Hydrodynamics at large orders

Michał P. Heller

Perimeter Institute for Theoretical Physics, Canada

National Centre for Nuclear Research, Poland

based on 1302.0697, 1409.5087, 1503.07514, 1603.05344 + work in progress

Hydrodynamization

M. P. Heller, R. A. Janik and P. Witaszczyk, Phys. Rev. Lett. 108, 201602 (2012), 1103.3452

Relativistic hydrodynamics

an EFT of the slow evolution of conserved hydrodynamics is
currents in collective media close to equilibrium

DOFs: always local energy density ϵ and local flow velocity u^{μ} $(u_{\nu}u^{\nu} = -1)$ **EOMs:** conservation eqns $\nabla_{\mu} \langle T^{\mu\nu} \rangle = 0$ for $\langle T^{\mu\nu} \rangle$ expanded in gradients

This talk: behaviour of the gradient expansion at large orders in the number of **V**

Boost-invariant flow [Bjorken 1982]

Boost-invariance: in $(\tau \equiv \sqrt{x_0^2 - x_1^2}, y \equiv {\rm arctanh} \frac{x_1}{x_0}, x_2, x_3)$ coords no y -dep $\overline{}$ $\overline{x_0^2 - x_1^2}, \quad y \equiv \text{arctanh} \frac{x_1}{x_0}$ *x*0 *,* x_2 *,* x_3 *)* coords no y

In a CFT:
$$
\langle T_{\nu}^{\mu} \rangle = \text{diag} \left\{ -\mathcal{E}(\tau), -\mathcal{E} - \tau \dot{\mathcal{E}}, \mathcal{E} + \frac{1}{2} \tau \dot{\mathcal{E}}, \mathcal{E} + \frac{1}{2} \tau \dot{\mathcal{E}} \right\}
$$

\nand via scale-invariance $\frac{\Delta \mathcal{P}}{\mathcal{E}}$ is a function of $w \equiv \tau T$
\nGradient expansion: series in $\frac{1}{w}$.
\n2/15

Hydrodynamization **1103.3452** (see also Chesler & Yaffe 0906.4426, 1011.3562)

Ab initio calculation in *N*=4 SYM at strong coupling:

E \parallel hydro = *w* $+$ $\left| \frac{0.0069}{w^2} \right| - \frac{0.0049}{w^3}$ $\overline{w^3}$

Why hydrodynamization can occur?

M. P. Heller, R. A. Janik and P. Witaszczyk, Phys. Rev. Lett. 110, 211602 (2013), 1302.0697

Excitations in strongly-coupled plasmas

see, e.g. Kovtun & Starinets [hep-th/0506184]

 $\omega(k) \to 0$ as $k \to 0$: slowly dissipating modes (hydrodynamic sound waves) \mathcal{L} , hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) for small fo

from equilibrium (CNM) modes damped over $t_{11} = \rho(1)$ ϵ indistinguishable individually the tower of other eigenfrequencies. As an analyzed of ϵ all the rest: far from equilibrium (QNM) modes damped over *ttherm* = *O*(1)*/T*

Hydrodynamic gradient expansion is divergent

In **1302.0697** we computed
$$
f(w) = \frac{2}{3} + \frac{1}{6} \frac{\Delta P}{\mathcal{E}}
$$
 up to $O(w^{-240})$:

Hydrodynamics and QNMs

1302.0697

Analytic continuation of $f_B(\xi) \approx \sum \frac{1}{n!} f_n \, \xi^n$ revealed the following singularities: 240 *n*=0 1 *n*! $f_n \xi^n$

Branch cut singularities start at $\frac{3}{2}i\omega_{QNM_1}!$ 2 $i \, \omega_{QNM_1}$

Resumming gradient expansion in MIS theory

M. P. Heller, M. Spaliński, Phys. Rev. Lett. 115, 072501 (2015), 1503.07514

The boost-invariant MIS theory

1503.07514

$$
(\tau_{\Pi}\mathcal{D} + 1)\Pi_{\mu\nu} = -\eta\sigma_{\mu\nu} + \dots
$$

$$
\int_{C_{\eta}=\frac{\eta}{s} \text{ and } C_{\eta}=\tau_{\Pi}T
$$

$$
f' = -\frac{1}{C_{\tau_{\Pi}}} + \frac{2}{3C_{\tau_{\Pi}}f} + \frac{16}{3w} - \frac{16}{9wf} + \frac{4C_{\eta}}{9C_{\tau_{\Pi}}wf} - \frac{4f}{w} + \dots
$$

$$
\int_{\text{gradient expansion and a QNM}}
$$

$$
f = \sum_{n=0}^{\infty} \frac{f_n}{w^n} + \delta f + \mathcal{O}(\delta f^2)
$$

$$
\exp(-\frac{3}{2C_{\tau_{\Pi}}}w) \times \dots
$$

general solution has a trans-series form

$$
f = \sum_{m=0}^{\infty} (c_{amb} + r)^m \left\{ w^{\frac{C_{\eta}}{C_{\tau_{\Pi}}}} \exp\left(-\frac{3}{2C_{\tau_{\Pi}}}w\right) \right\}^m \sum_{n=0}^{\infty} a_{m,n} w^{-n}
$$

Divergent gradient expansion at weak coupling

M. P. Heller, A. Kurkela & M. Spaliński, work-in-progress

RTA kinetic theory

Natural language to talk about weakly coupled media is the Boltzmann equation:

$$
p^{\mu}\partial_{\mu}g(x,p) = C[g(x,p)] \text{ with } \langle T^{\mu\nu}\rangle(x) = \int_{\text{momenta}} g(x,p) p^{\mu}p^{\nu}
$$

LO $C[g(x,p)]$ for gauge theories is complicated. We will use instead

$$
C[g(x,p)] = -\frac{p^{\mu}u_{\mu}}{\hat{\tau}} \Big\{ g(x,p) - g_0(x,p) \Big\} \text{ with } g_0(x,p) = e^{\frac{u_{\mu}p^{\mu}}{T}}
$$

This equation is, typically, highly nonlinear due to $\langle T^{\mu\nu}\rangle u_{\nu} = -\mathcal{E}(T) u^{\mu}$

CFTs:
$$
p^{\mu}p_{\mu} = 0
$$
 and $\hat{T} = \frac{\gamma}{T}$. Note that γ can be scaled-away (we set it to 1).

Hydrodynamics in kinetic theory

We search for solution to

Landau matching allows us to obtain

$$
\partial_{\tau} g(\tau,p^y,p^\perp) = T(\tau) \Big\{ g(\tau,p^y,p^\perp) - \exp \left(- \frac{1}{T(\tau)} \sqrt{\tau^2 \left(p^y \right)^2 + \left(p^\perp \right)^2} \right) \Big\}
$$

of the form
$$
g(\tau, p^y, p^\perp) = \exp\left(-\frac{1}{T}\sqrt{\tau^2 (p^y)^2 + (p^\perp)^2}\right) \left\{1 + \sum_{n=1}^{\infty} \frac{1}{(\tau T)^n} g_n\left(\frac{\tau p^n}{T(\tau)}, \frac{p^\perp}{T(\tau)}\right)\right\}
$$

9/15 $f(w) = \frac{2}{2}$ $rac{1}{3}$ + 1 6 $\triangle \mathcal{P}$ *E* = 2 $\frac{2}{3}$ + 4 45 1 *w* $+$ 16 945 1 w^2 + *...* 0 50 100 150 200 n 10 20 30 40 $|f_n|^{1/n+1}$ η *s* = 1 $rac{1}{5}$ γ

QNM in kinetic theory

Gradient expansion in FRLW cosmology

A. Buchel, M. P. Heller & J. Noronha 1603.05344

Holographic dual to FRLW cosmology

Another symmetric flow: comoving plasma in a FRLW universe: $ds^2 = -dt^2 + a(t)^2 d\vec{x}^2$

For a CFT, equilibrium state in $R^{1,3}$ \longrightarrow equilibrium comoving plasma in FRLW: conformal

$$
\epsilon = \frac{3}{8}\pi^2 N_c^2 T^4 + \frac{3N_c^2 \dot{a}^4}{32\pi^2 a^4} \quad \text{and} \quad P = \frac{1}{3}\epsilon - \frac{N_c^2 \dot{a}^2 \ddot{a}}{8\pi^2 a^3} \quad \text{with} \quad T = \frac{\mu}{4\pi a}
$$

This is an all-order hydro answer in a CFT. Dual: slicing of AdS-Schwarzschild:

see also Siopsis et al. 0809.3505

$$
ds_5^2 = 2dt (dr - Adt) + \Sigma^2 dx^2 \text{ with } A = \frac{r^2}{8} \left(1 - \frac{\mu^4}{r^4 a^4} \right) - \frac{\dot{a}}{a} r \& \Sigma = \frac{ar}{2}
$$

No entropy production:
$$
r_{hor} = \frac{\mu}{a} \& A_{hor} = \frac{\mu^3}{8}
$$
. To introduce it
1505.03901
conformal

Hydrodynamic entropy production in FRLW

To **conformal** we consider:
$$
S_{EH} + \# \int d^5x \sqrt{-g} \left\{ (\partial \phi)^2 - \frac{\Delta(\Delta - 4)}{L^2} \phi^2 + \ldots \right\}
$$
 with

$$
\phi = r^{4-\Delta}J + \dots
$$
 and we work to LO in $\delta = \frac{J}{T^{4-\Delta}}$

For $\mathcal{N}=2^*$: $\Delta=2$ and $J\sim m_b^2$ or $\Delta=3$ and $J\sim m_f$ *b*

We get
$$
\frac{dA_{hor}}{dt} \sim (\partial_r \Sigma^3) \times (\partial_t \phi + A \partial_r \phi)^2 \Big|_{r=r_{hor}} + O(\delta^3)
$$

In the rest of my talk we focus on $(\partial_t \phi + A \partial_r \phi)$ alone $\overline{}$ $\overline{}$ $r=r_{hor}$ Key idea behind 1603.05344 solve EOM_{ϕ} (to express) in derivatives of $a(t)$

Numerical holography at the precision frontier

We find
$$
\phi = \delta
$$
 $a^{4-\Delta}(4-\Delta) \sum_{n=0}^{\infty} \frac{\mathcal{T}_{n,\Delta}[a]}{\mu^n} F_{\Delta,n} \left(\frac{\mu}{ar}\right)$

$$
\mathcal{T}_{\Delta,n} = a \dot{\mathcal{T}}_{\Delta,n-1} + (4-\Delta) \dot{a} \mathcal{T}_{\Delta,n-1}
$$

for $a = e^{Ht}$

$$
\mathcal{T}_{\Delta,n}[a] = \Gamma(n+4-\Delta)a^n H^n
$$

$$
\mathcal{T}_{\Delta,n}[a] = \Gamma(n+4-\Delta)a^n H^n
$$

$$
\mathcal{T}_{\Delta,n}[a] = \frac{8}{\Delta} \left(F'_{\Delta,n-1} - \frac{3}{2z} F_{\Delta,n-1}\right)
$$

divergent gradient expansion provided $(\sqrt{})$ $F_{\Delta,n}\left(\frac{\mu}{ar}\right)$ does not decay too fast with *n*

we solve $M_{ij}F^j_{\Delta,n}=B_i+2$ bdry cond where ij are indices of pseudospectral representation of $z = \frac{I^{\omega}}{I}$ coordinate *µ a r*

 $n_{max} = 300 \rightarrow 150$ points & 1000 digits

Key result (for $\Delta = 3$)

$$
\frac{dA_{hor}}{dt} \sim (\partial_r \Sigma^3) \times (\partial_t \phi + A \partial_r \phi)^2 \Big|_{r=r_{hor}} + O(\delta^3) \sim \left(\sum_{n=0}^{\infty} c_n \xi^n\right)^2 + O(\delta^3) \text{ with } \xi = \frac{H}{T}
$$

Executive summary

Support

Evolution equations for relativistic viscous fluids process to the extension of the extension of the setting valid valid valid valid valid valid valid valid valid v

$$
\nabla_{\mu}\{\epsilon u^{\mu}u^{\nu} + P(\epsilon)\{g^{\mu\nu} + u^{\mu}u^{\nu}\} - \eta(\epsilon)\sigma^{\mu\nu}\} = 0 \text{ is acausal.}
$$

Remedy: make
$$
\Pi^{\mu\nu} = \langle T^{\mu\nu} \rangle - (\epsilon u^{\mu} u^{\nu} + P(\epsilon) \{ g^{\mu\nu} + u^{\mu} u^{\nu} \})
$$
 a new DOF, e.g.
\n
$$
(\tau_{\Pi} \mathcal{D} + 1) \Pi^{\mu\nu} = -\eta \sigma^{\mu\nu}
$$

Small perturbations obey Maxwell-Cattaneo equation \mathbf{r} including modes with \mathbf{r} is relevant. We perform the performance \mathbf{r}

$$
\partial_t^2 \delta u_z - \frac{\eta}{s} \frac{1}{\tau_\Pi T} \partial_x^2 \delta u_z + \frac{1}{\tau_\Pi} \partial_t \delta u_z = 0
$$

Take it seriously:

$$
\omega = -i\frac{\eta}{sT}k^2 + \dots
$$
 and
$$
\omega = -i\frac{1}{\tau_{\Pi}} + i\frac{\eta}{sT}k^2 + \dots
$$
 hydrodynamics purely imaginary "quasinormal mode"

rium degrees of freedom as a means of ensuring hyper-

 $\overline{1}$ $\Big($ 1 *T* $(D)^2\,+\,2\omega_I$ 1 *T* $\mathcal{D} + |\omega|^2$ ◆ Generalization that adds $\text{Re}(\omega_{QNM})$: $\left((\frac{1}{T}\mathcal{D})^2 + 2\omega_I\frac{1}{T}\mathcal{D} + |\omega|^2\right)\Pi^{\mu\nu} = - |\eta|\omega|^2\sigma^{\mu\nu}$

D (1409.5087

Before that however, we would like to mention a pos-

sible alternative which aims to get rid of the nonphysical

frequency, one can never describe them using the MIS de-