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Big Bang vs. Little Bang
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T~ 10 fm/c 015 fm/c
Similarities: Hubble-like expansion, expansion-driven dynamical freeze-out
chemical freeze-out (nucleo-/hadrosynthesis) before thermal freeze-out
(CMB, hadron pr-spectra)
initial-state quantum fluctuations imprinted on final state
Differences: Expansion rates differ by 18 orders of magnitude
Expansion in 3d, not 4d; driven by pressure gradients, not gravity
Time scales measured in fm/c rather than billions of years
Distances measured in fm rather than light years
“Heavy-lon Standard Model” still under construction
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Relativistic Nucleus-Nucleus Collisions

Animation: P. Sorensen

Produced fireball is ~10-1* meters across
and lives for ~5x10-23 seconds

Collision of two Lorentz contracted gold nuclei
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Event-by-event shape and flow fluctuations rule!
(Alver and Roland, PRC81 (2010) 054905)

o
x (fm)

e Each event has a different initial shape and density distribution, characterized by different set of
harmonic eccentricity coefficients €,,

e Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow
coefficients v,, and flow angles 1),

e At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects
(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Miiller, PRC82 (2010) 064903)
Definition of flow coefficients:
AN AN
dyprdprdg, " dyprdpr

oo
®) [ 1+2) v (y, prsb) cos(d, — ¥)

n=1
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https://u.osu.edu/vishnu: A product of the JET Collaboration
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Viscous relativistic hydrodynamics (israel & Stewart 1979)

Include shear viscosity 7, neglect bulk viscosity (massless partons) and heat conduction
(uB =~ 0); solve
0, T* =0

with modified energy momentum tensor
T (x) = (e(2)+p(@))ut(2)u”(z) — gHp(@) + 7.

Y = traceless viscous pressure tensor which relaxes locally to 27 times the shear
tensor V{“4¥) on a microscopic kinetic time scale 7.

Drhv = 7% (7r“" — 2)7V<“u">) AF oo

where D = v, is the time derivative in the local rest frame.

Kinetic theory relates 7 and 7., but for a strongly coupled QGP neither 7 nor this
relation are known == treat 7 and 7, as independent phenomenological parameters.

For consistency: 7.0 <1 (6 = 9*u, =local expansion rate).
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Towards a Standard Model of the Little Bang

B. Schenke: QM2012

. . . . . Schenke, Tribedy, Venugopalan,
With inclusion of sub-nucleonic quantum fluctuations  physRev.Lett 108:25231 (2012)

and pre-equilbrium dynamics of gluon fields:
— outstanding agreement between data and model

Rapid convergence on a standard model of the Little Bang!

Perfect liquidity reveals in the final state initial-state gluon field correlations
of size 1/Qg (sub-hadronic)!

Y |
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The big question

m Flow-like signatures of similar characteristics as those in AA collisions
were also seen in pA and high-multiplicity pp.

m Seen in both single-particle observables ( “radial flow") and
two-particle correlations (“anisotropic flow").

m Initial-state momentum correlations can also manifest themselves as
“anisotropic flow” in the final state, especially in small collision
systems where they may survive final-state interactions.

m What is the true origin of these flow-like signatures? How can
we separate initial-state from final-state effects, in particular in
small systems?

m What is the internal phase-space structure of a proton?
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Overview

Flow in small systems?
m Flow in small systems?
m Do small systems behave hydrodynamically?
m Collectivity in small systems
m Initial-state momentum correlations?
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Flow in small systems?

Ridge in pp, pPb and PbPb

(C) PbPb |5y =276 TeV, 220 <N
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Ridge observed in high multiplicity
pp collisions at 13 TeV !
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£ 13 TeVyvs.7TeV?
Zhenyu Chen
I New results from CMS 4 "
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Kalaydzhyan & Shuryak PRC91 (2015) 054913

Open symbols: CMS data;
filled symbols: Glubser flow

K-p mass splitting of mr-slopes increases

with pp multiplicity

Radial flow in pp?

Hydrodynamics for Heavy-lon Collisions

CERN, 8/23/2016
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Flow in small systems?

Validity of viscous hydro: Knudsen number check

n/s=0.16

T

HH-1Q
- nfa=HH-HQ

Niemi & Denicol, arXiv:1404.7327

Kn = tmicro 8= rmicro /tmacro 02
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Predicts freeze-out at higher temperature in p+Pb than in Pb+Pb
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Flow in small

systems?

Long-range correlations in high-mult. pp

Flow parameter analysis
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Flow in small systems?

Long-range correlations in high-mult. pp

Flow in small systems7 What is needed?

Flow parameter analysis
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Flow in small systems?

Flow in small systems?
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No centrality dependence of elliptic flow in pp?!
Flow not just in high-multiplicity pp?!
Not flow but something else?
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Do small systems behave hydrodynamically?
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Collectivity in small systems

Collectivity in small systems!
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Whatever its origin, the “flow signal” represents a collective response
(to what?) of all particles!
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Initial-state momentum correlations?

Initial-state momentum correlations?

Dusling and Venugopalan, PRD87 (2013) 054014

Associated Yield (1.0 < [GeV1 < 20) Associated Yield
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Initial-state momentum (anti-)correlations from “Glasma graphs”
qualitatively explain the multiplicity dependence and pr-dependence at
high pt of the ridge yields in pPb and high-multiplicity pp collisions
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Initial-state momentum correlations?

Initial-state momentum correlations?
Lappi, Schenke, Schlichting, Venugopalan, JHEP 2016 (arXiv:1509.03499)
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Spatial inhomogeneity of CGC and spatial deformation of CGC regions of
homogeneity generate momentum anisotropies among the initially
produced partons, corresponding to non-zero v, for all n,
with “reasonable-looking” pt dependence.
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What is needed to resolve this ambiguity?
m What is needed?
m What is missing?
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What is needed?

What is needed to resolve this ambiguity?

m Initial conditions for the phase-space distribution of the produced
matter,

fmatter(xj_> OsiPL, ¢p; Yp—1s, 7'0)
which depends on the

m phase-space (Wigner) distribution of the glue inside the nucleons
bound into small nuclei:

fotue(X L, @si KL, dki yk—ns: T0)

B From fyatter We obtain the initial energy-momentum tensor

Vd of

TMV(XJ_7 Ns, 7—0) = (271')3 /dYszprupyfmatter(XJ_v Os; PLs ¢p; Yp—s: TO)
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What is needed?

What is needed to resolve this ambiguity?

m Once the initial T#”(x) is known, we can evolve it for some time
Teq—T0 With a pre-equilibrium model, match it to viscous
hydrodynamic form,

T = eutu” — (P(e)+I'I)A“” + TH,

run it through viscous hydrodynamics plus hadronic afterburner, and
compare its output with experiment.

m To account for event-by-event quantum fluctuations in the initial
TH(x), and for thermal noise during the evolution, the dynamical
evolution must be performed many times before taking ensemble
averages as done in experiment.
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What is missing?

What is missing in present calculations?

Present modeling uses simplified assumptions for the initial phase-space distrib’n:

m Few models account for the initial momentum structure of the medium; most
ignore it completely. = incorrect/unreliable initial conditions for M, 7#*

m While granularity of the initial spatial density distribution is accounted for at the
nucleon length scale, by Monte-Carlo sampling the nucleon positions from a
smooth Woods-Saxon probability distribution before allowing them to collide and
lose energy to create lower-rapidity secondary matter, quantum fluctuations on
sub-nucleonic length scales are poorly controlled and mostly ignored. IP-Glasma
includes sub-nucleonic gluon field fluctuations, but appears to get them wrong,
yielding spatial gluon distributions inside protons that are too compact.

m Most approaches (e.g. PHOBOS Glauber Monte Carlo) use disk-like nucleons for
computing the collision probability. More realistic collision detection using
Gaussian nucleons is implemented in GLISSANDO and iEBE-VISHNU.

m Most approaches ignore quantum fluctuations in the amount of beam energy lost
to lower rapidities in a NN collision. Without these, the measured KNO-like
multiplicity distributions in pp collisions are not reproduced, and pp collisions
produce zero €3 by symmetry. GLISSANDO and iEBE-VISHNU include pp
multiplicity fluctuations, creating non-zero triangularity in pp, even without
sub-nucleonic structure.
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Overview

Proton substructure: what does a proton look like in position space?

m CGC picture of the nucleon
m Modeling quark substructure of the nucleon
m Characteristics of initial entropy density distributions in pp and

light-heavy collisions

32 /59
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CGC picture of the nucleon

“Three quarks for Muster Mark!"
Schlichting, Schenke, PLB739 (2014) 313

5 AY=0  { AY=3 AY=6

y-Coordinate [fm]

Wilson line trace: Re(tr{1-V(x,y)])/N,

x-Coordinate [fm]

m 3 valence quarks act as large-x color sources of the low-x gluon fields.

m Spatial positions of quarks at the instant of collision fluctuate from event to event
and generate a lumpy color distribution at large x.

m This lumpiness is tracked by the quarks’ gluon clouds, becoming more diffuse at
smaller x = triune lumpiness of the gluon fields inside the nucleon when viewed
through midrapidity particle production, with an intrinsic length scale ( “gluonic
radius of a quark”) that appears to grow with collision energy.

m — Protons have just as much intrinsic triangularity as *He nuclei, just on a
shorter length scale. But in p+A all particle production occurs on a smaller length
scale than in *He+Al This affects mostly radial flow, though.
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Modeling quark substructure of the nucleon

Modeling quark substructure of the nucleon |

K. Welsh, J. Singer, UH, PRC, in press (arXiv:1605.09418)

m The gluon field density inside the proton is the sum of three 3-d Gaussians
of norm % and width o, (representing the gluon clouds around the valence
quarks). Default value: oz = 0.3fm (best fit of pPb mult. dist. at LHC)

m The quark positions (centers of the gluon clouds) are sampled from a 3-d
Gaussian with width o4 around the center of the nucleon, requiring their
center of mass to coincide with the nucleon center.

m The widths are constrained by aé + %0(2, = B such that the average proton
density is a normalized Gaussian

r

2
e 2B

(pp(r)) = (2nB)23

inel
with y/s-dependent width B( /s) = ON%T(F‘/E), to reproduce the measured
inelastic NN cross section.
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Modeling quark substructure of the nucleon
Modeling quark substructure of the nucleon Il

m Projecting p, along z gives the nucleon thickness function Ty(r.) in the
transverse plane.

m Folding two nucleon thickness functions yields the nucleon-nucleon overlap
function Tyn(b) at impact parameter b (which actually depends on all 6
quark positions), from which the probability for each of the two nucleons to
get wounded in the collision is computed as

Pi(rii—rij) =1 —exp[—og Tnn(rii—rij)]

where i and j are from projectile and target, respectively. The gluon-gluon
cross section ogg is determined by the normalization of Pj to the inelastic
NN cross section.

m For each wounded nucleon, all three quarks are assumed to contribute to
energy production at midrapidity, with a Gaussian density profile of width o,
and independently fluctuating (I'-distributed) normalization, with variance
adjusted to reproduce measured pp multiplicity distributions.
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

Initial entropy density in b=1.3fm pp collisions

smooth Gaussian protons:

S T B S S S S

> ] 3
xtfm) xtfm) ()

protons with fluctuating quark substructure (o, = 0.3f

For protons with quark substructure the Gaussian collision criterium appears to
favor somewhat more compact distributions of produced entropy density
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 vs. centrality: pp @ /s=200A GeV
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m Ellipticity and triangularity show strong sensitivity to og.

m Since v/B=0.408fm at /s =200 GeV, quark subdivision with o, = 0.4fm is
almost indistinguishable from a smooth Gaussian proton.

m Disk-like collision detection gives smallest eccentricities.
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 vs. centrality: p+Au @ /s=200A GeV
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

In p+p and light+heavy “centrality” does not measure b!

¥He+AU V5 —200GeV p+A; ——2006ev | p+p Vs —200GeV

Multiplicity
Multiplicity
Multiplicity

2
b (fm)

5
b (fm)

5
b (fm)

pp multiplicity fluctuations destroy strong anticorrelation between
multiplicity and impact parameter seen in Au+Au and Pb+Pb

—> “centrality” measured by multiplicity is a misnomer in collisions
involving light projectiles
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 vs. centrality: *He+Au @ /s=200A GeV
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Reduced sensitivity to p-substructure and o, for larger projectiles,
except in peripheral events
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 Vvs. “centrality” for different collision systems
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

Initial radius vs. “centrality” for different collision systems

disk-like coll. detection Gaussian coll. detection quark-subdivided nucleons
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Back to the big picture

Back to the big question: do pp and pA collisions create
droplets of flowing QGP?

m Hydrodynamics is an effective field theory that describes the
macroscopic effects of the microscopic transport dynamics

m Gerry Brown: “Some EFTs are more effective than others!”

m Israel-Stewart theory cannot handle the rapid, very anisotropic
expansion in pp and pA, and fails similarly during the earliest stages
in AA collisions

m Welcome the “more effective” anisotropic hydrodynamics
framework (Strickland, Martinez, Florkowski, Bazow, UH, et al.)

m VAHYDRO minimizes second-order viscous hydro effects by
resumming large first-order corrections at leading order
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Back to the big picture

Testing different hydrodynamic approximation schemes

m Relativistic viscous hydrodynamics is an effective macroscopic
description based on coarse-graining (gradient expansion) of the
microscopic dynamics.

m Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions.

m Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.

m Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:

Bjorken and Gubser flow (RTA),
FLRW universe (full Boltzmann collision term)

m Can be used to test different hydrodynamic expansion schemes for the
Boltzmann equation
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Longitudinal-transverse pressure anisotropy in heavy-ion

Back to the big picture
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Kinetic theory vs. hydro

Overview

[ Kinetic theory vs. hydro
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The big picture Flow in small systems? What is needed? Proton substructure Back to the big picture Kinetic theory vs. hydro
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.
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Kinetic theory vs. hydro

Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7yc1(x) = ¢/ T(x) = 5n/(ST) = 57/ T(x).
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7yc1(x) = ¢/ T(x) = 5n/(ST) = 57/ T(x).

Macroscopic currents:

j(x) = / o F(xp) = (P TH(x) = / b B Flx,p) = (p9")

3
g d>p
where /E 5| = =(.)
p (2) Ep |
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (I):

Expand the solution f(x, p) of the Boltzmann equation as

f(x, p) = fo(x, p) + 6f(x, p) <|5f/fo\ < 1)

where fy is parametrized through macroscopic observables as

Bx.p) = <\/Pu5“”(X)Pu - ﬁ(X)>

T(x)

where  =M(x) = u(x)u”(x) — ®(x)AHY(x) + £ (x).
ut(x) defines the local fluid rest frame (LRF).
AW = g’ —yt ¥ is the spatial projector in the LRF.
T(x), fi(x) are the effective temperature and chem. potential in the LRF.
®(x) partially accounts for bulk viscous effects in expanding systems.
&M (x) describes deviations from local momentum isotropy in
anisotropically expanding systems due to shear viscosity.
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (I1):

ut(x), T(x), fi(x) are fixed by the Landau matching conditions:
oY — T o~ M. . — . 2 =

Thut = (T o) (wp) =((wp?) =0
& is the LRF energy density. We introduce the true local temperature
T(T,fi;&, ®) and chemical potential xu(T, fi; €, ®) by demanding
5( Ta [L; 5; q)):gcq( Ta ,U') and N( Ta ﬂ; fa (D)E <U'P>f0 :RO(& q))Ncq( Tv M) (See
cited literature for R functions).
Writing

TH =T +6TH = T + NHY, =+t =g+ ve,
the conservation laws
N(x) = Neg(x)

7'rel(X)

OuTH(x) =0, 9u"(x) =

are sufficient to determine u#(x), T(x x), but not the dissipative corrections
b b
g d MN* and V#* whose evolution is controlled by microscopic physics.
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m ldeal hydro: local momentum isotropy (¢# =0), & = N*" = V# =0.
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m ldeal hydro: local momentum isotropy (¢# =0), & = N*" = V# =0.

m Navier-Stokes (NS) theory: local momentum isotropy (£#” = 0), ® = 0, ignores

microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m ldeal hydro: local momentum isotropy (¢# =0), & = N*" = V# =0.

m Navier-Stokes (NS) theory: local momentum isotropy (£#” = 0), ® = 0, ignores

microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

m Israel-Stewart (IS) theory: local momentum isotropy (§#” = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m ldeal hydro: local momentum isotropy (¢# =0), & = N*" = V# =0.

m Navier-Stokes (NS) theory: local momentum isotropy (£#” = 0), ® = 0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

m Israel-Stewart (IS) theory: local momentum isotropy (§#” = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro

= Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving ", V*,
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (§** =0), & =" = V¥ =0.

Navier-Stokes (NS) theory: local momentum isotropy (¢*” =0), ® =0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

Israel-Stewart (IS) theory: local momentum isotropy (§# = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving ", V*,

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£"”, ® # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V* = 0.
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Kinetic theory vs. hydro

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (§** =0), & =" = V¥ =0.

Navier-Stokes (NS) theory: local momentum isotropy (¢*” =0), ® =0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

Israel-Stewart (IS) theory: local momentum isotropy (§# = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving ", V*,

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£"”, ® # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V* = 0.

Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that
additionally evolves residual dissipative flows M*”, V#* with IS or DNMR theory.
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (t2—z%)Y/? and n = tin[(t—2)/(t+2)] = v. = z/t
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BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)

where 7 = (t°~2°)"/? and n = } In[(t—2)/(t+2)] = v; = z/t
m Metric: ds? = dr?—dr* — r’d¢® — T°dn?, guv = diag(1, -1, —r*, —72)

52 / 59

Ulrich Heinz (Ohio State) Hydrodynamics for Heavy-lon Collisions CERN, 8/23/2016



Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (*—2z?)"/? and n = tin[(t—2)/(t+2)] = v. = z/t

m Metric: ds? = dr?—dr® — r’d¢? — m2dn?, guv = diag(1, -1, —r*, —72)

m Symmetry restricts possible dependence of distribution function (x, p)

(Baym '84, Florkowski et al. '13, '14):

f(x,p) = f(7; pL,w) where w = tp, — zE = Tmy sinh(y—n).
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (t°~2°)"/? and n = } In[(t—2)/(t+2)] = v; = z/t

m Metric: ds® = dr2—dr® — rPd¢® — 72dn?, guv = diag(1, -1, —r*, —72)

m Symmetry restricts possible dependence of distribution function (x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7; pL,w) where w = tp, — zE = Tmy sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T; PL, W) — eq(T; PL, W)

Trel(T) '

0, F(7:pL,w) =
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (t°~2°)"/? and n = } In[(t—2)/(t+2)] = v; = z/t

m Metric: ds® = dr2—dr® — rPd¢® — 72dn?, guv = diag(1, -1, —r*, —72)

m Symmetry restricts possible dependence of distribution function (x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7; pL,w) where w = tp, — zE = Tmy sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T; PL, W) — feQ(T; PL, W)

Trel(T) '

0, F(7:pL,w) =

m Solution:

f(7:p1, w) = D(7, 7o) fo(pr, w) + /T

70

™ "
where D(m2,m1) = exp(—/ %)

1

dr’

D ! fec /;
Trcl(Tl) (T7T) 1(7— pJ—7W)
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)

= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where
L 22422 - .
p(r,r) = —sinh™! (”qu) and 0(r,r) =tan™* (qufﬁ).

= v, =2z/tand v, = Hléf_ﬁ where g is an arbitrary scale parameter.
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

= son—1 (1-¢*r2 44’ _ -1 2qgr
p(7,r) = —sinh ( T and 0(r,r) = tan T )

= v, =2z/tand v, = — where g is an arbitrary scale parameter.

2q°Tr
T+a2r2+q2r?
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) = tan~? (L)

2q1 1+q2m2—q2r2

= v, =2z/tand v, = Hléf_ﬁ where g is an arbitrary scale parameter.

m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)

P

f(x.p) = f(p; P, Bn) where fio =By + —

and p, =w.
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) =tan™* (22+)

2q 14+¢?12—q%r?
Hléf_ﬁ where q is an arbitrary scale parameter.
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)
Az

= v, =2z/tand v, =

f(x,p) = f(p; ﬁé,ﬁn) where p3 = pa —|— 0 and p, = w.

m With T(r,r) = T(p(r,r))/ RTA BE simplifies to the ODE
§p (07 P B) = —M [F(pi 8. 5.) — (/T ()] -
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Kinetic theory vs. hydro

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics

on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) =tan™* (22+)

2q 1+q272—q%r2
= v; = z/t and v,=1+q§:’_72"+’qzr
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)
B2
f(x,p) = f(p; ﬁé,ﬁn) where p3 = pa —|— 0 and p, = w.
» With T(r,r) = T(p(r,r))/m RTA BE simplifies to the ODE
0 2 P 22 A ap 5
8[7 ( ?Z? C) = _L [f<l)vp§27p<) - féq(pﬂ/T(p))] N
m Solution:
f(pi B, w) = D(p, po)fo(Ba, w) + ¢ [7 dp' T (p") D(p. p') fealp'; P2, w)
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Kinetic theory vs. hydro

Hydrodynamic equations for systems with Gubser flow:*

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; Pa, w). We here use equilibrium initial conditions, fy = fu,.

*For Bjorken flow, including (0+1)-d vaHydro, see UHOQM14
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Kinetic theory vs. hydro

Hydrodynamic equations for systems with Gubser flow:*

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; Pa, w). We here use equilibrium initial conditions, fy = fu,.
m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of T#”. Here, [1*" has only one independent component, 7",

*For Bjorken flow, including (0+1)-d vaHydro, see UHOQM14
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Kinetic theory vs. hydro

Hydrodynamic equations for systems with Gubser flow:*

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; Pa, w). We here use equilibrium initial conditions, fy = fu,.

m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of T#”. Here, [1*" has only one independent component, 7",

m This exact solution of the BE can be compared to solutions of the various

hydrodynamic equations in de Sitter coordinates, using identical initial conditions.

W ldeal: Tiaear(p) = 255

m NS: 197 2 2tanhp = $77(p) tanhp  (viscous T-evolution)

~

with @) = # /(TS) and 1l = 377 tanh p where El =q= %Tﬁel
drl 7r77
m IS: [{[; +3 (7rn) tanh p + ?m = S tanhp
m DNMR: d;—p" + % (71',]) tanthr 217r,, tanh p

aHydro: see M. Nopoush et aI., PRD 91 (2015) 045007
vaHydro: working on it ...

*For Bjorken flow, including (0+1)-d vaHydro, see UHOQM14
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Bjorken flow (1)
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&= 10, 4mn/S =3, To= 0.6 GeV

Pressure anisotropy P /Pt vs. T:
&= 100, 47/S = 100, To= 0.6 GeV
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The big picture is needed? Pr
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Bjorken flow (I1)
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Kinetic theory vs. hydro

Gubser flow: temperature profile in (x,y) and (x, z)

t=0.25 fm/c

=225 fmje

t=6.25 fm/c

y [fm]
y [fm]

y [fm]

-10)

-10 -5 0 5 10 -10 -5 0 5 10
X [fm] X [fm] X [fm]
t=0.25 fm/c t=2.50 fe t= 1125 fm/c
10|

X [fm]
X [fm]

X [fm]

-10)

Ulrich Heinz (Ohio State) Hydrodynamics for Heavy-lon Collisions CERN, 8/23/2016 57 / 59



is needed? Pr
oc

The big picture cture Back to the big picture Kinetic theory vs. hydro

Gubser flow in aHydro: p-evolution of T and shear stress

M. Nopoush, R. Ryblewski, M. Strickland, PRD 91 (2015) 045007
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Thermal equil. initial conditions at pgp — —oo. aHydro works better than 1S-& DNMR
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Kinetic theory vs. hydro

Conclusions

m Signs of hydrodynamic behavior are pervasive in heavy-ion collisions, from high to
relatively low energies and from large to small collision systems.

® A new exact solution of the RTA Boltzmann equation for systems undergoing
Gubser flow enables tests of hydrodynamic approximation schemes in
situations that resemble heavy-ion collisions where the created matter
undergoes simultaneous longitudinal and transverse expansion.

m When compared with the exact solution, second-order viscous hydrodynamics (IS
and DNMR) works better than NS theory, anisotropic hydrodynamics (aHydro)
works better than hydrodynamic schemes based on an expansion around local
mometum isotropy (IS and DNMR), and viscous anisotropic hydrodynamic
(vaHydro) (which treats small viscous corrections as IS or DNMR but resums the
largest viscous terms) outperforms aHydro.

Performance hierarchy: vaHydro > aHydro > DNMR ~ IS > NS > ideal fluid.

m Improved hydro versions describe the macroscopic results of microscopic kinetics
even in far-from-equilibrium situations much more accurately than previously
thought.

m Still unresolved: Where does the hydrodynamic approach really break down?

Ulrich Heinz (Ohio State) Hydrodynamics for Heavy-lon Collisions CERN, 8/23/2016 59 / 59



The big picture Flow in small

ystems? What is needed? Proton substructure Back to the big picture Kinetic theory vs. hydro
o o

Thank You!

Ulrich Heinz (Ohio State) Hydrodynamics for Heavy-lon Collisions CERN, 8/23/2016 59 / 59



Kinetic theory vs. hydro

pp multiplicity distribution

Same for smooth Gaussian and quark-subdivided protons, after rescaling of the
[-distribution:
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The big picture Flow in small systems? What is needed? Proton substructure Back to the big picture Kinetic theory vs. hydro

o

pPb multiplicity distribution

0g = 0.3fm:
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The big picture Flow in small

ystems? What is needed? Proton substructure Back to the big picture Kinetic theory vs. hydro
o o

€23 vs. centrality: d+Au @ /s=200A GeV
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The big picture Flow in small systems? hat is needed? Proton substructure Back to the big picture Kinetic theory vs. hydro

€23 Vs. impact parameter for different collision systems

Gaussian collision detection disk-like collision detection
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The big picture Flow in small systems? What is needed?

Proton substructure Back to the big picture Kinetic theory vs. hydro

€2-€3 correlations: pp & light-heavy collisions, o, = 0.3 fm
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Freezeout
T > 10 fm/c

Hot Hadron Gas
6 <T <10 fmlc

Equilibrium QGP
2<T<6fmlc

Non-equilibrium QGP
03<T<2fmlc

Semi-hard particle production
0<T<0.3fmlc

>
beam direction

(From M. Strickland, arXiv:1410.5786)
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The big picture Flow in small systems? What is needed? Proton substructure Back to the big picture Kinetic theory vs. hydro

o

Bjorken flow (I1)

£o= 0, 477/S = 10, Ty= 0.6 GeV &= 10,47/S = 10, Ty= 0.6 GeV £o= 100, 477/S = 10, Ty= 0.6 GeV
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vaHydro agrees within a few % with exact result, even for very large 1/S!
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Kinetic theory vs. hydro

Gubser flow Il: p-evolution of temperature and shear stress
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Note: ¢ = 7)1 Thermal equil. initial conditions at pg = 0.
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Gubser flow Ill: temperature

Kinetic theory vs. hydro

evolution in de Sitter time p
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P
IS seems to work better than DNMR (!7?)
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Kinetic theory vs. hydro

Gubser flow IV: shear stress evolution in de Sitter time p
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Kinetic theory vs. hydro

Gubser flow V: temperature evolution in Minkowski space
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IS seems to work better than DNMR (!?7)

Both seem to have problems at large r <> large negative p
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