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Relativistic hydrodynamics 
an EFT of the slow evolution of conserved 
currents in collective media close to equilibriumhydrodynamics is

DOFs: always local energy density   and local flow velocity      (              )
EOMs: conservation eqns                   for         expanded in gradients

✏ uµ u⌫u
⌫ = �1

Tµ⌫ = ✏uµu⌫ + P (✏){ gµ⌫ + uµu⌫ }� ⌘(✏)�µ⌫ � ⇣(✏){ gµ⌫ + uµu⌫ }(r · u) + . . .

shear viscosity bulk viscosity
(vanishes for CFTs)

microscopic
input:

EoS
P (✏) =

1

3
✏(             for CFTs)

rµhTµ⌫i = 0 hTµ⌫i

hTµ⌫i

This talk: behaviour of the gradient expansion at large orders in the number of
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Boost-invariance: in                                                                   coords no    -dep

[Bjorken 1982]

In a CFT:                                                                                     
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Boost-invariant flow
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⌧ Ė , E +

1

2
⌧ Ė
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Hydrodynamization
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1103.3452 (see also Chesler & Yaffe 0906.4426, 1011.3562)
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Hydrodynamics works despite
huge anisotropy captured by �⌘ �µ⌫

Ab initio calculation in N=4 SYM at strong coupling:
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Why hydrodynamization can occur?

M. P. Heller, R. A. Janik and P. Witaszczyk, 
Phys. Rev. Lett. 110, 211602 (2013), 1302.0697 



Excitations in strongly-coupled plasmas
see, e.g. Kovtun & Starinets [hep-th/0506184]
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.

behavior of the lowest (hydrodynamic) frequency which is absent for Eα and Z3. For Ez and

Z1, hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) and (4.32) for small

ω and q), and presumably move off to infinity as q becomes large. For Z2, the hydrodynamic

frequency has both real and imaginary parts (given by Eq. (4.44) for small ω and q), and

eventually (for large q) becomes indistinguishable in the tower of other eigenfrequencies. As an

example, dispersion relations for the three lowest quasinormal frequencies in the sound channel

(including the one of the sound wave) are shown in Fig. 6. The tables below give numerical

values of quasinormal frequencies for = 1. Only non-hydrodynamic frequencies are shown

in the tables. The position of hydrodynamic frequencies at = 1 is = −3.250637i for the

R-charge diffusive mode, = −0.598066i for the shear mode, and = ±0.741420−0.286280i

for the sound mode. The numerical values of the lowest five (non-hydrodynamic) quasinormal

frequencies for electromagnetic perturbations are:

Transverse channel Diffusive channel

n Re Im Re Im

1 ±1.547187 −0.849723 ±1.147831 −0.559204

2 ±2.398903 −1.874343 ±1.910006 −1.758065

3 ±3.323229 −2.894901 ±2.903293 −2.891681

4 ±4.276431 −3.909583 ±3.928555 −3.943386

5 ±5.244062 −4.920336 ±4.946818 −4.965186

and for gravitational perturbations are:

Scalar channel Shear channel Sound channel

n Re Im Re Im Re Im

1 ±1.954331 −1.267327 ±1.759116 −1.291594 ±1.733511 −1.343008

2 ±2.880263 −2.297957 ±2.733081 −2.330405 ±2.705540 −2.357062

3 ±3.836632 −3.314907 ±3.715933 −3.345343 ±3.689392 −3.363863

4 ±4.807392 −4.325871 ±4.703643 −4.353487 ±4.678736 −4.367981

5 ±5.786182 −5.333622 ±5.694472 −5.358205 ±5.671091 −5.370784

– 26 –

Im!/2⇡T

Re!/2⇡T

k/2⇡T

k/2⇡T

1st

2nd

3rd

1st

2nd

3rd

!(k) ! 0          as        : slowly dissipating modes (hydrodynamic sound waves)k ! 0

all the rest: far from equilibrium (QNM) modes damped over 

@!

@k

���
k!0

= c
sound

ttherm = O(1)/T

4/15

N=4 SYM



Hydrodynamic gradient expansion is divergent

In 1302.0697 we computed                                  up to                 :O(w�240)
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Hydrodynamics and QNMs

Analytic continuation of                                   revealed the following singularities:fB(⇠) ⇡
240X

n=0

1

n!
fn ⇠
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Branch cut singularities start at                  !3

2
i!QNM1
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N=4 SYM

1302.0697



Resumming gradient expansion
in MIS theory

M. P. Heller, M. Spaliński, 
Phys. Rev. Lett. 115, 072501 (2015), 1503.07514 



The boost-invariant MIS theory
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gradient expansion and a QNM

general solution has a trans-series form



Divergent gradient expansion at 
weak coupling

M. P. Heller, A. Kurkela & M. Spaliński, 
work-in-progress



RTA kinetic theory
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Natural language to talk about weakly coupled media is the Boltzmann equation:

p

µ
@µg(x, p) = C[g(x, p)] with

LO                 for gauge theories is complicated.  We will use instead

hTµ⌫i(x) =
Z

momenta

g(x, p) pµp⌫

C[g(x, p)]

withC[g(x, p)] = �p

µ
uµ

T̂

n

g(x, p)� g0(x, p)
o

g0(x, p) = e

uµpµ

T

This equation is, typically, highly nonlinear due to hTµ⌫iu⌫ = �E(T )uµ

CFTs:                  and             .  Note that     can be scaled-away (we set it to 1). pµpµ = 0 T̂ =
�

T
�



Hydrodynamics in kinetic theory
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We search for solution to                                             

of the form

@⌧g(⌧, p
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QNM in kinetic theory
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Gradient expansion 
in FRLW cosmology

A. Buchel, M. P. Heller & J. Noronha 
1603.05344



Holographic dual to FRLW cosmology
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Another symmetric flow: comoving plasma in a FRLW universe: 

For a CFT, equilibrium state in R1,3                 equilibrium comoving plasma in FRLW: 

ds

2 = �dt

2 + a(t)2d~x2

conformal
trafo

✏ =
3

8
⇡2N2

c T
4 +

3N2
c ȧ4
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3
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2ä
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µ

4⇡a

This is an all-order hydro answer in a CFT. Dual: slicing of AdS-Schwarzschild:

with &
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see also Siopsis et al. 0809.3505 

see Rozali et al. 
1505.03901
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Hydrodynamic entropy production in FRLW
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To  conformal  we consider :  withSEH +#
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Key idea behind                   : solve EOM   (to express      ) in derivatives of 1603.05344 � a(t)



Numerical holography at the precision frontier
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We find

for              : 

divergent gradient expansion provided (    )
              does not decay too fast with n

MijF
j
�,n

�Bi

we solve                        + 2 bdry condMijF
j
�,n = Bi

where     are indices of pseudospectral
representation of              coordinate

ij

z =
µ

a r
150 points & 1000 digitsn

max

= 300



Key result (for         )
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Executive summary



hydrodynamic gradient expansion diverges
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pheno:
hydrodynamization

(cold atoms???)

towards genericity:
2 flows

       + 1 QFTs + MIS + RTA

new connections:
resurgent series (also in QM & QFT)

precision calculations 
in NumHol

1



Support



Evolution equations for relativistic viscous fluids

Tµ⌫ = ✏uµu⌫ + P (✏){ gµ⌫ + uµu⌫ }� ⌘(✏)�µ⌫ � ⇣(✏){ gµ⌫ + uµu⌫ }(r · u) + . . .rµ

�  
= 0

Remedy: make                                                                     a new DOF, e.g. ⇧µ⌫ = hTµ⌫i � (✏uµu⌫ + P (✏){gµ⌫ + uµu⌫})

Small perturbations obey Maxwell-Cattaneo equation

extra
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hydrodynamics purely imaginary “quasinormal mode”
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sT
k2 + . . .

Take it seriously: 

is acausal.

4

situations, where only a single QNM dominates the ap-
proach to equilibrium. Setting vanishing initial condi-
tions for ⇧̃µ⌫ reduces the theory to standard MIS, while
incorporating some nontrivial initial conditions allows us
to examine the physical e↵ects of the least damped non-
hydrodynamic degrees of freedom. This theory could be
used as an alternative to MIS hydrodynamics in situa-
tions, when an account of early pre-equilibrium dynamics
including modes with <(!) 6= 0 is relevant. We perform
various tests of this theory in the following section.

Before that however, we would like to mention a pos-
sible alternative which aims to get rid of the nonphysical
MIS mode altogether and use the physical nonequilib-
rium degrees of freedom as a means of ensuring hyper-
bolicity. Note that since the QNM have a sizable real
frequency, one can never describe them using the MIS de-
caying mode. This has already been emphasized in [19].

Heuristically one could proceed by using eq. (13)
and (8) in eq. (12) to find

✓
(
1

T
D)2 + 2!

I

1

T
D + |!|2

◆
⇧µ⌫ =

� ⌘|!|2�µ⌫ � c
�

1

T
D (⌘�µ⌫) + . . . (17)

where the ellipsis denotes contributions of second and
higher order in gradients. Of all possible second order
terms only one term has been kept, with a coe�cient c

�

,
which is treated as an arbitrary parameter5. This term is
included explicitly, since it improves the stability of (17).

The key property of eq. (17) is that linearization
around an equilibrium background leads to a system
of partial di↵erential equations which is hyperbolic for
c
�

� 0. The characteristic velocity in the sound channel
is found to be

v =
1p
3

⇣
1 +

c
�

⇡

⌘
1/2

, (18)

so for causality one must further impose c
�

 2⇡ (this in
fact ensures causality in all channels).

For a numerical treatment of Eq. (17) it is important
that exponentially growing modes be absent. Whether
Eq. (17) is stable in this sense depends on the values of
parameters such as the QNM frequencies and the viscos-
ity to entropy ratio. This is similar the case the MIS
equations. However, unlike that case, for the values of
⌘/s and !

R,I

characteristic of N = 4 SYM, eq. (17) con-
tains exponentially unstable modes with high k. This
renders these equations (as they stand) unsuitable for
numerical evaluation and comparison to the results of
simulations based on the AdS/CFT correspondence. Let
us emphasize, however, that these unstable modes appear

5 Solving eq. (8) in the gradient expansion shows that c� con-
tributes to second order transport coe�cients.

far outside the range of applicability of the long wave-
length description (e.g. with wave vectors k > 18.5T if
one chooses c

�

= 2⇡). It would be interesting to inves-
tigate whether one could modify Eq. (17) to cure this
pathology. This question is set aside for the moment,
and we henceforth concentrate on the simplest formula-
tion given by Eq. (16) and Eq. (12).

TESTS

An essential part of this Letter is testing the equations
(16) and (12), (15) against microscopic numerical com-
putations of N = 4 SYM plasma based on the AdS/CFT
correspondence. This requires setting the parameters to
appropriate values, i.e. ⌘/s = 1/4⇡ and !

R,I

as in eq. (4).
We also set ⌧

⇧

= 1/(2⇡), which is the smallest value al-
lowed by causality.
Here we consider two particularly symmetric configu-

rations: homogeneous isotropization and boost-invariant
flow. It is worth emphasizing at this point that homoge-
neous isotropization cannot be described at all by con-
ventional Landau-Lifshitz viscous hydrodynamics.
The AdS/CFT computations are based on numeri-

cal solutions of (4 + 1)-dimensional Einstein’s equations
with negative cosmological constant obtained following
the methods developed in [20, 21] and [5, 22]. This we
compare to numerical solutions of the new phenomeno-
logical equations initialized by specifying just the energy,
pressure anisotropy and its time derivative which we take
to agree with the values extracted from a particular nu-
merical solution of Einstein equations at the specific ini-
tialization time.
The results for holographic isotropization, depicted on

Fig. 1, show that for late enough initialization, eq. (16)
captures both the qualitative and quantitative features
of the pressure anisotropy relaxation. Comparison to
a solution of linearized Einstein’s equations, which can
be superficially thought of as a sum over all quasinor-
mal modes in this system, demonstrates that the appli-
cability of the new equations is not limited by the far-
from-equilibrium nonlinear e↵ects not captured by it, but
rather by the presence of the higher quasinormal modes
(as clearly seen in the center and right plots in Fig. 1).
The case of boost-invariant flow is presented in Fig. 2,

which shows clearly that the MIS approach captures the
late time tail very well, as do the new equations proposed
here. However, at earlier times eq. (16) provides a much
more accurate picture. Estimates of the final tempera-
ture are also more accurate if eq. (16) is used. For initial
conditions involving many QNMs the agreement at early
times should not be as good (in analogy with what is
seen in Fig. 1). Also, for initial conditions where no no-
hydrodynamic modes are excited at early times, e↵ects
of second and higher order (or possibly resummed [23])
hydrodynamics may become important.
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situations, where only a single QNM dominates the ap-
proach to equilibrium. Setting vanishing initial condi-
tions for ⇧̃µ⌫ reduces the theory to standard MIS, while
incorporating some nontrivial initial conditions allows us
to examine the physical e↵ects of the least damped non-
hydrodynamic degrees of freedom. This theory could be
used as an alternative to MIS hydrodynamics in situa-
tions, when an account of early pre-equilibrium dynamics
including modes with <(!) 6= 0 is relevant. We perform
various tests of this theory in the following section.

Before that however, we would like to mention a pos-
sible alternative which aims to get rid of the nonphysical
MIS mode altogether and use the physical nonequilib-
rium degrees of freedom as a means of ensuring hyper-
bolicity. Note that since the QNM have a sizable real
frequency, one can never describe them using the MIS de-
caying mode. This has already been emphasized in [19].
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tains exponentially unstable modes with high k. This
renders these equations (as they stand) unsuitable for
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us emphasize, however, that these unstable modes appear
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length description (e.g. with wave vectors k > 18.5T if
one chooses c
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= 2⇡). It would be interesting to inves-
tigate whether one could modify Eq. (17) to cure this
pathology. This question is set aside for the moment,
and we henceforth concentrate on the simplest formula-
tion given by Eq. (16) and Eq. (12).

TESTS

An essential part of this Letter is testing the equations
(16) and (12), (15) against microscopic numerical com-
putations of N = 4 SYM plasma based on the AdS/CFT
correspondence. This requires setting the parameters to
appropriate values, i.e. ⌘/s = 1/4⇡ and !
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as in eq. (4).
We also set ⌧
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= 1/(2⇡), which is the smallest value al-
lowed by causality.
Here we consider two particularly symmetric configu-

rations: homogeneous isotropization and boost-invariant
flow. It is worth emphasizing at this point that homoge-
neous isotropization cannot be described at all by con-
ventional Landau-Lifshitz viscous hydrodynamics.
The AdS/CFT computations are based on numeri-

cal solutions of (4 + 1)-dimensional Einstein’s equations
with negative cosmological constant obtained following
the methods developed in [20, 21] and [5, 22]. This we
compare to numerical solutions of the new phenomeno-
logical equations initialized by specifying just the energy,
pressure anisotropy and its time derivative which we take
to agree with the values extracted from a particular nu-
merical solution of Einstein equations at the specific ini-
tialization time.
The results for holographic isotropization, depicted on

Fig. 1, show that for late enough initialization, eq. (16)
captures both the qualitative and quantitative features
of the pressure anisotropy relaxation. Comparison to
a solution of linearized Einstein’s equations, which can
be superficially thought of as a sum over all quasinor-
mal modes in this system, demonstrates that the appli-
cability of the new equations is not limited by the far-
from-equilibrium nonlinear e↵ects not captured by it, but
rather by the presence of the higher quasinormal modes
(as clearly seen in the center and right plots in Fig. 1).
The case of boost-invariant flow is presented in Fig. 2,

which shows clearly that the MIS approach captures the
late time tail very well, as do the new equations proposed
here. However, at earlier times eq. (16) provides a much
more accurate picture. Estimates of the final tempera-
ture are also more accurate if eq. (16) is used. For initial
conditions involving many QNMs the agreement at early
times should not be as good (in analogy with what is
seen in Fig. 1). Also, for initial conditions where no no-
hydrodynamic modes are excited at early times, e↵ects
of second and higher order (or possibly resummed [23])
hydrodynamics may become important.

Generalization that adds                   : Re(!QNM )
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