[Higgs &](#page-224-0) Inflation

Inflation with Dissipation and Metastability

Alessio Notari ¹

Universitat de Barcelona

August 2016, CERN Workshop, "Big Bang and the little bangs"

KORK (FRAGE) KEY GRAN

And earlier work with: T. Biswas, F. di Marco, I. Masina

¹ In collaboration with Konrad Tywoniuk

Outline

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

4 [Metastability from Higgs potential?](#page-164-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

In FLRW metric, expansion described by *a*(*t*)

$$
ds^2 = -dt^2 + a^2(t)d\vec{x}^2
$$

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

In FLRW metric, expansion described by *a*(*t*)

$$
ds^2 = -dt^2 + a^2(t)d\vec{x}^2
$$

Einstein equations for a homogeneous/isotropic space

$$
H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{\rho}{3M^{2}}
$$

$$
\dot{\rho} = -3H(\rho + \rho)
$$

KOD KAD KED KED E VAN

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

■ In FLRW metric, expansion described by $a(t)$

$$
ds^2 = -dt^2 + a^2(t)d\vec{x}^2
$$

Einstein equations for a homogeneous/isotropic space

$$
H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{\rho}{3M^{2}}
$$

$$
\dot{\rho} = -3H(\rho + \rho)
$$

KOD KAD KED KED E VAN

ρ ∼ *const* ⇒ *H* ∼ *const*

 \Rightarrow $a(t) = e^{Ht}$

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

■ In FLRW metric, expansion described by $a(t)$

$$
ds^2 = -dt^2 + a^2(t)d\vec{x}^2
$$

Einstein equations for a homogeneous/isotropic space

$$
H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{\rho}{3M^{2}}
$$

$$
\dot{\rho} = -3H(\rho + \rho)
$$

KOD KAD KED KED E VAN

ρ ∼ *const* ⇒ *H* ∼ *const*

 \Rightarrow $a(t) = e^{Ht}$

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

We need *p* ∼ −ρ dominating energy density

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

- We need *p* ∼ −ρ dominating energy density
- Simple approach: a new scalar field

$$
\rho = V(\phi) + \frac{\dot{\phi}^2}{2} \qquad p = -V(\phi) + \frac{\dot{\phi}^2}{2} \qquad (1)
$$

KOD KAD KED KED E VAN

 $(\dot{\phi}^2/2 \ll V)$

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

We need *p* ∼ −ρ dominating energy density

• Simple approach: a new scalar field

$$
\rho = V(\phi) + \frac{\dot{\phi}^2}{2} \qquad p = -V(\phi) + \frac{\dot{\phi}^2}{2} \qquad (1)
$$

 $(\dot{\phi}^2/2 \ll V)$

Hubble friction dominates:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) = 0 \tag{2}
$$

KORKARA REAKER ORA

 $(\ddot{\phi} \ll 3H\dot{\phi})$

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

- We need *p* ∼ −ρ dominating energy density
- Simple approach: a new scalar field

$$
\rho = V(\phi) + \frac{\dot{\phi}^2}{2} \qquad p = -V(\phi) + \frac{\dot{\phi}^2}{2} \qquad (1)
$$

 $(\dot{\phi}^2/2 \ll V)$

Hubble friction dominates:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) = 0 \tag{2}
$$

KORKARA REAKER ORA

 $(\ddot{\phi} \ll 3H\dot{\phi})$

 \Rightarrow Slowly rolls for $\left(\frac{a}{a}\right)$ *aF* $\big) = e^N \gtrsim e^{60}$

Slow-roll

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

Then fast roll and decay to other particles ("Reheating")

KORK (FRAGE) KEY GRAN

Slow-roll

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

Then fast roll and decay to other particles ("Reheating")

KORK (FRAGE) KEY GRAN

 \bullet It also fluctuates \Rightarrow Density fluctuations

Slow-roll

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

Then fast roll and decay to other particles ("Reheating")

KO KA KO KERKER KONG

• It also fluctuates \Rightarrow Density fluctuations

• May be also "multi-field"

Slow-roll Inflation: simple but...

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

-
-

Unknown *V*

- Unusually flat *V*
- Unknown couplings and Reheating process

KOD KAD KED KED E VAN

Unseen Inflaton particles

Slow-roll Inflation: simple but...

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

-
-

- Unknown *V*
- Unusually flat *V*
- Unknown couplings and Reheating process

KOD KAD KED KED E VAN

Unseen Inflaton particles

• Difficult to test:

- Usually at very high-energy
- **•** Thermalization

Alternatives

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

• Can we slow down ϕ by dissipation? (no flat potential)

KID K@ KKEX KEX E 1090

Alternatives

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

-
-
-

• Can we slow down ϕ by dissipation? (no flat potential)

• Can Inflation end with a phase transition? (additional signatures)

KOD KAD KED KED E VAN

Alternatives

[Higgs &](#page-0-0) Inflation

[Introduction](#page-2-0)

-
-
-

• Can we slow down ϕ by dissipation? (no flat potential)

• Can Inflation end with a phase transition? (additional signatures)

• Can we link to Standard Model and experiments?

KORKARA REAKER ORA

Dissipation: the Rehating case

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Qualitatively reheating is described by:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0
$$

with $\Gamma \gg H$ coming from decay into other particles: $\phi \rightarrow 2\psi$

KO KA KO KERKER KONG

Dissipation: the Rehating case

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Qualitatively reheating is described by:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0
$$

with $\Gamma \gg H$ coming from decay into other particles: $\phi \rightarrow 2\psi$

KORKARA REAKER ORA

 $\bullet \phi$ oscillates with frequency $\omega \to E_{\psi} = \omega/2$.

Dissipation: the Rehating case

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Qualitatively reheating is described by:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0
$$

with $\Gamma \gg H$ coming from decay into other particles: $\phi \rightarrow 2\psi$

- $\bullet \phi$ oscillates with frequency $\omega \to E_{\psi} = \omega/2$.
- **Is it possible already during infl[atio](#page-19-0)[n](#page-21-0)[?](#page-17-0)**

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• During inflation:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0?
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

with Γ \gg *H* coming from creation of other particles?

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• During inflation:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0?
$$

KOD KAD KED KED E VAN

with $Γ \gg H$ coming from creation of other particles?

• Odd under time reversal *T*: only effective term!

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• During inflation:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0?
$$

KOD KAD KED KED E VAN

with $Γ \gg H$ coming from creation of other particles?

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

rom Higgs

• During inflation:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0?
$$

KORKARA REAKER ORA

with $\Gamma \gg H$ coming from creation of other particles?

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)
- **If it works: decay product must be massless**

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• During inflation:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0?
$$

KORKARA REAKER ORA

with $\Gamma \gg H$ coming from creation of other particles?

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)
- **If it works: decay product must be massless**

$$
\bullet \ \mathcal{L}_{int} = \lambda \phi \psi^2 \ \rightarrow m_{\psi} = \lambda \langle \phi \rangle
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• During inflation:

$$
\ddot{\phi} + 3H\dot{\phi} + V_{\phi}(\phi) + \Gamma \dot{\phi} = 0?
$$

with $\Gamma \gg H$ coming from creation of other particles?

- Odd under time reversal *T*: only effective term!
- Difficult: Inflation does not oscillate ($\omega \simeq 0$)
- **If it works: decay product must be massless**

•
$$
\mathcal{L}_{int} = \lambda \phi \psi^2 \rightarrow m_{\psi} = \lambda \langle \phi \rangle + m_{\psi}^0
$$
 does NOT work

KO KA KO KERKER KONG

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

 $\bullet \phi$ coupled to U(1) gauge fields:

$$
S=\int d^4x\sqrt{-g}\left(\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi+V(\phi)+\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{\phi}{4f_{\gamma}}F_{\mu\nu}\tilde{F}^{\mu\nu}\right)
$$

KOD KAD KED KED E VAN

(Sorbo and Anber '2009)

 \bullet *F*_{μν} = $\partial_\mu A_\nu - \partial_\mu A_\nu$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

 $\bullet \phi$ coupled to U(1) gauge fields:

$$
S=\int d^4x\sqrt{-g}\left(\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi+V(\phi)+\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{\phi}{4f_{\gamma}}F_{\mu\nu}\tilde{F}^{\mu\nu}\right)
$$

KOD KAD KED KED E VAN

(Sorbo and Anber '2009)

$$
\bullet\ \ \mathsf{F}_{\mu\nu}=\partial_{\mu}\mathsf{A}_{\nu}-\partial_{\mu}\mathsf{A}_{\nu}
$$

• $F_{\mu\nu}\tilde{F}^{\mu\nu}$ odd under *CP* (and so *T*)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

 $\bullet \phi$ coupled to U(1) gauge fields:

$$
S=\int d^4x\sqrt{-g}\left(\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi+V(\phi)+\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{\phi}{4f_{\gamma}}F_{\mu\nu}\tilde{F}^{\mu\nu}\right)
$$

KOD KAD KED KED E VAN

(Sorbo and Anber '2009)

$$
\bullet \ \ \mathsf{F}_{\mu\nu} = \partial_{\mu} \mathsf{A}_{\nu} - \partial_{\mu} \mathsf{A}_{\nu}
$$

• $F_{\mu\nu}\tilde{F}^{\mu\nu}$ odd under *CP* (and so *T*)

• Photons are massless (ϕ coupled derivatively)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

 \bullet (Sorbo & Anber '09): in a time dependent ϕ and in FLRW (with conformal time $a d\tau = dt$:

$$
\mathcal{A}''_\pm + \left(k^2 \mp \frac{k \phi'}{f_\gamma}\right) \mathcal{A}_\pm = 0\,,
$$

KOD KAD KED KED E VAN

$$
\bullet \ \phi' = a\dot{\phi} \neq 0 \ (\text{and } \pm \text{ positive (negative) helicity})
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

 \bullet (Sorbo & Anber '09): in a time dependent ϕ and in FLRW (with conformal time $a d\tau = dt$:

$$
\mathcal{A}''_\pm + \left(k^2 \mp \frac{k \phi'}{f_\gamma}\right) \mathcal{A}_\pm = 0\,,
$$

 $\phi'=\boldsymbol{a}\dot{\phi}\neq\boldsymbol{0}$ $($ and \pm positive (negative) helicity $)$

o One helicity is unstable: $\langle F\tilde{F} \rangle$ becomes quickly large

KORKARA REAKER ORA

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

from Higgs

 \bullet (Sorbo & Anber '09): in a time dependent ϕ and in FLRW (with conformal time $a d\tau = dt$:

$$
\mathcal{A}''_\pm + \left(k^2 \mp \frac{k \phi'}{f_\gamma}\right) \mathcal{A}_\pm = 0\,,
$$

 $\phi'=\boldsymbol{a}\dot{\phi}\neq\boldsymbol{0}$ $($ and \pm positive (negative) helicity $)$

- \bullet One helicity is unstable: $\langle F\tilde{F}\rangle$ becomes quickly large
- Assumed that its backreaction slows down ϕ :

$$
\ddot{\phi}+3H\dot{\phi}+V_{,\phi}(\phi)+\frac{\langle F\tilde{F}\rangle}{f_{\gamma}}=0\,,
$$

KORKARA REAKER ORA

• Found inflationary solution

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Dissipation](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- $\sigma(\mathsf{sorbo\,}\& \mathsf{Another\; '09}) \text{ assumed: } \dot{\phi} = \textit{const} \text{ and } \bm{a}(t) = \bm{e}^{\textit{Ht}} = -\frac{1}{H\tau}$
- Solution at $\tau = +\infty$:

 $\frac{\varphi}{2f_\gamma H}$)

 $\zeta \equiv \frac{\dot{\phi}}{2L}$

$$
A_{-}^{an} = \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi \xi - 2\sqrt{2\xi k/(aH)}} \tag{4}
$$
[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- $\sigma(\mathsf{sorbo\,}\& \mathsf{Another\; '09}) \text{ assumed: } \dot{\phi} = \textit{const} \text{ and } \bm{a}(t) = \bm{e}^{\textit{Ht}} = -\frac{1}{H\tau}$
- Solution at $\tau = +\infty$:

 $(\xi$

$$
A_{-}^{an} = \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/(aH)}} \tag{4}
$$

$$
\equiv \frac{\dot{\phi}}{2t_{\gamma}H}
$$

KOD KAD KED KED E VAN

"Almost" going to vacuum fluctuations $A_k = e^{i k \tau} \sqrt{k}$ 2*k* at $\tau = -\infty$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

(Sorbo & Anber '09) estimated:

$$
\frac{\langle F\widetilde{F}\rangle}{4} = \frac{1}{2a^4} \int \frac{d^3k}{(2\pi)^3} k \frac{d \left[|A_+|^2 - |A_-|^2 \right]}{d\tau},
$$

$$
\approx \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

(Sorbo & Anber '09) estimated:

$$
\frac{\langle F\widetilde{F}\rangle}{4} = \frac{1}{2a^4} \int \frac{d^3k}{(2\pi)^3} k \frac{d \left[|A_+|^2 - |A_-|^2 \right]}{d\tau},
$$

$$
\approx \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}
$$

• And used $\langle F\tilde{F}\rangle$ into:

$$
\ddot{\phi}+3H\dot{\phi}+V_{,\phi}(\phi)+\frac{\langle F\tilde{F}\rangle}{f_{\gamma}}=0\,,
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

(Sorbo & Anber '09) estimated:

$$
\frac{\langle F\widetilde{F}\rangle}{4} = \frac{1}{2a^4} \int \frac{d^3k}{(2\pi)^3} k \frac{d \left[|A_+|^2 - |A_-|^2 \right]}{d\tau},
$$

$$
\approx \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi}
$$

• And used $\langle F\tilde{F}\rangle$ into:

$$
\ddot{\phi}+3H\dot{\phi}+V_{,\phi}(\phi)+\frac{\langle F\tilde{F}\rangle}{f_{\gamma}}=0\,,
$$

$$
\begin{aligned}\n\bullet \to \xi &\equiv \frac{\dot{\phi}}{2f_{\gamma}H} \approx \text{const} \\
\bullet \to \dot{\phi} &\approx 2\xi f_{\gamma}H\n\end{aligned}
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Valid for any $V(\phi)$! (ξ depends only logarithmically on $V(\phi)$)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Valid for any $V(\phi)$!

(ξ depends only logarithmically on $V(\phi)$)

$$
\bullet \ \frac{d\phi}{dN} \equiv \frac{d\phi}{Hdt} \approx f_{\gamma} \rightarrow N_{TOT} \approx \frac{\Delta\phi}{f_{\gamma}}
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Valid for any $V(\phi)$!

(ξ depends only logarithmically on $V(\phi)$)

$$
\bullet \ \tfrac{d\phi}{dN} \equiv \tfrac{d\phi}{Hdt} \approx f_\gamma \rightarrow N_{TOT} \approx \tfrac{\Delta\phi}{f_\gamma}
$$

• f_γ much smaller than the field excursion $\Delta \phi$

KO KA KO KERKER KONG

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

The above estimate *assumes* friction domination:

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-
-
- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-
- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?
- What is the flat spacetime, $H \rightarrow 0$ limit? (infinite friction??)

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-
-
- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?
- What is the flat spacetime, $H \rightarrow 0$ limit? (infinite friction??)
- Do we actually get $\dot{\phi} \approx const$ and $H \approx const$?

KORKARA REAKER ORA

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-

- The above estimate *assumes* friction domination:
- Can the instability develop quick enough to lead to Inflation?
- What is the flat spacetime, $H \rightarrow 0$ limit? (infinite friction??)
- Do we actually get $\dot{\phi} \approx const$ and $H \approx const$?

KORKARA REAKER ORA

Cosmological Perturbations?

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

\bullet We solved numerically for A_+ from an initial condition:

$$
A(0) = \frac{1}{\sqrt{2k}}, \qquad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \n\phi(0) = \phi_0, \qquad \dot{\phi}(0) = 0.
$$
\n(5)

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

\bullet We solved numerically for A_+ from an initial condition:

$$
A(0) = \frac{1}{\sqrt{2k}}, \qquad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \n\phi(0) = \phi_0, \qquad \dot{\phi}(0) = 0.
$$
\n(5)

KOD KAD KED KED E VAN

For discrete values of *k* (*O*(100) modes)

• Approximated the integral as a sum

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

\bullet We solved numerically for A_+ from an initial condition:

$$
A(0) = \frac{1}{\sqrt{2k}}, \qquad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \n\phi(0) = \phi_0, \qquad \dot{\phi}(0) = 0.
$$
\n(5)

KORKARA REAKER ORA

- For discrete values of *k* (*O*(100) modes)
- Approximated the integral as a sum
- Solved the coupled system for ϕ and A_+

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

■ We solved numerically for A_+ from an initial condition:

$$
A(0) = \frac{1}{\sqrt{2k}}, \qquad \dot{A}(0) = \frac{ik}{\sqrt{2k}}, \n\phi(0) = \phi_0, \qquad \dot{\phi}(0) = 0.
$$
\n(5)

KORKARA REAKER ORA

- For discrete values of *k* (*O*(100) modes)
- Approximated the integral as a sum
- Solved the coupled system for ϕ and A_+
- For $k < t_y$ (cutoff of the effective theory)

Flat spacetime case

[Dissipation](#page-18-0)

• The simplest case $H = 0$:

Flat spacetime case

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• The simplest case $H = 0$:

 \ddot{A}

$$
\ddot{\phi} + V_{,\phi}(\phi) + \frac{\langle F\tilde{F} \rangle}{f} = 0 \tag{6}
$$

$$
{z} + \left(k^{2} \mp \frac{k \dot{\phi}}{f}\right) A{\pm} = 0 \tag{7}
$$

$$
\langle \tilde{F} \tilde{F} \rangle = \frac{1}{2} \int \frac{d^3 k}{(2\pi)^3} k \frac{d \left[|A_+|^2 - |A_-|^2 \right]}{dt} \qquad (8)
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• The *A*_− and $\langle \tilde{F} F \rangle$ grow faster than the free evolution if $f_\gamma \ll \Delta \phi$

KOD KAD KED KED E VAN

• Independently on $V(\phi)$

KO > KA > KE > KE > E XA OKO

KOD KAD KED KED E VAN

Plus oscillations

[Dissipation](#page-18-0)

A[−] Mode evolution

[Higgs &](#page-0-0) Inflation

Spectra for: $\langle \tilde{F} F \rangle = E \cdot B$, $\rho_R = \frac{E^2 + B^2}{2}$ 2

KOD KAD KED KED E VAN

k

k

 $\langle \tilde{F} F \rangle \equiv \int P_{\cal B}(k) \frac{dk}{k}$

 $\rho_R \equiv \int P_\rho(k) \frac{dk}{k}$

[Dissipation](#page-18-0)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

k

k

 $\langle \tilde{F} F \rangle \equiv \int P_{\cal B}(k) \frac{dk}{k}$

 $\rho_R \equiv \int P_\rho(k) \frac{dk}{k}$

Flat spacetime, $V(\phi) = \frac{1}{2} m^2 \phi^2$ (m=4.5×10⁻⁴, ϕ_0 =1, f₁=0.02) Flat spacetime, $V(\phi) = \frac{1}{2} m^2 \phi^2$ (m=4.5×10⁻⁴, ϕ_0 =1, f_y =0.02) $P_{\mathcal{B}}(\mathbf{k})$ ۱š, $\overline{10}$ 1×10 5.4.300 1.810 5.45 $= 1230/m$ $= 14/m$ $= 16/m$ $t=30/m$ = $t=14/m$ = $t=6/m$ \longrightarrow no backreaction, t=1.8/m no backreaction, t=1.8/m -------- vacuum

[Dissipation](#page-18-0)

If the scale of the potential $V_\phi \gg H^3$ and for a time $t \ll 1/H$, we can neglect the expansion

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

If the scale of the potential $V_\phi \gg H^3$ and for a time $t \ll 1/H$, we can neglect the expansion

• So we are back to the previous case:

• The *A*_− and $\langle \tilde{F} F \rangle$ grow faster than the free evolution if $f_\gamma \ll \Delta \phi$

KORKARA REAKER ORA

• Independently on $V(\phi)$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• If the field is friction dominated Inflation starts: $H \approx const$

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-
-

• If the field is friction dominated Inflation starts: $H \approx const$

- The modes are redshifted away
- New modes are excited

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- **•** If the field is friction dominated Inflation starts: $H \approx const$
- The modes are redshifted away
- **New modes are excited**
- After about 1 efold we enter in the regime described before $\dot{\phi} \approx f_{\gamma}H$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- **•** If the field is friction dominated Inflation starts: $H \approx const$
- The modes are redshifted away
- **New modes are excited**
- After about 1 efold we enter in the regime described before $\phi \approx f_\gamma H$

KORKARA REAKER ORA

So, we confirm $N_{TOT} \approx \frac{\Delta \phi}{f_{\gamma}}$ *f*γ

 $\dot{\phi} \approx f_{\gamma}H$

KO K K G K K E K K E K Y K K K K K K K K K

Higgs & Inflation

Dissipation

 $\phi_0/f_y = 256$ \longrightarrow $\phi_0/f_y = 128$

Higgs & Inflation

Dissipation

- Period of about 4 efolds
- Amplitude $\propto t$

Dissipation

FLRW case: Results

Higgs & Inflation

$$
\langle \tilde{F}F \rangle = E \cdot B
$$
 and $\rho_R = \frac{E^2 + B^2}{2}$ spectra:

Dissipation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

 $k⁴$ behavior (suppression on large scales)

FLRW case: Results

Higgs & Inflation

Energy densities:

Dissipation

 $V \gg \rho_R \gg \dot{\phi}^2/2$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @ ;

Reheating

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• There is no separation between reheating and inflation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Model independent reheating

Reheating

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- There is no separation between reheating and inflation
- Model independent reheating

KORK (FRAGE) KEY GRAN

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Very involved: $\phi + A_\mu$ + metric

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-
- Very involved: $\phi + A_{\mu}$ + metric
- \bullet Sorbo & Anber '2010:
- Estimated the curvature perturbation using $\zeta\approx\frac{H}{\dot{\phi}}\delta\phi$ (spatially flat gauge)

KOD KAD KED KED E VAN

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-
- Very involved: $\phi + A_{\mu}$ + metric
- \bullet Sorbo & Anber '2010:
- Estimated the curvature perturbation using $\zeta\approx\frac{H}{\dot{\phi}}\delta\phi$ (spatially flat gauge)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• Estimated δ $φ$ _{*p*}

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-
- Very involved: $\phi + A_{\mu}$ + metric
- Sorbo & Anber '2010:
- Estimated the curvature perturbation using $\zeta\approx\frac{H}{\dot{\phi}}\delta\phi$ (spatially flat gauge)
- **•** Estimated $\delta \phi_n$
- Found too large density fluctuations (unless a large number N of gauge fields is invoked)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

from Higgs potential?

• Objections:

KID KA KEKKEK E 1990

$$
\bullet \ \zeta \neq \frac{H}{\dot{\phi}} \delta \phi
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

· Objections:

- $\zeta \neq \frac{H}{\dot{\phi}} \delta \phi$
- In fact: $\zeta = H \frac{\delta \rho}{\delta}$ $\frac{\partial \rho}{\partial \rho}$ (spatially flat gauge) and $\dot{\rho} \approx \rho_H^2$ (dominated by radiation)

KID KA KERKER E 1990

• So,
$$
\zeta = H \frac{\delta \rho}{4H\rho_R} \approx \frac{V_\phi}{4\rho_R} \delta \phi
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}} \delta \phi$
- In fact: $\zeta = H \frac{\delta \rho}{\delta}$ $\frac{\partial \rho}{\partial \rho}$ (spatially flat gauge) and $\dot{\rho} \approx \rho_H^2$ (dominated by radiation)
- So, $\zeta = H \frac{\delta \rho}{4Hc}$ $\frac{\delta \rho}{4H\rho_R} \approx \frac{V_\phi}{4\rho_F}$ $\frac{\mathbf{v}_{\phi}}{4\rho_{B}}\delta\phi$
- Also: must include metric fluctuations (coupled to radiation)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}} \delta \phi$
- In fact: $\zeta = H \frac{\delta \rho}{\delta}$ $\frac{\partial \rho}{\partial \rho}$ (spatially flat gauge) and $\dot{\rho} \approx \rho_H^2$ (dominated by radiation)

• So,
$$
\zeta = H \frac{\delta \rho}{4H\rho_R} \approx \frac{V_\phi}{4\rho_R} \delta \phi
$$

Also: must include metric fluctuations (coupled to radiation)

KID K@ KKEX KEX E 1090

• Moreover: Sorbo & Anber '2010 **CONSidered:**

$$
\bullet \ \ \delta\ddot{\phi}_p + 3H\delta\dot{\phi}_p + \frac{p^2}{a^2}\delta\phi_p = \frac{(\tilde{F}F)_p}{t_p}
$$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

• Objections:

- $\zeta \neq \frac{H}{\dot{\phi}} \delta \phi$
- In fact: $\zeta = H \frac{\delta \rho}{\delta}$ $\frac{\partial \rho}{\partial \rho}$ (spatially flat gauge) and $\dot{\rho} \approx \rho_H^2$ (dominated by radiation)

• So,
$$
\zeta = H \frac{\delta \rho}{4H\rho_R} \approx \frac{V_\phi}{4\rho_R} \delta \phi
$$

- Also: must include metric fluctuations (coupled to radiation)
- Moreover: Sorbo & Anber '2010 Considered:

$$
\bullet \ \ \delta\ddot{\phi}_p + 3H\delta\dot{\phi}_p + \frac{p^2}{a^2}\delta\phi_p = \frac{(\tilde{F}F)_p}{t_p}
$$

- Assumed $(\tilde{F}F)_{p} = \frac{\partial \leq \tilde{F}F>}{\partial \dot{\phi}}$ $\frac{\langle \tilde{\mathit{F}} \mathit{\mathit{F}} \mathord{\succ} \rangle}{\partial \dot{\phi}} \delta \dot{\phi}_{\boldsymbol{\mathcal{p}}} + (\tilde{\mathit{F}} \mathit{\mathcal{F}})_{\boldsymbol{\mathcal{p}}} |_{\delta \phi = 0}$
- **A dissipative [te](#page-83-0)[rm](#page-85-0) and a source term**

[Higgs &](#page-0-0) Inflation

So they wrote:

$$
\bullet \delta\ddot{\phi}_{p} + (3H - \frac{1}{l_{\gamma}} \frac{\partial \leq \tilde{F}F>}{\partial \dot{\phi}}) \delta\dot{\phi}_{p} + \frac{p^{2}}{a^{2}} \delta\phi_{p} = \frac{1}{l_{\gamma}} (\tilde{F}F)_{p}|_{\delta\phi=0}
$$

KOD KAD KED KED E VAN

Dissipation and source ("inverse decay")

[Dissipation](#page-18-0)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-

So they wrote:

$$
\textbf{a} \; \delta \ddot{\phi}_{\textbf{p}} + (3H - \tfrac{1}{f_{\gamma}} \tfrac{\partial \leq \tilde{\mathsf{F}} \mathsf{F} >}{\partial \dot{\phi}}) \delta \dot{\phi}_{\textbf{p}} + \tfrac{p^2}{a^2} \delta \phi_{\textbf{p}} = \tfrac{1}{f_{\gamma}} (\tilde{\mathsf{F}} \mathsf{F})_{\textbf{p}} |_{\delta \phi = 0}
$$

- Dissipation and source ("inverse decay")
- Objections:
	- Dissipation must be *p*-dependent: only on large scales $\delta\phi_p$ oscillates with large Amplitude (larger than f_γ)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-

So they wrote:

$$
\textbf{a} \; \delta \ddot{\phi}_{\textbf{p}} + (3H - \tfrac{1}{f_{\gamma}} \tfrac{\partial \leq \tilde{\mathsf{F}} \mathsf{F} >}{\partial \dot{\phi}}) \delta \dot{\phi}_{\textbf{p}} + \tfrac{p^2}{a^2} \delta \phi_{\textbf{p}} = \tfrac{1}{f_{\gamma}} (\tilde{\mathsf{F}} \mathsf{F})_{\textbf{p}} |_{\delta \phi = 0}
$$

- Dissipation and source ("inverse decay")
- **o** Objections:
	- Dissipation must be *p*-dependent: only on large scales δ $φ$ _p oscillates with large Amplitude (larger than f_γ)
	- At high *p* the mode oscillates and can decay into gauge fields ("direct decay")

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

-
-

So they wrote:

$$
\textbf{a} \; \delta \ddot{\phi}_{\textbf{p}} + (3H - \frac{1}{f_{\gamma}} \frac{\partial \leq \tilde{F} \mathcal{F} >}{\partial \dot{\phi}}) \delta \dot{\phi}_{\textbf{p}} + \frac{p^2}{a^2} \delta \phi_{\textbf{p}} = \frac{1}{f_{\gamma}} (\tilde{F} \mathcal{F})_{\textbf{p}} |_{\delta \phi = 0}
$$

- Dissipation and source ("inverse decay")
- **o** Objections:
	- Dissipation must be *p*-dependent: only on large scales $\delta\phi_p$ oscillates with large Amplitude (larger than f_γ)
	- At high *p* the mode oscillates and can decay into gauge fields ("direct decay")

KORKARA REAKER ORA

On small scales: a term $\nabla \delta \phi \wedge \mathbf{A}'$ is present

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- We did not attempt yet a complete study of perturbations
- Usual slow-roll parameters related to $\epsilon \equiv \frac{\dot{\phi}^2}{2E}$ $\frac{\varphi}{2H}$ and its time variation

KOD KARD KED KED BOAR

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-

- We did not attempt yet a complete study of perturbations
- Usual slow-roll parameters related to $\epsilon \equiv \frac{\dot{\phi}^2}{2E}$ $\frac{\varphi}{2H}$ and its time variation
- We defined "radiation slow roll parameters": $\epsilon_{\boldsymbol{R}} \equiv \frac{\rho_{\boldsymbol{R}}}{H}$ and its time variation

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- We did not attempt yet a complete study of perturbations
- Usual slow-roll parameters related to $\epsilon \equiv \frac{\dot{\phi}^2}{2E}$ $\frac{\varphi}{2H}$ and its time variation
- We defined "radiation slow roll parameters": $\epsilon_{\boldsymbol{R}} \equiv \frac{\rho_{\boldsymbol{R}}}{H}$ and its time variation

$$
\epsilon_{\phi} \equiv \frac{\dot{\phi}^2}{2M_{Pl}^2H^2}, \qquad \eta_{\phi} \equiv 2\epsilon_{\phi} + \frac{1}{2}\frac{d\log\epsilon_{\phi}}{dN},
$$

$$
\epsilon_{R} \equiv \frac{2\rho_{R}}{3M_{Pl}^2H^2}, \qquad \eta_{R} \equiv 2\epsilon_{R} + \frac{1}{2}\frac{d\log\epsilon_{R}}{dN}
$$

Dissipation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Higgs & Inflation

Dissipation

FLRW, quadratic potential: m=5×10⁻⁴ M_{Pl} , $\phi_0 = M_{\text{Pl}}$, $\phi_0 / f_r = 10^5$

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

If $f_\gamma \ll \delta\phi$ **the system is slowed down**

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- **If** $f_\gamma \ll \delta\phi$ **the system is slowed down**
- Even ignoring the expansion it slows down:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-

- **If** $f_\gamma \ll \delta\phi$ **the system is slowed down**
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.

KOD KAD KED KED E VAN

 \bullet *N_{tot}* ≈ $\Delta\phi/f_{\gamma}$

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-

- **If** $f_\gamma \ll \delta\phi$ **the system is slowed down**
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.
- **•** $N_{tot} \approx \Delta \phi / f_{\gamma}$
- Perturbations still have to be carefully understood

KOD KAD KED KED E VAN

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-

- **If** $f_\gamma \ll \delta\phi$ **the system is slowed down**
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.
- **•** $N_{tot} \approx \Delta \phi / f_{\gamma}$
- Perturbations still have to be carefully understood

KOD KAD KED KED E VAN

[Higgs &](#page-0-0) Inflation

-
- **[Dissipation](#page-18-0)**
-

- **If** $f_\gamma \ll \delta\phi$ the system is slowed down
- Even ignoring the expansion it slows down: if not relaxed to 0 in $\delta t \ll H^{-1}$ it can then inflate.
- **•** $N_{tot} \approx \Delta \phi / f_{\gamma}$
- Perturbations still have to be carefully understood
- Oscillations with about 4 efolds period should be present in all spectra

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- If ϕ is an Axion
	- φ $\frac{\phi}{f_\gamma} \tilde{\mathsf{F}}\mathsf{F}$ naturally present

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- If ϕ is an Axion
	- φ $\frac{\phi}{f_\gamma} \tilde{\mathsf{F}}\mathsf{F}$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- If ϕ is an Axion
- φ $\frac{\phi}{f_\gamma} \tilde{\mathsf{F}}\mathsf{F}$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi i})$ $\frac{\varphi}{2\pi f_G}$)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- If ϕ is an Axion
- φ $\frac{\phi}{f_\gamma} \tilde{\mathsf{F}}\mathsf{F}$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi i})$ $\frac{\varphi}{2\pi f_G}$)

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- If ϕ is an Axion
- φ $\frac{\phi}{f_\gamma} \tilde{\mathsf{F}}\mathsf{F}$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi i})$ $\frac{\varphi}{2\pi f_G}$)

KOD KAD KED KED E VAN

So we need $\frac{1}{f_\gamma}\gg \frac{1}{f_G}$!

[Higgs &](#page-0-0) Inflation

[Dissipation](#page-18-0)

- If ϕ is an Axion
- φ $\frac{\phi}{f_\gamma} \tilde{\mathsf{F}}\mathsf{F}$ naturally present
- And also $\frac{\phi}{f_G}\tilde{G}G$ (non-abelian) ...
- The non-abelian breaks the symmetry $\phi \rightarrow \phi + c$ to $\phi \rightarrow \phi + 2\pi f_G$ and induces a periodic potential $V(\phi) \approx \Lambda^4 \cos(\frac{\phi}{2\pi i})$ $\frac{\varphi}{2\pi f_G}$)
- So we need $\frac{1}{f_\gamma}\gg \frac{1}{f_G}$!
- lt is possible: independent parameters. $\frac{1}{f_\gamma}$ does not induce corrections to $\frac{1}{f_G}$ (would break the shift symmetry)

Inflation in a False Minimum

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Can we end Inflation with a tunneling from a False vacuum?

KOD KAD KED KED E VAN

Inflation in a False Minimum

[Higgs &](#page-0-0) Inflation

-
- **[Metastability](#page-106-0)**
-
- Can we end Inflation with a tunneling from a False vacuum?
- ...It was the first way to introduce Inflation ("Old" Inflation, Guth, 1982).

KOD KAD KED KED E VAN
Inflation in a False Minimum

[Higgs &](#page-0-0) Inflation

-
- **[Metastability](#page-106-0)**
-
- Can we end Inflation with a tunneling from a False vacuum?
- ...It was the first way to introduce Inflation ("Old" Inflation, Guth, 1982).

KORKARA REAKER ORA

Old Inflation does not have Graceful Exit: non-successful Bubble Nucleation

Nucleation of Bubbles

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

Requirements:

For sufficient inflation Γ *H* 4

KOD KAD KED KED E VAN

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

Requirements:

- For sufficient inflation Γ *H* 4
- For transition to radiation Γ $\simeq H^4$

KOD KARD KED KED BOAR

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

Requirements:

- For sufficient inflation Γ *H* 4
- For transition to radiation Γ $\simeq H^4$
- **Either Inflation too short or never ends.**

KOD KARD KED KED BOAR

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

Requirements:

- For sufficient inflation Γ *H* 4
- For transition to radiation Γ $\simeq H^4$
- **Either Inflation too short or never ends.**

Way-out:

- **Start** with Γ ≪ H^4
- And then Γ $\simeq H^4$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

If a field χ is trapped in a false vacuum:

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

If a field χ is trapped in a false vacuum:

• Need additional degree of freedom ϕ to set time dependence in Γ/*H* 4

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

If a field χ is trapped in a false vacuum:

• Need additional degree of freedom ϕ to set time dependence in Γ/*H* 4

KOD KAD KED KED E VAN

• Extra Scalar ϕ

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

If a field χ is trapped in a false vacuum:

- Need additional degree of freedom ϕ to set time dependence in Γ/*H* 4
- **•** Extra Scalar ϕ
- **•** Two possibilities
	- Make *H* variable (couple ϕ to gravity)

KORKARA REAKER ORA

• Make Γ variable (couple ϕ to χ)

Variable *H*

[Metastability](#page-106-0)

If H decreases with time

At some point Γ ¹/⁴ = *H*

KID K@ KKEX KEX E 1090

F.Di Marco & A.N., Phys.Rev.D '05, T. Biswas & A.N. Phys.Rev.D '06

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• As a starting point we take the action

$$
S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - f(\phi) R + V(\chi_0) \right]
$$

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• As a starting point we take the action $S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \right]$ $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - f(\phi)R + V(\chi_0)]$ $+ [U(\phi)]$,

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• As a starting point we take the action $S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \right]$ $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - f(\phi)R + V(\chi_0)]$ $+ [U(\phi)]$,

• We assume

$$
f(\phi) = M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \dots
$$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

As a starting point we take the action $S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \right]$ $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - f(\phi)R + V(\chi_0)]$ $+ [U(\phi)]$,

• We assume $f(\phi) = M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + ...$

KOD KAD KED KED E VAN

Two cases: β dominant or γ*ⁿ* dominant

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

As a starting point we take the action $S_1 = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \right]$ $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - f(\phi)R + V(\chi_0)]$ $+ [U(\phi)]$,

• We assume $f(\phi) = M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + ...$

- Two cases: β dominant or γ*ⁿ* dominant
- Assume $U(\phi)$ to be negligible $(U \leq V(\chi_0))$ in the Early Universe.

KORKARA REAKER ORA

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] ,
$$

where $\gamma > 0$, $n > 2$.

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\tfrac{1}{2} M^2 R + \tfrac{1}{2} \gamma \tfrac{\phi^n}{M^{n-2}} R - \tfrac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] \,,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\tfrac{1}{2} M^2 R + \tfrac{1}{2} \gamma \tfrac{\phi^n}{M^{n-2}} R - \tfrac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] \,,
$$

KOD KAD KED KED E VAN

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] ,
$$

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$ $\frac{7(1)}{3M^2}$,

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] \,,
$$

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$ 3*M*² $R = 12H_I^2$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\tfrac{1}{2} M^2 R + \tfrac{1}{2} \gamma \tfrac{\phi^n}{M^{n-2}} R - \tfrac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] \,,
$$

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$ 3*M*² $R = 12H_I^2$

KOD KAD KED KED E VAN

 $2.$ ϕ grows due to driving force $\gamma \frac{\phi^n}{M^{n-2}} R$.

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\frac{1}{2} M^2 R + \frac{1}{2} \gamma \frac{\phi^n}{M^{n-2}} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] \,,
$$

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$ 3*M*² $R = 12H_I^2$

 $2.$ ϕ grows due to driving force $\gamma \frac{\phi^n}{M^{n-2}} R$.

3. When $\gamma \frac{\phi^n}{M^{n-2}} \simeq M^2$ power-law expansion $a \sim t^{3/4}$.

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

$$
S_1 = \int d^4x \sqrt{-g} \left[\tfrac{1}{2} M^2 R + \tfrac{1}{2} \gamma \tfrac{\phi^n}{M^{n-2}} R - \tfrac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\chi_0) \right] \,,
$$

where $\gamma > 0$, $n > 2$.

1. Start with small $\phi \Rightarrow f(\phi) \simeq M^2 \Rightarrow$ Exponential Inflation: $H_I^2 = \frac{V(\chi_0)}{3M^2}$ 3*M*² $R = 12H_I^2$

 $2.$ ϕ grows due to driving force $\gamma \frac{\phi^n}{M^{n-2}} R$.

3. When $\gamma \frac{\phi^n}{M^{n-2}} \simeq M^2$ power-law expansion $a \sim t^{3/4}$. 4. $H \propto \frac{1}{t}$ $\frac{1}{t}$ $\frac{1}{t}$ $\frac{1}{t}$ and when $H = \Gamma^{1/4} \Rightarrow$ Grac[ef](#page-134-0)[ul](#page-125-0) [E](#page-133-0)[x](#page-134-0)[it](#page-105-0)[.](#page-106-0)

(ロトイ団)→ (差)→ (差)→

重

 2990

(ロトイ団)→ (差)→ (差)→ 重 2990

(ロ)→(個)→(理)→(理)→

 \equiv

 2990

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- If we regard M as the fundamental scale of the theory
- The full theory has operators like

$$
S=\int d^4x\sqrt{-g}\left[M^2+\beta\phi^2+\gamma_4\frac{\phi^4}{M^2}+\gamma_6\frac{\phi^6}{M^4}+\ldots\right]R\,,
$$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- If we regard M as the fundamental scale of the theory
- The full theory has operators like

$$
S = \int d^4x \sqrt{-g} \left[M^2 + \beta \phi^2 + \gamma_4 \frac{\phi^4}{M^2} + \gamma_6 \frac{\phi^6}{M^4} + \ldots \right] R,
$$

KOD KAD KED KED E VAN

• Higher order operators important at $\phi \gg M$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- **If we regard M as the fundamental scale of the theory**
- The full theory has operators like

$$
S=\int d^4x\sqrt{-g}\left[M^2+\beta\phi^2+\gamma_4\frac{\phi^4}{M^2}+\gamma_6\frac{\phi^6}{M^4}+\ldots\right]R\,,
$$

KORKARA REAKER ORA

- Higher order operators important at $\phi \gg M$
- The transition is strong enough (decelerated expansion), for any $f(\phi) > \phi^2$!

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- **If we regard M as the fundamental scale of the theory**
- The full theory has operators like

$$
S=\int d^4x\sqrt{-g}\left[M^2+\beta\phi^2+\gamma_4\frac{\phi^4}{M^2}+\gamma_6\frac{\phi^6}{M^4}+\ldots\right]R\,,
$$

- Higher order operators important at $\phi \gg M$
- The transition is strong enough (decelerated expansion), for any $f(\phi) > \phi^2$!
- Without knowing exactly $f(\phi)$ (...an infinite number of couplings)!**KORK ERKEY E VAN**

Transition to radiation and Stabilization

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- When $\mathcal{H}^4\simeq$ Γ many bubbles of $\chi_{\mathit{out}}<\chi_0$ are nucleated
- They collide producing a nearly homogeneous field χ*out*
Transition to radiation and Stabilization

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- When $\mathcal{H}^4\simeq$ Γ many bubbles of $\chi_{\mathit{out}}<\chi_0$ are nucleated
- They collide producing a nearly homogeneous field χ*out*

KORKARA REAKER ORA

 \bullet x rolls down, produces radiation and relaxes to true minimum

Transition to radiation and Stabilization

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

- When $\mathcal{H}^4\simeq$ Γ many bubbles of $\chi_{\mathit{out}}<\chi_0$ are nucleated
- They collide producing a nearly homogeneous field χ*out*
- \bullet x rolls down, produces radiation and relaxes to true minimum
- During radiation ϕ slows down:

$$
R=6(2H^2+\dot{H})\approx 0.
$$

KORKARA REAKER ORA

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Nonetheless we need to stabilize ϕ at late times:

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Nonetheless we need to stabilize ϕ at late times:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

• variation of G_N during matter domination.

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Nonetheless we need to stabilize ϕ at late times:

KOD KAD KED KED E VAN

- variation of G_N during matter domination.
- 5 *th* force constraints

[Higgs &](#page-0-0) Inflation

-
-
- **[Metastability](#page-106-0)**

- Nonetheless we need to stabilize ϕ at late times:
	- variation of G_N during matter domination.
	- 5 *th* force constraints
- \bullet ...We can reintroduce the potential $U(\phi)$ in the original Lagrangian

KORKARA REAKER ORA

• Assumed to be irrelevant before $(U \leq V(\chi_0))$.

[Higgs &](#page-0-0) Inflation

-
-
- **[Metastability](#page-106-0)**

- Nonetheless we need to stabilize ϕ at late times:
	- variation of G_N during matter domination.
	- 5 *th* force constraints
- \bullet ...We can reintroduce the potential $U(\phi)$ in the original Lagrangian
- Assumed to be irrelevant before $(U \leq V(\chi_0))$.
- Any potential which drives ϕ to a minimum ($\phi \rightarrow 0$) is good

KORKARA REAKER ORA

Flat spectrum of ϕ fluctuations

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Fuctuations in ϕ that ends inflation.

KID K@ KKEX KEX E 1090

Flat spectrum of ϕ fluctuations

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Fuctuations in ϕ that ends inflation.

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

• In Einstein frame there is a potential \Rightarrow almost flat spectrum

$$
\bar{V} \approx V(\chi_0) \left[1 - 2 \gamma \left(\frac{\phi}{M}\right)^n\right]
$$

$$
n_S - 1 = 2\eta - 6\epsilon
$$

$$
\Delta_R^2 = \left(\frac{\bar{H}_I}{M}\right)^2 \frac{1}{8\pi^2 \epsilon} \Big|_{\phi = \phi(\bar{\mathcal{N}} \approx \bar{\mathcal{N}}_{3000h^{-1}Mpc})}
$$

.

KORKARA REAKER ORA

Parameter values (quadratic term absent)

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• We predicted the spectral index:

$$
n_S \simeq 1 + 2\eta \simeq 1 - \tfrac{2}{\bar{N}_{3000h^{-1}\mathrm{Mpc}}} \left(\tfrac{n-1}{n-2} \right) = 0.95 - \tfrac{0.04}{n-2}
$$

KOD KAD KED KED E VAN

Parameter values (quadratic term absent)

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• We predicted the spectral index:

$$
\boxed{n_S} \simeq 1 + 2\eta \simeq 1 - \tfrac{2}{\bar{\mathcal{N}}_{3000h^{-1}\mathrm{Mpc}}} \left(\tfrac{n-1}{n-2} \right) = 0.95 - \tfrac{0.04}{n-2}
$$

KOD KAD KED KED E VAN

• For large *n*: $n_S \simeq 0.94 - 0.95$ (central value by WMAP)

Parameter values (quadratic term absent)

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• We predicted the spectral index:

$$
\boxed{n_S} \simeq 1 + 2\eta \simeq 1 - \tfrac{2}{\bar{\mathcal{N}}_{3000h^{-1}\mathrm{Mpc}}} \left(\tfrac{n-1}{n-2} \right) = 0.95 - \tfrac{0.04}{n-2}
$$

KOD KAD KED KED E VAN

• For large *n*: $n_S \simeq 0.94 - 0.95$ (central value by WMAP)

[Higgs &](#page-0-0) Inflation

[Metastability](#page-106-0)

• Reheating proceeds through bubble collisions.

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-155-0)n[ko](#page-157-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0) \equiv $2Q$

[Higgs &](#page-0-0) Inflation

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves $(GW)^2$

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-156-0)n[ko](#page-158-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0) \equiv $2Q$

[Higgs &](#page-0-0) Inflation

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves $(GW)^2$ peaked at horizon scale (set by $\mathcal{T}_{RH}\simeq \mathcal{V}(\phi_0)^{1/4})$

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-157-0)n[ko](#page-159-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0) $2Q$ E.

[Higgs &](#page-0-0) Inflation

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves $(GW)^2$ peaked at horizon scale (set by $\mathcal{T}_{RH}\simeq \mathcal{V}(\phi_0)^{1/4})$
	- If $V(\phi_0)^{1/4}$ is some TeV

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-158-0)n[ko](#page-160-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0) \equiv OQ

[Higgs &](#page-0-0) Inflation

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves $(GW)^2$ peaked at horizon scale (set by $\mathcal{T}_{RH}\simeq \mathcal{V}(\phi_0)^{1/4})$
- If $\mathsf{V}(\phi_0)^{1/4}$ is some TeV \Rightarrow ν_{peak} \approx mHz (close to best sensitivity of LISA)

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-159-0)n[ko](#page-161-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0) \equiv Ω

[Higgs &](#page-0-0) Inflation

-
-

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves $(GW)^2$ peaked at horizon scale (set by $\mathcal{T}_{RH}\simeq \mathcal{V}(\phi_0)^{1/4})$
- If $\mathsf{V}(\phi_0)^{1/4}$ is some TeV \Rightarrow ν_{peak} \approx mHz (close to best sensitivity of LISA)
- Amplitude at the peak is big enough to be detectable:

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-160-0)n[ko](#page-162-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0)

[Higgs &](#page-0-0) Inflation

-
-

[Metastability](#page-106-0)

- Reheating proceeds through bubble collisions.
- Produces a lot of relic gravity waves $(GW)^2$ peaked at horizon scale (set by $\mathcal{T}_{RH}\simeq \mathcal{V}(\phi_0)^{1/4})$
- If $\mathsf{V}(\phi_0)^{1/4}$ is some TeV \Rightarrow ν_{peak} \approx mHz (close to best sensitivity of LISA)
- Amplitude at the peak is big enough to be detectable:

 \int Expected value at peak $\Omega_{GW} h^2 \approx 10^{-7}$ LISA sensitivity $\;\Omega_{GW}^{} h^2 \approx 10^{-11}$

^{2&}lt;br>M. S. Turner and F. Wilczek, A. Kosowsky, R. Watkins, M. K[amio](#page-161-0)n[ko](#page-163-0)[ws](#page-155-0)[ki](#page-156-0) [\(1](#page-162-0)[9](#page-163-0)[90](#page-105-0)[-1](#page-106-0)9[95](#page-164-0)[\).](#page-105-0)

GW detectors

Higgs Potential?

[Metastability](#page-164-0) from Higgs potential?

• Can we use Higgs potential to source such an Inflation?

KID KA KEKKEK E 1990

Higgs Potential?

-
-
-
- **[Metastability](#page-164-0)** from Higgs potential?

• Can we use Higgs potential to source such an Inflation?

KOD KAD KED KED E VAN

• Link to Standard Model and experiments

 \bullet

[Metastability](#page-164-0) from Higgs potential?

$$
V_{Higgs}(\chi)=\frac{1}{24}\lambda(\chi^2-\nu^2)^2
$$

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

 \bullet

-
-
-

[Metastability](#page-164-0) from Higgs potential?

$$
V_{Higgs}(\chi)=\frac{1}{24}\lambda(\chi^2-\nu^2)^2
$$

KOD KAD KED KED E VAN

• $\lambda(\mu)$ depends on the scale $\mu \sim \chi$:

$$
V_{Higgs}(\chi) = \frac{1}{24}\lambda(\chi)(\chi^2 - v^2)^2
$$

[Higgs &](#page-0-0) Inflation

 \bullet

-
-
-

[Metastability](#page-164-0) from Higgs potential?

$$
V_{Higgs}(\chi)=\frac{1}{24}\lambda(\chi^2-\nu^2)^2
$$

• $\lambda(\mu)$ depends on the scale $\mu \sim \chi$:

$$
V_{Higgs}(\chi) = \frac{1}{24}\lambda(\chi)(\chi^2 - v^2)^2 \to \lambda(\chi)\chi^4
$$

KOD KAD KED KED E VAN

[Higgs &](#page-0-0) Inflation

 \bullet

[Metastability](#page-164-0) from Higgs potential?

$$
V_{Higgs}(\chi)=\frac{1}{24}\lambda(\chi^2-\nu^2)^2
$$

• $\lambda(\mu)$ depends on the scale $\mu \sim \chi$:

$$
V_{Higgs}(\chi) = \frac{1}{24}\lambda(\chi)(\chi^2 - v^2)^2 \to \lambda(\chi)\chi^4
$$

KOD KAD KED KED E VAN

• RGE equations
$$
\frac{d\lambda}{d \log(\mu)} = \dots
$$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

The Higgs couples mostly through:

Gauge couplings, *gU*(1) , *gSU*(2) , *gSU*(3) and *htop*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

RGE

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

The Higgs couples mostly through:

Gauge couplings, *gU*(1) , *gSU*(2) , *gSU*(3) and *htop*

$$
\frac{d}{dt}\lambda(t) = \beta_{\lambda}(\lambda, h, g_1, g_2, g_3),
$$
\n(9)
\n
$$
\frac{d}{dt}h(t) = \beta_h(\lambda, h, g_1, g_2, g_3),
$$
\n
$$
\frac{d}{dt}g_1(t) = \beta_{g_1}(\lambda, h, g_1, g_2, g_3),
$$
\n
$$
\frac{d}{dt}g_2(t) = \beta_{g_2}(\lambda, h, g_1, g_2, g_3),
$$
\n
$$
\frac{d}{dt}g_3(t) = \beta_{g_3}(\lambda, h, g_1, g_2, g_3)
$$
\n
$$
t \equiv \log(\mu/m_Z) \qquad \mu \simeq \chi
$$

KOD KARD KED KED BOAR

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

 $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

 $\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

KID K@ KKEX KEX E 1090

• Theoretical uncertainties

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

$\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

$\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

KID K@ KKEX KEX E 1090

- Largest experimental uncertainties:
	- \bullet *m*_{top} ∝ *h*(0)*v*

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

$\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

KOD KAD KED KED E VAN

- Largest experimental uncertainties:
	- *m*top ∝ *h*(0)*v*
	- $g_3(0)$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

$\lambda(0)$ given by $m_H^2 \propto \lambda(0) v^2$

• Theoretical uncertainties 3-loop RGE: Bednyakov et al. arXiv:1303.4364, Chetyrkin - Zoller JHEP 2013.

2-loop matching: Bezrukov et al. 2012, Degrassi et al. 2012, S. Alekhin et al. 2012

- Largest experimental uncertainties:
	- \bullet *m*_{top} ∝ *h*(0)*v*
	- $g_3(0)$

KORKARA REAKER ORA

Instability & False Vacuum

-
-
-

[Metastability](#page-164-0) from Higgs potential?

■ m_H = 125.2, 125.158, 125.157663 GeV, $m_t = 171.8$ GeV K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Higgs False vacuum Inflation?

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• In this minimum: $p = -\rho$

KID K@ KKEX KEX E 1090
[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• In this minimum: $p = -\rho$

And $V^{1/4} \simeq 10^{16} - 10^{17}$ GeV !

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• In this minimum: $p = -\rho$

And $V^{1/4} \simeq 10^{16} - 10^{17}$ GeV !

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

- In this minimum: $p = -\rho$
- And $V^{1/4} \simeq 10^{16} 10^{17}$ GeV !
- "Minimal"? Need another scalar!

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

- In this minimum: $p = -\rho$
- And $V^{1/4} \simeq 10^{16} 10^{17}$ GeV !
- "Minimal"? Need another scalar!

KOD KAD KED KED E VAN

Experiments can decide!

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

A.N., I.Masina, PRL, PRD, 2012

(ロ) (個) (目) (差) Þ $2QQ$

[Higgs &](#page-0-0) Inflation

-
-
-

- Having a metastable vacuum ⇒
- Fixes a line in the plane $m_{top} m_H$

[Metastability](#page-164-0) from Higgs potential?

 \equiv

 2990

A.N., PRD, 2015

Requirements on Higgs, α_s and top mass

 \equiv 2990

125.8

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

Figure: Dashed (dotted) line corresponding to the experimental uncertainty in the top mass *M^t* (strong coupling constant), and the shaded yellow (pink) regions correspond to the total experimental error and theoretical uncertainty, with the latter estimated as [1.2]*G[eV](#page-187-0)* ([[2](#page-189-0)[.](#page-187-0)[5](#page-188-0)]*[G](#page-189-0)[e](#page-163-0)[V](#page-164-0)*[\)](#page-224-0) Ω

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

Figure: Tevatron 68% and 95% experimentally allowed regions for and *^M^t* are given by shaded areas. The dashed (dotted) lines correspond to [1]*GeV* ([2]*GeV*) uncertainty in the *M*min theoretical determination. Red lines in the center: expected precision from a *e*⁺ *e*[−] collider.

(ロ)→(個)→(理)→(理)→

 \equiv Ω

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

From Bezrukov et al. JHEP '2012:

$$
M_{\text{min}} = \left[128.95 + \frac{M_t - [172.9] \text{GeV}}{[1.1] \text{GeV}} \times 2.2 - \frac{-0.1184}{0.0007} \times 0.56\right] \text{GeV}.
$$

Table: Theoretical uncertainties in the present *M*_{min} evaluation.

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• From Degrassi et al. JHEP '2012:

Figure: *RG evolution of* λ *varying* M_t *and* α_s *by* $\pm 3\sigma$ *.*

KO KA KO KERKER KONG

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• From Degrassi et al. JHEP '2012:

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \equiv

 2990

Figure: *The three boundaries lines correspond to* $\alpha_s(M_Z) = 0.1184 \pm 0.0007$.

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• From Degrassi et al. JHEP '2012:

$$
\begin{array}{l} {\sf M}_h \left[{\rm GeV}\right] > \\ 129.4+1.4\left(\frac{M_t \left[{\rm GeV}\right]-173.1}{0.7}\right)-0.5\left(\frac{\alpha_s(M_Z)-0.1184}{0.0007}\right) \pm 1.0_{th}\ . \end{array}
$$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• From Degrassi et al. JHEP '2012:

Figure: *Higgs potential around the critical top mass. The various curves correspond to variations in M^t by* 0.1*.*

Flat potential

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

• Require: almost flat potential

• Otherwise too suppressed tunneling rate

KID KA KEKKEK E 1990

Flat potential

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

• Require: almost flat potential

• Otherwise too suppressed tunneling rate

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ \equiv 2990

Potential Height

[Higgs &](#page-0-0) Inflation

Potential Height

[Higgs &](#page-0-0) Inflation

-
-
-

[Metastability](#page-164-0) from Higgs potential?

 m_H [Ge[V](#page-197-0)]

 2990

KO KKO KA ZA KATA KA SHARA

[Higgs &](#page-0-0) Inflation

 $P_{\mathcal{T}} \simeq \frac{V}{M^2}$ M_{Pl}^4

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

 $P_{\mathcal{T}} \simeq \frac{V}{M^2}$ $\frac{V}{M_{Pl}^4}$, $P_S\simeq 10^{-9}$

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

 $P_{\mathcal{T}} \simeq \frac{V}{M^2}$ $\frac{V}{M_{Pl}^4}$, P_S $\simeq 10^{-9}$ ⇒ $r \equiv \frac{P_I}{P_S}$ *P^S*

KO KKO KA ZA KATA KA SHARA

[Higgs &](#page-0-0) Inflation

Bound on $m_H - m_t$

[Higgs &](#page-0-0) Inflation

Correlating $m_H - m_t - r$

[Higgs &](#page-0-0) Inflation

Correlating $m_H - m_t - r$

[Higgs &](#page-0-0) Inflation

-
-
-

Correlating $m_H - m_t - r$

[Higgs &](#page-0-0) Inflation

-
-
-

Shallow barrier

[Metastability](#page-164-0) from Higgs potential?

• Requirement:

$$
\bullet\ \Gamma \gtrsim H_{\text{nuc}}^4 \simeq 10^{-25} \text{GeV}
$$

KID KA KE KA E KA E KO KO

Shallow barrier

[Metastability](#page-164-0) from Higgs potential?

• Requirement:

$$
\bullet\ \Gamma \gtrsim H_{\text{nuc}}^4 \simeq 10^{-25} \text{GeV}
$$

KO KKO KA ZA KATA KA SHARA

 $\bullet \Rightarrow S \lesssim 380$

Small action

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

\bullet *S* \leq 380 only if potential almost flat

• Strong tuning!

mHiggs = 125.2, 125.158, 125.157663 GeV, $m_t = 171.8$ GeV **KORKARA REAKER ORA**

Going to the Einstein frame

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• It is convenient to transform

$$
\bar{g}_{\mu\nu}=f(\phi)g_{\mu\nu}\,,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Going to the Einstein frame

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• It is convenient to transform

$$
\bar{g}_{\mu\nu}=f(\phi)g_{\mu\nu}\,,
$$

Get canonical gravity:

$$
S_E=\frac{1}{2}\int d^4x\sqrt{-\bar g}[M^2\bar R-K(\phi)(\bar\partial\phi)^2]+S_0\,,
$$

Going to the Einstein frame

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

o It is convenient to transform

$$
\bar{g}_{\mu\nu}=f(\phi)g_{\mu\nu}\,,
$$

• Get canonical gravity:

$$
S_E = \frac{1}{2}\int d^4x \sqrt{-\bar{g}}[M^2\bar{R} - K(\phi)(\bar{\partial}\phi)^2] + S_0,
$$

and the false vacuum energy, in this frame

$$
-S_0=\int d^4x\;\sqrt{-\bar g}\frac{V(\chi_0)}{f^2(\phi)}\equiv\int d^4x\sqrt{\bar g}\;\bar V(\chi_0,\phi)\,.
$$

becomes a potential (but it disappears after tunneling)

Phase I: $\phi \ll M$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• Expand

$$
f(\phi) \approx 1 + \gamma_n \left(\frac{\phi}{M}\right)^n.
$$

KO KKO KA ZA KATA KA SHARA

Phase I: $\phi \ll M$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• Expand

$$
f(\phi) \approx 1 + \gamma_n \left(\frac{\phi}{M}\right)^n.
$$

• Therefore:

$$
K(\phi) \approx 1 \, , \, \bar{V} \approx V(\chi_0) \left[1 - 2 \gamma_n \left(\frac{\phi}{M}\right)^n\right]
$$

.

KID K@ KKEX KEX E 1090
Phase I: $\phi \ll \overline{M}$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

Expand

$$
f(\phi) \approx 1 + \gamma_n \left(\frac{\phi}{M}\right)^n.
$$

o Therefore:

$$
K(\phi) \approx 1 \,, \ \bar{V} \approx V(\chi_0) \left[1 - 2 \gamma_n \left(\frac{\phi}{M}\right)^n\right]
$$

.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

• it looks like slow roll on top of a hill

KO K K @ K K B K X B K D W D V O V

Phase I: $\phi \ll M$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• So in slow-roll approximation:

$$
\epsilon \equiv \frac{M^2}{2} \left| \frac{1}{V} \frac{dV}{d\phi} \right|^2 = 32\gamma_4^2 \left(\frac{\phi}{M} \right)^6,
$$

$$
\eta \equiv M^2 \frac{1}{V} \frac{d^2V}{d\phi^2} = -24\gamma_4 \left(\frac{\phi}{M} \right)^2.
$$

Phase I: $\phi \ll M$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• So in slow-roll approximation:

$$
\epsilon \equiv \frac{M^2}{2} \left| \frac{1}{V} \frac{dV}{d\phi} \right|^2 = 32\gamma_4^2 \left(\frac{\phi}{M} \right)^6,
$$

$$
\eta \equiv M^2 \frac{1}{V} \frac{d^2V}{d\phi^2} = -24\gamma_4 \left(\frac{\phi}{M} \right)^2.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

• When ϕ of order *M*: end of slow-roll

Phase II: $\overline{\phi} \gg \overline{M}$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• In this phase:

$$
\mathcal{K}(\phi) \equiv \frac{2f(\phi) + 3M^2f'^2(\phi)}{2f^2(\phi)} \approx \frac{3M^2}{2}\left(\frac{f'}{f}\right)^2, \qquad \bar{V}(\phi) \approx \frac{V(\chi_0)}{f(\phi)^2}.
$$

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• In this phase:

$$
\mathcal{K}(\phi) \equiv \frac{2f(\phi) + 3M^2f'^2(\phi)}{2f^2(\phi)} \approx \frac{3M^2}{2}\left(\frac{f'}{f}\right)^2\,,\qquad \bar{V}(\phi) \approx \frac{V(\chi_0)}{f(\phi)^2}\,.
$$

• So we introduce a canonical variable via

$$
\Phi \equiv \sqrt{\frac{3}{2}} M \ln f(\phi) \,,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Higgs &](#page-0-0) Inflation

[Metastability](#page-164-0) from Higgs potential?

• In this phase:

$$
\mathcal{K}(\phi) \equiv \frac{2f(\phi) + 3M^2f'^2(\phi)}{2f^2(\phi)} \approx \frac{3M^2}{2}\left(\frac{f'}{f}\right)^2\,,\qquad \bar{V}(\phi) \approx \frac{V(\chi_0)}{f(\phi)^2}\,.
$$

• So we introduce a canonical variable via

$$
\Phi \equiv \sqrt{\frac{3}{2}} M \ln f(\phi) \,,
$$

• The kinetic term is canonical and the potential becomes:

$$
\bar{V}(\Phi) = V(\chi_0) \exp\left(-2\sqrt{\frac{2}{3}}\frac{\Phi}{M}\right)
$$

.

KORKARA REAKER ORA

[Higgs &](#page-0-0) Inflation

-
-
-
- [Metastability](#page-164-0) from Higgs potential?

• The exponential potential is well-known to lead to power-law expansion

$$
\bar{a} \sim \bar{t}^{\rho} \text{ with } \rho = \frac{3}{4}.
$$

KID K@ KKEX KEX E 1090

[Higgs &](#page-0-0) Inflation

-
-
-
- **[Metastability](#page-164-0)** from Higgs potential?

• The exponential potential is well-known to lead to power-law expansion

$$
\bar{a} \sim \bar{t}^p \text{ with } p = \frac{3}{4}.
$$

• The end of this phase when

 $\bar{H}^2 \sim \bar{\Gamma}^{1/2}$

KID K@ KKEX KEX E 1090