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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc

ffiffiffi
λ

p
φosc ¼ aoscHosc ¼

H!=a
1=p
osc , from which we find

φosc ≡ H!ffiffiffi
λ

p 1

ðaoscÞ1þ
1
p
⇒

ffiffiffiffiffiffiffiffi
aoscp

p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc
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φosc ¼ aoscHosc ¼
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osc , from which we find
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p 1

ðaoscÞ1þ
1
p
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p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc

ffiffiffi
λ

p
φosc ¼ aoscHosc ¼

H!=a
1=p
osc , from which we find

φosc ≡ H!ffiffiffi
λ

p 1

ðaoscÞ1þ
1
p
⇒

ffiffiffiffiffiffiffiffi
aoscp

p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc

ffiffiffi
λ

p
φosc ¼ aoscHosc ¼

H!=a
1=p
osc , from which we find

φosc ≡ H!ffiffiffi
λ

p 1

ðaoscÞ1þ
1
p
⇒

ffiffiffiffiffiffiffiffi
aoscp

p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc

ffiffiffi
λ

p
φosc ¼ aoscHosc ¼

H!=a
1=p
osc , from which we find

φosc ≡ H!ffiffiffi
λ

p 1

ðaoscÞ1þ
1
p
⇒

ffiffiffiffiffiffiffiffi
aoscp

p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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q≡ g2
4λ, logarithmically spaced between q ¼ 5 and

q ¼ 3000. This corresponds to sampling the Higgs self-
coupling from λ ∼ 10−5 to λ ∼ 10−2. Scanning this way β
and q led us to characterize the behavior of the system,
scrutinizing all possible different outcomes depending on λ
and φ". In Table I, we list the values of all the resonance
parameters q that we have considered. We have guaranteed
that by sampling different values, we include both the cases
in which q is within a resonance band of the Lamé
equation, or in the middle of two bands (see Sec. III).
Note that we have run simulations for three different

expansion rates, corresponding to a MD universe, a RD
universe, and a KD universe, given by ω ¼ 0; 13, and 1 in
Eq. (7), respectively. The following results in this section
will be presented only for a RD background. The gener-
alization to other expansion rates will be considered
in Sec. VI.
Our simulations depend only on two parameters, q and β.

For each pair of values ðq; βÞ, we have run simulations on a
lattice with N ¼ 128 points per dimension, with periodic
boundary conditions. The minimum momentum captured
in each run is km ¼ 2π

Ndx, with dx being the lattice spacing.
The maximum momentum sampled in the lattice is
kM ¼

ffiffi
3

p
N

2 km. The length of the lattice box side is
L ¼ Ndx. For each value of β and q, we have made sure
that our results are not sensitive to the lattice spacing dx
and/or the lattice size L. More details about these issues are
given in Appendix A.
In Fig. 5 we plot, as a function of time, the volume-

average of the modulus of the (conformally transformed)
Higgs field jhj. In this figure, we show the outcome
corresponding to β ¼ 0.01, and four different resonance
parameters, q ¼ 8, 14, 101 and 354. The values q ¼ 8; 101
are centered close to the middle of a resonance band of the
Lamé equation, while q ¼ 14; 354 are between adjacent
bands. In this figure we also show the corresponding

envelope curve of the Higgs oscillations. One conclusion
is immediately clear: the time scale of the Higgs amplitude
decay depends noticeably on q. By running simulations for
each of the q values displayed in Table I, we have fully
characterized the q dependence of the Higgs decay. Note
that in Table I we have also indicated the range of momenta
kmin ≤ k ≤ kmax excited for each value of q, according to
the Lamé equation. Such a range corresponds to the band
with the largest Floquet index μmax, which coincides in all
cases with the most infrared band; see Fig. 4. The μðkÞ
index was obtained by solving the Lamé equation for a
given q parameter, and finding the range of momenta such
that μðkÞ > 0. The band structure can be well appreciated in
Fig. 4, where we plot μðkÞ for each of the values of q listed
in Table I. As mentioned, we have sampled all possible
cases, including when q is within a resonant band (either
close to the middle or to the extremes of the band), and
hence kmin ¼ 0, or simply outside of any band (between
adjacent bands), and then kmin > 0.
Before examining in more detail the general behavior of

all the fields in the system, we can make some comments
about the Higgs behavior. First of all, let us note that h
oscillates with a period T, which is, as expected, indepen-
dent of the value of q. Even if it cannot be really
appreciated in Fig. 5, we have checked that the period
coincides initially with the analytical expression given by
Eq. (15), until it becomes slightly modulated due to
the interactions with the χ fields (though it does not
change significantly). Looking at the different panels
of Fig. 5, it seems that the Higgs decay is slower the
greater the resonance parameter q is. This is very
opposite to the intuition gained by the study of the
Lamé equation in Sec. III, which dictates that the larger
the q, the shorter the decay time of the Higgs.4 We thus see
on this the first difference between the simplified study of
the system of scalar fields in the linear regime (Sec. III A),
and the real outcome when nonlinearities are incorporated
in lattice simulations. Wewill further comment on this issue
later on.
One can distinguish two different stages in each decay

process. Let us look, for instance, at the upper panel of
Fig. 6, where the Higgs modulus is plotted for q ¼ 23, and
where we also include the envelope curve of the oscil-
lations. One can clearly appreciate that initially, and for
some time, the envelope is approximately constant, reduc-
ing its amplitude only slightly. This is observed as a plateau
feature in the upper panel of Fig. 6. The vertical dashed line
in the figure indicates the end of this initial behavior, after
which a second stage of rapid decay follows. Let us note
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FIG. 5 (color online). Volume-averaged value of the Higgs field
jhj as a function of time, for four different resonance parameters,
q ¼ 8; 14; 101 and 354. Also plotted, the corresponding envelope
functions of the oscillations. All cases correspond to β ¼ 0.01.

4Contrary to “popular wisdom” about parametric resonance,
the time scale zeff , identified with the “oscillatory field” decay
time in the linear anaylitical approximation, is in practice mostly
independent of q. It is true that the larger the q the shorter the
decay, but the dependence is only logarithmic [recall Eq. (35)],
and the number of oscillations does not change appreciably.
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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc

ffiffiffi
λ

p
φosc ¼ aoscHosc ¼

H!=a
1=p
osc , from which we find

φosc ≡ H!ffiffiffi
λ

p 1

ðaoscÞ1þ
1
p
⇒

ffiffiffiffiffiffiffiffi
aoscp

p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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actual value of λ. Therefore, at different patches of the
Universe (separated at distances larger than the correlation
length l ≫ l!), the Higgs will start oscillating with different
amplitudes, and the oscillation frequency will also be
different, see Fig. 2.
Depending on the amplitude of β, the Higgs will start

oscillating around the minimum of its potential sooner or
later. This can be clearly seen in Eq. (11), where the
effective squared frequency of the oscillations of hðzÞ
scales as ∝ β2. For the canonical value of λ ¼ λc ¼ 0.01
(λ001 ¼ 1), the probability for the Higgs to start oscillating
immediately at the end of inflation (i.e., that β ≥ 1) is
extremely suppressed as 10−287%, being even smaller for
λ < λc (λ001 < 1).
Therefore, at the end of inflation, the Higgs has, within

any arbitrary patch of size smaller than l!, an initial velocity

in slow roll and a nonzero amplitude as large as
φ=H! ∼Oð0.01Þ −Oð1Þ. This amplitude remains “frozen”
for a finite time until the start of the oscillations. Looking
at Eq. (8), and denoting as zoscðβÞ the time at which
oscillations start at each patch, we see that the condition for
the onset of oscillations is aðzoscÞ

ffiffiffi
λ

p
φðzoscÞ ¼ HðzoscÞ. For

simplicity, we will set the initial value of the scale factor to
unity, a! ≡ aðt!Þ ¼ 1, so that H! ≡H!, z≡H!ðt − t!Þ,
and aðzÞ ¼ ð1þ z=pÞp. We will also denote any quantity
evaluated at zosc with the suffix osc, so for example
aosc ≡ aðzoscÞ. It follows that aosc

ffiffiffi
λ

p
φosc ¼ aoscHosc ¼

H!=a
1=p
osc , from which we find

φosc ≡ H!ffiffiffi
λ

p 1

ðaoscÞ1þ
1
p
⇒

ffiffiffiffiffiffiffiffi
aoscp

p
βhosc ¼ 1: ð14Þ

For a given expansion rate (characterized by the post-
inflationary equation of state w), the period of oscillations
depends sensitively on β, since the period is fixed when the
oscillation condition a

ffiffiffi
λ

p
φ ¼ H is attained at the time zosc,

which is itself a function of β and w. The time scale zM at
which hðzÞ reaches its first maximum, characterized by
h0ðzMÞ ¼ 0, also depends consequently on β and w. The
period of oscillation can be easily obtained from the case of
a field with quartic potential, initial amplitude φ!, zero
initial velocity _φ! ¼ 0, and RD background. In conformal
time, when the scale factor at the onset oscillations is set to
unity, it is given by T ¼ 7.416=ð

ffiffiffi
λ

p
φ!Þ [32]. In our case,

we just need to count the oscillations from the first
maximum at z ¼ zM, taking into account that in our
convention, aðzMÞ ≠ 1. The period, in units of z, is then
found to be

ZT ≡ 7.416H!ffiffiffi
λ

p
φðzMÞaðzMÞ

¼ 7.416
βhðzMÞ

: ð15Þ

Let us note that the factor 7.416 is only exact for RD.
For MD or KD, one expects a similar though somewhat
different number, simply due to the term a00=a in Eq. (11),
which affects the very early stages of the Higgs dynamics
(even if it decays very fast after the onset of oscillations).
We have obtained fits for zosc, hosc, hðzMÞ and ZT as a

function of β and for each postinflationary expansion rate,
characterized by the equation of state ω. These fits will
turn out to be useful later on. We find at the onset of
oscillations

hosc ¼ 0.98β−
2

3ð1þwÞ; ð16Þ

zosc ¼
2

ð1þ 3wÞ
ð1.02β−

ð1þ3wÞ
3ð1þwÞ − 1Þ: ð17Þ

On the other hand, we find the field amplitude at z ¼ zM,
and the oscillation period (measured from z ¼ zM
onwards), as
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FIG. 2 (color online). Evolution of the Higgs field for β ¼ 10−2,
2.5 × 10−2, 5.0 × 10−2, 7.5 × 10−2 and 10−1 (corresponding to
the red solid, orange dotted, blue dotted-dashed, green long-
dashed and purple short-dashed lines, respectively). The back-
ground is RD, so w ¼ 1=3. Dashed vertical lines mark the time
zoscðβÞ when the oscillation condition is attained, a

ffiffiffi
λ

p
φ≡H,

whereas continuous vertical lines mark the time zMðβÞ when the
first maximum in the oscillations is reached, characterized by the
condition h0ðzMÞ≡ 0. Top: Evolution of hðzÞ. Lower: Evolution
of the physical Higgs φ=φ!, which initially is frozen until the
oscillations start, and then decreases as ∝ 1=a afterwards, as it
oscillates. Similar plots are obtained for MD and KD back-
grounds, whereas for other values of β the scale in the horizontal
axis changes quite significantly.
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If there is Kination-Domination …

Consequences:

1) Reheating the Universe       

2) GW from Higgs decay products       

3) Inflationary GW - blue tilted ! 



Gravitational Waves from 
    Higgs decay Products       

Explosive Particle 
Production !

Gravitational Wave
Generation

Universal 
Production !



Gravitational Waves from 
    Higgs decay Products       

11

q=61, KD

0.02 0.05 0.10 0.20 0.50 1.00 2.0010-10

10-9

10-8

10-7

10-6

10-5

kêH*

Q
G
W

q=750, KD

0.05 0.10 0.50 1.00 5.0010-10

10-9

10-8

10-7

10-6

10-5

kêH*

Q
G
W

q=61, RD

0.05 0.10 0.50 1.00 5.0010-10

10-9

10-8

10-7

kêH*

Q
G
W

q=750, RD

0.1 0.2 0.5 1.0 2.0 5.0 10.010-10

10-9

10-8

10-7

10-6

kêH*

Q
G
W

q=61, MD

0.1 0.2 0.5 1.0 2.0 5.0 10.010-13

10-12

10-11

10-10

10-9

10-8

kêH*

Q
G
W

q=750, MD

0.2 0.5 1.0 2.0 5.0 10.0 20.010-11

10-10

10-9

10-8

10-7

kêH*

W
G
WHsL

FIG. 1: We show ⇥
GW

as a function of k (in units of H�1

⇤ )
for two particular resonance parameters q = 61, 750, and each
one for KD, RD and MD post-inflationary expansion rates.
We take here � = 0.01. Each line corresponds to a particular
time, going from early times (red lines) to late times (purple
lines). For the RD simulations, the time step between each
spectra is approximatelyH⇤�t ⇡ 15.5, for the KD simulations
it is H⇤�t ⇡ 32.7, and for the MD simulations it is H⇤�t ⇡
7.3. The last spectra for KD simulations corresponds to the
output time H⇤t ⇡ 3280, while the last time plotted for RD
and MD panels is H⇤t ⇡ 750. The purple, red, and orange
dashed vertical lines indicate the position of the peaks k

1

, k
2

and k
3

respectively in these spectra.
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spectra is approximatelyH⇤�t ⇡ 15.5, for the KD simulations
it is H⇤�t ⇡ 32.7, and for the MD simulations it is H⇤�t ⇡
7.3. The last spectra for KD simulations corresponds to the
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After you re-scatter, backreact and thermalize... Is this the
end of the story?

If KD w = +1 then Boost to Inflationary GW!
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Inflaton oscillating —>  Curvature Oscillating

[DGF, Torrenti, Rajantie, 2016, Work in Progress]

7

FIG. 4: We show the times m�ti at which the Higgs field develops an instability and decays to the true negative-energy vacuum
as a function of the Higgs-curvature coupling. This results are obtained directly from lattice simulations. Details of how this
time is defined are given in more detail in the bulk text. The di↵erent panels correspond, from left to right and from top to
bottom, to the top quark masses mt = 174.56, 173.95, 173.34, 172.73, 172.12, 171.52GeV. For each data points, we have done
several lattice simulations corresponding to di↵erent realizations of the initial Higgs field conditions as indicated in the bulk
text. The points indicate the average value m�ti, while the error bars indicate the maximum and minimum values obtained,
and hence are an indication of the uncertainty of this time scale. The dashed, dotted-dashed and dashed vertical lines indicate
the position of the three critical couplings ⇠c1, ⇠c2, and ⇠c3, see Table V. For couplings ⇠ 2 [⇠c1, ⇠c2], some of the simulations
corresponding to a given data point do not become unstable, and hence the error bars extend up to infinity. In these cases,
the points indicate the average value of m�ti obtained from the simulations that do become unstable. For ⇠ < ⇠c1 all cases are
always stable (i.e. m�ti = 1), and hence data points are not drawn.

VI. SUMMARY AND DISCUSSION

• Comparison with previous results: The estimation
⇠c � O(10) found here increases by one order of
magnitude the value ⇠c � O(1) obtained with ana-

lytical methods.

• It is quite remarkable how the critical value is quite
independent on the exact position of the barrier,
and hence on the particular value of the mass of
the top quark.

Instability time scale after Chaotic Inflation

mt = 174.56 GeV mt = 173.95 GeV

mt = 173.34 GeV mt = 172.73 GeV

mt = 172.12 GeV
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* Inflaton Oscillations —> Curvature Oscillations 
  If           , Reheating into SM / Instability Constraints ⇠ � 1

DGF, Rajantie, Torrenti
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* SM subdominant —> irrelevant? (Baryogenesis, 

Magnetogensis, DM?)



Merci Beaucoup !
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