = 32\gamma_4^2 \left(\frac{\phi}{M} \right)^6,$$
$$\eta \equiv M^2 \frac{1}{V} \frac{d^2V}{d\phi^2} = -24\gamma_4 \left(\frac{\phi}{M} \right)^2.$$

Phase I: $\phi \ll M$

Higgs & Inflation

Introduction

- Dissipation
- Metastability

Metastability from Higgs potential? • So in slow-roll approximation:

$$\epsilon \equiv \frac{M^2}{2} \left| \frac{1}{V} \frac{dV}{d\phi} \right|^2 = 32\gamma_4^2 \left(\frac{\phi}{M} \right)^6,$$
$$\eta \equiv M^2 \frac{1}{V} \frac{d^2V}{d\phi^2} = -24\gamma_4 \left(\frac{\phi}{M} \right)^2.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• When ϕ of order *M*: end of slow-roll

Higgs & Inflation

. . . .

Dissipation

Metastability

Metastability from Higgs potential?

• In this phase:

$$\mathcal{K}(\phi)\equiv rac{2f(\phi)+3M^2f^{'2}(\phi)}{2f^2(\phi)}pproxrac{3M^2}{2}\left(rac{f'}{f}
ight)^2\,,\qquad ar{V}(\phi)pproxrac{V(\chi_0)}{f(\phi)^2}\,.$$

Higgs & Inflation

Metastability from Higgs potential?

• In this phase:

$$\mathcal{K}(\phi)\equiv rac{2f(\phi)+3M^2f^{'2}(\phi)}{2f^2(\phi)}pprox rac{3M^2}{2}\left(rac{f'}{f}
ight)^2, \qquad ar{V}(\phi)pprox rac{V(\chi_0)}{f(\phi)^2}.$$

• So we introduce a canonical variable via

$$\Phi \equiv \sqrt{\frac{3}{2}} M \ln f(\phi) \,,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Higgs & Inflation

Metastability

from Higgs potential?

• In this phase:

$$\mathcal{K}(\phi) \equiv \frac{2f(\phi) + 3M^2 f^{\prime 2}(\phi)}{2f^2(\phi)} \approx \frac{3M^2}{2} \left(\frac{f^{\prime}}{f}\right)^2, \qquad \bar{V}(\phi) \approx \frac{V(\chi_0)}{f(\phi)^2}.$$

• So we introduce a canonical variable via

$$\Phi \equiv \sqrt{\frac{3}{2}} M \ln f(\phi) \,,$$

• The kinetic term is canonical and the potential becomes:

$$ar{V}(\Phi) = V(\chi_0) \exp\left(-2\sqrt{rac{2}{3}}rac{\Phi}{M}
ight)$$

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

• The exponential potential is well-known to lead to power-law expansion

$$\bar{a} \sim \bar{t}^{\rho}$$
 with $\rho = \frac{3}{4}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Higgs & Inflation

- Introduction
- Dissipation
- Metastability
- Metastability from Higgs potential?

• The exponential potential is well-known to lead to power-law expansion

$$\bar{a} \sim \bar{t}^{\rho}$$
 with $\rho = \frac{3}{4}$.

• The end of this phase when

$$ar{H}^2\simeqar{\Gamma}^{1/2}$$