Next-to-leading order npi calculations

M.E. Carrington Brandon University

Collaborators: WeiJie Fu, Brett Meggison, Kiyoumars Sohrabi, D. Pickering

August 17, 2016

Carrington, Aug 17, 2016, CERN (slide 1 of 48)

イロト イヨト イヨト イヨト

Outline

Introduction

Introduction to npi Why higher order npi?

Variational equations of motion

4pi in 3-dimensions

Renormalization in 4-dimensions 4-loop 2pi numerical results

Renormalization group and npi

Method 3-loop 2pi – results 4-loop 4pi – in progress

Conclusions

・ロン ・回と ・ヨン・

æ

Introduction

strong coupling \rightarrow can't use standard perturbation theory

need non-perturbative techniques

different approaches (for example):

- lattice calculations
- $\rightarrow~$ continuum and infinite volume limits
- continuum methods
- Schwinger-Dyson equations
- n-particle irreducible (npi) effective theories
- renormalization group (RG)
- ightarrow truncation

Carrington, Aug 17, 2016, CERN (slide 3 of 48)

イロト イヨト イヨト イヨト

issues:

- physics (?)
- symmetries (gauge invariance)
- renormalization
- computational advantages

this talk: npi using a renormalization group approach I will discuss mostly symmetric scalar φ^4 theory

- 4 同 6 4 日 6 4 日 6

Introduction

Variational equations of motion 4pi in 3-dimensions Renormalization in 4-dimensions Renormalization group and npi Conclusions

Introduction to npi

2pi for scalar theories:

generating functional with local and bi-local sources

$$Z[J,B] = e^{iW[J,B]} = \int \mathcal{D}\varphi e^{i(S[\varphi] + J_i\varphi_i + \frac{1}{2}\varphi_i B_{ij}\varphi_j)}$$

short-hand notation:

$$\int dx \int dy \ \varphi(x) B(x,y) \varphi(y) \to \varphi_i B_{ij} \varphi_j \to B \varphi^2$$

Carrington, Aug 17, 2016, CERN (slide 5 of 48)

・ロン ・回と ・ヨン ・ヨン

æ

Introduction

Variational equations of motion 4pi in 3-dimensions Renormalization in 4-dimensions Renormalization group and npi Conclusions

Legendre transform:

$$\begin{split} \Gamma[\phi, G] &= W[J, B] - J_i \phi_i - \frac{1}{2} B_{ij} \phi_i \phi_j \\ &= S_{\rm cl}[\phi] + \frac{i}{2} {\rm Tr} \ln G^{-1} + \frac{i}{2} {\rm Tr} \, G_0^{-1} (G - G_0) + \Gamma_2[\phi, G] \end{split}$$

1

 $\Gamma[\phi, G]$ is a functional of the 1- and 2-point functions ϕ and G determined self-consistently from equations of motion variational principle (in the absence of sources)

$$\frac{\delta\Gamma}{\delta\phi} = \frac{\delta\Gamma}{\delta G} = 0$$

Carrington, Aug 17, 2016, CERN (slide 6 of 48)

・ロン ・回と ・ヨン ・ヨン

compare to $\Gamma[\phi] = 1$ pi effective action:

- $\Gamma[\phi, G]$ depends on the self consistent propagator
- \rightarrow truncated $\Gamma[\phi, \textit{G}]$ includes an infinite resummation of diagrams
- \rightarrow non-perturbative
- $\Gamma[\phi, G]$ is 2pi no double counting

Carrington, Aug 17, 2016, CERN (slide 7 of 48)

Introduction

Variational equations of motion 4pi in 3-dimensions Renormalization in 4-dimensions Renormalization group and npi Conclusions

npi effective action

npi Γ is a functional of *n*-point functions

Зрі Г $[\phi, G, U]$, 4рі Г $[\phi, G, U, V]$ \cdots

n-point functions determined self-consistently from the eom's

- \Rightarrow hierarchy of coupled equations
 - no exact solution method is available
 - use approximation techniques: truncate the effective action

イロト イポト イヨト イヨト

Introduction

Variational equations of motion 4pi in 3-dimensions Renormalization in 4-dimensions Renormalization group and npi Conclusions

non-perturbative

infinite resummations of selected classes of diagrams

- action based approximation
 - ightarrow symmetries of original theory
- renormalizable ?

renormalization of 2pi effective action is understood

- can't apply same method to higher order approximations
- proposal: renormalization group (RG) method

イロト イヨト イヨト イヨト

Why to we need higher order npi?

- hierarchy: if i truncate at L loops
 - \rightarrow the ($n \ge L$) effective actions are the same
 - or the *n*-loop *n*pi effective action is complete
 - J. Berges, Phys. Rev. D70, 105010 (2004).
- *n*-loop *n*pi effective action preserves gauge invariance to the order of the truncation

A. Arrizabalaga and J. Smit, Phys.Rev. D66, 065014 (2002),

MEC, G. Kunstatter and H. Zaraket, Eur. Phys. J. C 42, 253 (2005).

- example: 3d SU(N) Higgs model 3-loop 2pi
 - \rightarrow strong gauge dependence
 - G. Moore and M. Abraao-York, JHEP 1410, 105 (2014).

□ > < @ > < @ > < @ >

- in gauge theories LO transport coefficients require 3-loop 3pi (collinear singularities / LPM / vertex corrections) MEC and E. Kovalchuk, Phys. Rev. D80, 085013 (2009).
- example: 4pi symmetric φ⁴ theory 3 dimensions 4-loop
 4pi contributions important at large couplings
 MEC, WeiJie Fu, P. Mikula and D. Pickering, PRD89, 025013 (2014).
- ► example: 2pi symmetric φ⁴ theory in 4d 2/3/4 loops convergence much better than perturbation theory but strong deviations at large coupling
 - indicates a break down of 2pi approximation
 - need for vertex corrections

MEC, B.A. Meggison and D. Pickering, arXiv:1603.02085.

イロト イヨト イヨト イヨト

examples of variational eom's

$$\begin{split} \Phi &= \Phi_{\rm no\cdot int} + \Phi_{\rm int} \qquad (\Phi = i\Gamma) \\ \Phi_{\rm no\cdot int} &= -\frac{1}{2} \phi G_{\rm no\cdot int}^{-1} \phi - \frac{1}{2} {\rm Tr} \ln G^{-1} - \frac{1}{2} {\rm Tr} G_{\rm no\cdot int}^{-1} G \end{split}$$

$\Phi_{\rm int}$ 4-loop 2pi (symmetric)

Carrington, Aug 17, 2016, CERN (slide 12 of 48)

(ロ) (同) (E) (E) (E)

npi 2-point functions

$$\begin{split} & \left. \frac{\delta \Phi}{\delta G} \right|_{\substack{\phi = 0 \\ G = \tilde{G}}} = 0 \quad \to \quad \tilde{G}^{-1} = G_0^{-1} + \Sigma \\ & \Sigma = 2 \frac{\delta \Phi_{\text{int}}}{\delta G} \right|_{\substack{\phi = 0 \\ G = \tilde{G}}} \end{split}$$

3 loop 2pi

Carrington, Aug 17, 2016, CERN (slide 13 of 48)

イロン イヨン イヨン イヨン

æ

4-loop 4pi

MEC and Yun Guo, PRD 83, 016006 (2010); PRD 85, 076008 (2012).

Carrington, Aug 17, 2016, CERN (slide 14 of 48)

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

npi 4-vertices

Bethe-Salpeter vertex (4-loop 2pi)

Carrington, Aug 17, 2016, CERN (slide 15 of 48)

イロト イヨト イヨト イヨト

æ

Variational 4-vertex (4-loop 4pi)

 $rac{\delta \Phi_{\mathrm{int}}}{\delta V} = 0$

2pi or 4pi: coupled self-consistent eom's for the 2- and 4-point functions

Carrington, Aug 17, 2016, CERN (slide 16 of 48)

<ロ> (日) (日) (日) (日) (日)

æ

2pi and 4pi in 3-dimensions

** no vertex counter-terms

method:

- rotate to Euclidean space
- ► N^d symmetric lattice: lattice spacing a = 2π/(Nm) each momentum component is discretized:

$$Q_i = \frac{2\pi}{aN}n_i = m n_i, \quad n_i = -\frac{N}{2} + 1, ..., \frac{N}{2}$$

periodic boundary conditions

 \blacktriangleright numerical iterative method \rightarrow search for fixed points

J. Berges, Sz. Borsányi, U. Reinosa, and J. Serreau, PRD 71, 105004 (2005) 99

Carrington, Aug 17, 2016, CERN (slide 17 of 48)

Memory constraints:

points in phase space of a vertex is $N^{I \times d}$ *I* is the number of independent momenta and *d* is the dimension for *V*: *I* = 3, *d* = 3, $N_{\text{max}} = 12 \implies 5.16 \times 10^9$ points

trick: reduce the phase space using the symmetries of the vertex - V is symmetric under interchange of legs and dirns in \vec{p} space - don't need to calculate all points table: size of phase space and # of needed representative points

Ν	$N^{3\cdot(d=3)}$	# of reprs
6	10,077,696	11,424
8	134,217,728	129,502
10	1,000,000,000	913,661
12	5,159,780,352	4,608,136

Carrington, Aug 17, 2016, CERN (slide 18 of 48)

results

for certain momentum configurations M and V are close together

- this happens when s-channel contributions are big

MEC, Wei-Jie Fu, P. Mikula and D. Pickering, Phys. Rev. D 89, 025013 (2014)

Carrington, Aug 17, 2016, CERN (slide 19 of 48)

Npi renormalization - 4 dimensions

4-loop 2pi 4-kernel Λ

the 2-loop diagrams contain nested 1-loop subdivergences \rightarrow two 1-loop counter-terms must cancel two different 1-loop boxes

 \Rightarrow can see there is no one $\delta\lambda_1$ that works

() < </p>

How to see the problem:

variational principle [2pi effective action] \rightarrow set of eom's expand these eom's \rightarrow infinite set of diagrams compare with *n*-pt fcns from the 1pi effective action \rightarrow some diagrams are missing - some have different S factors different combinatorics \Rightarrow renormalization not the same

Remember: the goal of npi is not to include everything but to include what is hopefully the physically important contros

イロト イポト イヨト イヨト

Resolution for 2pi: 2 counter-terms

 $\delta \lambda_{\rm bb}$ absorbs divergences in Λ except for global divergence different $\delta \lambda_{\rm et}$ absorbes global divergences in Λ

chain the Λ 's in the *s*-channel to make M

 \rightarrow new divergences in ${\it M}$ absorbed by adjusting $\delta \lambda_{\rm et}$

KEY: no new divergences from boxes drawn thru Λ (it's 2pi)

conclusion: need 2 ct's . . . sounds bad . . . BUT

1) they both come from the action

2) at $L \to \infty$ loops they are equal

H. van Hees, J. Knoll, Phys. Rev. D65, 025010 (2002);
J-P Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A736, 149 (2004);
J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Annals Phys. 320, 344 (2005).

・ロト ・同ト ・ヨト ・ヨト

comment:

3-loop level \rightarrow only need one ct (Λ has only global divergence)

generic procedure:

- (1) determine $\delta \lambda_{\rm et}$ to make Λ finite
- (2) adjust $\delta \lambda_{
 m et}$ to make M finite
- \rightarrow combine in one step
- \Rightarrow the structure with 2 cts can only be verified at the 4-loop level

イロト イポト イヨト イヨト

4-loop 2pi - Numerical Method

- Euclidean space
- discretized Cartesian co-ordinates
- ► momentum phase space is managable → fast Fourier transforms for speed

Carrington, Aug 17, 2016, CERN (slide 24 of 48)

Numerical Results - arXiv:1603.02085

Carrington, Aug 17, 2016, CERN (slide 25 of 48)

The symmetric vertex as a function of momentum cutoff

Carrington, Aug 17, 2016, CERN (slide 26 of 48)

æ

Conclusions so far

- 4pi versus 2pi in 3d: BS vertex doesn't capture all physics in 4pi variational vertex
- 2pi in 4d:

4-loop contro impt at large $\lambda \rightarrow$ breakdown of 2pi expansion

 \Rightarrow need for higher order approximations (n > 2)pi

Must develop another method to renormalize

イロト イポト イヨト イヨト

Renormalization group method

add to the action a non-local regulator term $\Delta S_{\kappa}[arphi] = -rac{1}{2}R_{\kappa}arphi^2$

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Carrington, Aug 17, 2016, CERN (slide 28 of 48)

family of theories indexed by the continuous parameter κ

fluctuations are smoothly taken into account as $\boldsymbol{\kappa}$ is lowered to zero

- $\kappa \rightarrow \infty$ regulated action \rightarrow classical action
- $\kappa \rightarrow 0$ regulated action \rightarrow full quantum action

J.-P. Blaizot, A. Ipp, N. Wschebor, Nucl. Phys. A **849**, 165 (2011) J.-P. Blaizot, J.M. Pawlowski and U. Reinosa, Phys. Lett. B **696**, 523 (2011)

イロト イポト イヨト イヨト

generating functionals defined in the usual way

$$Z_{\kappa}[J,B] = \int [d\varphi] \exp\left\{i\left(S[\varphi] - \frac{1}{2}\hat{R}_{\kappa}\varphi^{2} + J\varphi + \frac{1}{2}B\varphi^{2} + \cdots\right)\right\}$$

calculate 1pi, 2pi, · · · effective action

action depends on κ : Φ_{κ}

action flow eqn:
$$\partial_{\kappa} \Phi_{\kappa} = \frac{1}{2} \partial_{\kappa} R_{\kappa} G$$

C. Wetterich, Phys. Lett., B 301, 90 (1993).

イロン イヨン イヨン イヨン

æ

Method

n-point functions depend on κ

(1) choose an uv scale $\kappa = \mu$ (defn of bare parameters)

theory is classical at this scale (all fluctuations suppressed)

 \rightarrow n-point functions are known functions of the bare parameters

(2) derive a hierarchy of differential 'flow' equations

 \rightarrow relate κ dependent $\mathit{n}\text{-point}$ functions and their derivatives wrt κ

(3) solve flow equations starting from bc's at $\kappa = \mu$

 \rightarrow obtain the *n*-point fcns at $\kappa = 0$ (the quantum solutions)

イロト イポト イヨト イヨト

Tuning

Conventional calculation

definitions of the physical parameters \leftrightarrow RConds

 \rightarrow extract bare parameters (ct's) directly from RConds

RG calculation

definition of physical parameters ($\kappa = 0$)

 \rightsquigarrow constrains initial conditions on the flow equations ($\kappa=\mu)$

tuning procedure:

- choose the physical parameters
- make a guess for bare parameters from which to start the flow
- solve flow equations find produced values of physical parameters
- adjust the bare parameters and repeat

イロン イヨン イヨン イヨン

Hierarchy of flow equations

definitions of kernels:
$$\Phi_{\text{int}\cdot\kappa}^{(n,m)} = 2^m \frac{\delta^n}{\delta\phi^n} \frac{\delta^m}{\delta G^m} \Phi_{\text{int}} \Big|_{\substack{G=G_\kappa\\\phi=o}}$$

rename important kernels:

$$\Phi^{(0,1)}_{{
m int}\cdot\kappa}=\Sigma\,,\quad \Phi^{(0,2)}_{{
m int}\cdot\kappa}=\Lambda\,,\quad \Phi^{(0,3)}_{{
m int}\cdot\kappa}=\Upsilon$$

Carrington, Aug 17, 2016, CERN (slide 33 of 48)

・ロト ・回ト ・ヨト ・ヨト

æ

derivatives of action flow eqn:

$$\partial_{\kappa} \Phi_{\mathrm{int}\cdot\kappa}^{(n,m)} \bigg|_{\substack{G=G_{\kappa}\\ \phi=o}} = \frac{1}{2} \int dQ \, \partial_{\kappa} \left(R_{\kappa} + \Sigma_{\kappa}^{01} \right) G_{\kappa}^{2}(Q) \, \Phi_{\mathrm{int}\cdot\kappa}^{(n,m+1)}(Q, \) \bigg|_{\substack{G=G_{\kappa}\\ \phi=o}}$$

 \Rightarrow infinite hierarchy of coupled flow eqns for the n-point kernels important features of these flow equations

- truncate when action is truncated
- preserve symmetries of the action

(4月) イヨト イヨト

3-loop 2pi - symmetric

Carrington, Aug 17, 2016, CERN (slide 35 of 48)

$$\Sigma$$
 flow equation: $\partial_{\kappa}\Sigma(P) = rac{1}{2}\int dQ\,\partial_{\kappa}(R_{\kappa}+\Sigma)\,G_{\kappa}^2\,\Lambda(Q,P)$

 $\Lambda \text{ flow equation: } \partial_{\kappa}\Lambda(P,K) = \frac{1}{2}\int dQ \,\partial_{\kappa}(R_{\kappa}+\Sigma) \,G_{\kappa}^2\,\Upsilon(Q,P,K)$

Carrington, Aug 17, 2016, CERN (slide 36 of 48)

TRUNCATION

8 leg kernel = const $\partial_{\kappa} \Upsilon$ is an exact differential \rightarrow don't need the Υ flow equation integration constant $\Upsilon_{\kappa=\mu} = 0$ - no 6-vertex in Lagrangian

Carrington, Aug 17, 2016, CERN (slide 37 of 48)

・ロト ・回ト ・ヨト ・ヨト

3

CONSISTENCY

must show bc's
$$(\kappa = \mu) \Leftrightarrow \operatorname{RC's} (\kappa = 0)$$

 Λ flow equation $\rightarrow \Lambda_{\kappa}(P, Q) + C$
 C is a κ independent integration constant
apply RC \Rightarrow choose $C = -\lambda - \Lambda_0(0, 0)$
 $\rightarrow -\lambda + \Lambda_{\kappa}(P, Q) - \Lambda_0(0, 0)$
rewrite: $-\lambda + [\Lambda_{\kappa}(0, 0) - \Lambda_0(0, 0)] + [\Lambda_{\kappa}(P, Q) - \Lambda_{\kappa}(0, 0)]$
rearrange: $-\lambda_{\mu} + [\Lambda_{\kappa}(P, Q) - \Lambda_{\mu}(0, 0)]$
 $\rightarrow 0$ as $\kappa \rightarrow \mu \gg \{P, Q\}$ we can set $m \in \mathbb{R}$

Carrington, Aug 17, 2016, CERN (slide 38 of 48)

$$\Sigma$$
 flow equation $\rightarrow G_{\kappa}^{-1} = P^2 + m^2 + \Sigma_{\kappa}(P) + C$

RC's on 2-pt fcn
$$G_0^{-1}(0) = m^2$$
, $\frac{d}{dP^2}G_0^{-1}\Big|_{P=0} = 1$

$$ightarrow$$
 choose $C=-(\Sigma_0(0)+P^2\Sigma_0'(0))$

show that with this choice of C the limit $\kappa \to \mu \gg P$ gives

$$G_{\mu}^{-1} = Z_{\mu}(P^2 + m_{\mu}^2)$$

with Z_{μ} and m_{μ} momentum independent

 \rightarrow all divergent contributions can be absorbed into defns of $m_{\mu},\,Z_{\mu}$

(ロ) (同) (E) (E) (E)

comment: the flow equation $\partial_{\kappa}\Lambda$ doesn't have to be solved (1) Λ has only a global (1-loop) divergence (2) Integration constant (λ_{μ}) comes from bare lagrangian

$$\Lambda_\kappa(P,Q) = -\lambda_\mu + rac{\lambda^2}{2}\int dQ \ G_\kappa(Q) ig[G_\kappa(Q+P-K) + G_\kappa(Q+P+K)ig]$$

Carrington, Aug 17, 2016, CERN (slide 40 of 48)

イロト イヨト イヨト イヨト

satisfies

$$\partial_{\kappa} \Lambda(P,K) = rac{1}{2} \int dQ \partial_{\kappa} \left(R_{\kappa} + \Sigma
ight) G_{\kappa}^2 \Upsilon(Q,P,K)$$

with

$$\Upsilon(Q, P, K) = -\lambda^2 (G_\kappa (Q + P + K) + G_\kappa (Q + P - K)) + G_\kappa (Q - P + K) + G_\kappa (Q - P - K)).$$

and

$$\lim_{\kappa \to \mu} \Lambda(P, K) = -\lambda_{\mu}$$

Carrington, Aug 17, 2016, CERN (slide 41 of 48)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

vertex as a function of the momentum cutoff (T=2 and $\lambda=1$)

Carrington, Aug 17, 2016, CERN (slide 42 of 48)

4-loop 4pi (symmetric)

action $\Phi[G, V]$

 \rightarrow functional of self-consistently determined 2- and 4-pt functions

 \Rightarrow two interdependent hierarchys of flow equations

V flow equation

$$\partial_{\kappa} V(P_1, P_2, P_3) = \frac{1}{2} \int dQ \, \partial_{\kappa} \big[R_{\kappa}(Q) + \Sigma(Q) \big] G_{\kappa}^2(Q) \Phi^{011}(Q; P_1, P_2, P_3)$$

Carrington, Aug 17, 2016, CERN (slide 43 of 48)

V flow eqn has same structure as the 3-loop 2pi Λ flow eqn choose integration constant C so:

(1) RC $V_{\kappa=0}(0) = -\lambda$ satisfied at $\kappa = 0$

(2) overall divergence $\rightarrow \vec{p}$ independent bare coupling at $\kappa = \mu$

(ロ) (同) (E) (E) (E)

$\boldsymbol{\Sigma}$ flow equations

$$\partial_{\kappa}\Sigma(P) = \frac{1}{2}\int dQ \,\partial_{\kappa}(\Sigma(Q) + R_{\kappa}(Q)) G_{\kappa}^{2}(Q) \,\Lambda(P,Q)$$
$$\partial_{\kappa}\Lambda(P,K) = \frac{1}{2}\int dQ \,\partial_{\kappa}(\Sigma(Q) + R_{\kappa}(Q)) G_{\kappa}^{2}(Q) \,\Upsilon(P,K,Q)$$

 Λ as given by the functional derivs contains 2-loop diagrams

- can't substitute it on the rhs of the first equation
- would give \vec{p} dependent sub-divergences \nrightarrow bare parameters
- \Rightarrow instead we must solve Λ flow equation

イロン イヨン イヨン イヨン

- the kernel Υ has divergent 1-loop contributions
- also has a tree vertex

Q: can i replace it with λ_{μ} and truncate the hierarchy here ? combinatorics:

the RC on *M* 'tunes' to λ_{μ} which cancels the 1-loop divs in Υ

< E.

4pi RG - Numerical Method ····

fundamental problem

3d 4pi calculation: "repr" function to reduce the phase space 4d 2pi calculation: used fft's to avoid nested summations

 \Rightarrow these two are incompatible

options

- spherical co-ordinates to reduce phase space
- spherical fft
- interpolation from cartesian fft

イロト イヨト イヨト イヨト

Higher order npi calculations are needed (in some situations)

- transport coefficients
- thermodynamic quantities at large coupling

RG method is a promising approach: tested on 3-loop 2pi level 4-loop 4pi calculations are in progress

イロト イポト イヨト イヨト