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Introduction

strong coupling → can’t use standard perturbation theory
- need non-perturbative techniques

different approaches (for example):

• lattice calculations
→ continuum and infinite volume limits

• continuum methods
- Schwinger-Dyson equations
- n-particle irreducible (npi) effective theories
- renormalization group (RG)
→ truncation
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issues:

I physics (?)

I symmetries (gauge invariance)

I renormalization

I computational advantages

this talk: npi using a renormalization group approach

I will discuss mostly symmetric scalar ϕ4 theory
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Introduction to npi

2pi for scalar theories:
generating functional with local and bi-local sources

Z [J,B] = e iW [J,B] =

∫
Dϕe i(S[ϕ]+Jiϕi+

1
2
ϕiBijϕj )

short-hand notation:∫
dx

∫
dy ϕ(x)B(x , y)ϕ(y)→ ϕiBijϕj → Bϕ2
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Legendre transform:

Γ[φ,G ] = W [J,B]− Jiφi −
1

2
Bijφiφj

= Scl[φ] +
i

2
Tr lnG−1 +

i

2
TrG−1

0 (G − G0) + Γ2[φ,G ]

Γ[φ,G ] is a functional of the 1- and 2-point functions

φ and G determined self-consistently from equations of motion

variational principle (in the absence of sources)

δΓ

δφ
=
δΓ

δG
= 0
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compare to Γ[φ] = 1pi effective action:

• Γ[φ,G ] depends on the self consistent propagator

→ truncated Γ[φ,G ] includes an infinite resummation of diagrams

→ non-perturbative

• Γ[φ,G ] is 2pi - no double counting

Φ

Σ = 2δΦδG

2pr− not included

++ + · · ·
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npi effective action

npi Γ is a functional of n-point functions

3pi Γ[φ,G ,U], 4pi Γ[φ,G ,U,V ] · · ·
n-point functions determined self-consistently from the eom’s

⇒ hierarchy of coupled equations

I no exact solution method is available

I use approximation techniques: truncate the effective action
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Key features:

I non-perturbative
infinite resummations of selected classes of diagrams

I action based approximation
→ symmetries of original theory

I renormalizable ?
renormalization of 2pi effective action is understood

- can’t apply same method to higher order approximations

- proposal: renormalization group (RG) method
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Why to we need higher order npi?

I hierarchy: if i truncate at L loops

→ the (n ≥ L) effective actions are the same

– or the n-loop npi effective action is complete
J. Berges, Phys. Rev. D70, 105010 (2004).

I n-loop npi effective action preserves gauge invariance
to the order of the truncation

A. Arrizabalaga and J. Smit, Phys.Rev. D66, 065014 (2002),

MEC, G. Kunstatter and H. Zaraket, Eur. Phys. J. C 42, 253 (2005).

I example: 3d SU(N) Higgs model 3-loop 2pi

→ strong gauge dependence
G. Moore and M. Abraao-York, JHEP 1410, 105 (2014).
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I in gauge theories LO transport coefficients require 3-loop 3pi

(collinear singularities / LPM / vertex corrections)
MEC and E. Kovalchuk, Phys. Rev. D80, 085013 (2009).

I example: 4pi symmetric φ4 theory 3 dimensions - 4-loop

- 4pi contributions important at large couplings
MEC, WeiJie Fu, P. Mikula and D. Pickering, PRD89, 025013 (2014).

I example: 2pi symmetric φ4 theory in 4d - 2/3/4 loops

convergence much better than perturbation theory

but strong deviations at large coupling

– indicates a break down of 2pi approximation

– need for vertex corrections
MEC, B.A. Meggison and D. Pickering, arXiv:1603.02085.
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examples of variational eom’s

Φ = Φno·int + Φint (Φ = iΓ)

Φno·int = −1

2
φG−1

no·intφ−
1

2
Tr ln G−1 − 1

2
TrG−1

no·intG

Φint 4-loop 2pi (symmetric)

+1
8 + 1

8 + 1
48 + 1

24 + 1
48−1

2
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npi 2-point functions

δΦ

δG

∣∣∣∣ φ=0
G=G̃

= 0 → G̃−1 = G−1
0 + Σ

Σ = 2
δΦint

δG

∣∣∣∣ φ=0
G=G̃

3 loop 2pi

Σ2pi = − +1
6+1

2 +1
2

δG
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4-loop 4pi

Σ4pi = − −1
6 +1

4

+1
6 +1

6= −

+1
2 +(2)16 +(2)16

+1
2 +1

2

δG

δG

+1
2

MEC and Yun Guo, PRD 83, 016006 (2010); PRD 85, 076008 (2012).
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npi 4-vertices

Bethe-Salpeter vertex (4-loop 2pi)

Λ = 4
δ2Φint

δG 2

∣∣∣∣ φ=0
G=G̃

M = Λ +
1

2
ΛG̃ 2M

+1
2(2) +1

2(4) +1
4(2) +1

2(4)+Λ =

= +1
2M =
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Variational 4-vertex (4-loop 4pi)

δΦint
δV = 0

= + +1
2 +1

2 +1
2

2pi or 4pi:
coupled self-consistent eom’s for the 2- and 4-point functions
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2pi and 4pi in 3-dimensions

** no vertex counter-terms

method:

I rotate to Euclidean space

I Nd symmetric lattice: lattice spacing a = 2π/(Nm)
each momentum component is discretized:

Qi =
2π

aN
ni = m ni , ni = −N

2
+ 1, ...,

N

2

periodic boundary conditions

I numerical iterative method → search for fixed points

J. Berges, Sz. Borsányi, U. Reinosa, and J. Serreau, PRD 71, 105004 (2005) 99
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Memory constraints:

# points in phase space of a vertex is N l×d

l is the number of independent momenta and d is the dimension
for V : l = 3, d = 3, Nmax = 12 ⇒ 5.16× 109 points

trick: reduce the phase space using the symmetries of the vertex
- V is symmetric under interchange of legs and dirns in ~p space
- don’t need to calculate all points
table: size of phase space and # of needed representative points

N N3·(d=3) # of reprs

6 10,077,696 11,424

8 134,217,728 129,502

10 1,000,000,000 913,661

12 5,159,780,352 4,608,136
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results
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for certain momentum configurations M and V are close together
- this happens when s-channel contributions are big

MEC, Wei-Jie Fu, P. Mikula and D. Pickering, Phys. Rev. D 89, 025013 (2014)
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Npi renormalization – 4 dimensions

4-loop 2pi 4-kernel Λ

+1
2(2) +1

2(4) +1
4(2) +1

2(4)+Λ =

the 2-loop diagrams contain nested 1-loop subdivergences
→ two 1-loop counter-terms must cancel two different 1-loop boxes

⇒ can see there is no one δλ1 that works
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How to see the problem:

variational principle [2pi effective action] → set of eom’s

expand these eom’s → infinite set of diagrams

compare with n-pt fcns from the 1pi effective action

→ some diagrams are missing - some have different S factors

different combinatorics ⇒ renormalization not the same

Remember: the goal of npi is not to include everything but to
include what is hopefully the physically important contros
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Resolution for 2pi: 2 counter-terms

δλbb absorbs divergences in Λ except for global divergence

different δλet absorbes global divergences in Λ

chain the Λ’s in the s-channel to make M

→ new divergences in M absorbed by adjusting δλet

KEY: no new divergences from boxes drawn thru Λ (it’s 2pi)

conclusion: need 2 ct’s . . . sounds bad . . . BUT

1) they both come from the action

2) at L→∞ loops they are equal

H. van Hees, J. Knoll, Phys. Rev. D65, 025010 (2002);
J-P Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A736, 149 (2004);
J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Annals Phys. 320, 344 (2005).
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comment:
3-loop level → only need one ct (Λ has only global divergence)

generic procedure:

(1) determine δλet to make Λ finite

(2) adjust δλet to make M finite

→ combine in one step

⇒ the structure with 2 cts can only be verified at the 4-loop level
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4-loop 2pi - Numerical Method

I Euclidean space

I discretized Cartesian co-ordinates

I momentum phase space is managable
→ fast Fourier transforms for speed
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Numerical Results - arXiv:1603.02085
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Conclusions so far

I 4pi versus 2pi in 3d:
BS vertex doesn’t capture all physics in 4pi variational vertex

I 2pi in 4d:
4-loop contro impt at large λ → breakdown of 2pi expansion

⇒ need for higher order approximations (n > 2)pi

Must develop another method to renormalize
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Renormalization group method

add to the action a non-local regulator term ∆Sκ[ϕ] = −1
2 Rκϕ

2

κ2

κ
Q

R̂κ(Q)
Rκ =

Q2

eQ2/κ2 − 1

Rκ(Q) ∼ κ2 for Q � κ

fluctuations Q � κ suppressed

Rκ(Q)→ 0 for Q ≥ κ

fluctuations Q � κ unaffected
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family of theories indexed by the continuous parameter κ

fluctuations are smoothly taken into account as κ is lowered to zero

κ→∞ regulated action → classical action

κ→ 0 regulated action → full quantum action

J.-P. Blaizot, A. Ipp, N. Wschebor, Nucl. Phys. A 849, 165 (2011)
J.-P. Blaizot, J.M. Pawlowski and U. Reinosa, Phys. Lett. B 696, 523 (2011)
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generating functionals defined in the usual way

Zκ[J,B] =

∫
[dϕ] exp

{
i
(

S [ϕ]− 1

2
R̂κϕ

2 + Jϕ+
1

2
Bϕ2 + · · ·

)}
calculate 1pi, 2pi, · · · effective action

action depends on κ: Φκ

action flow eqn: ∂κΦκ =
1

2
∂κRκ G

C. Wetterich, Phys. Lett., B 301, 90 (1993).
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Method

n-point functions depend on κ

(1) choose an uv scale κ = µ (defn of bare parameters)

theory is classical at this scale (all fluctuations suppressed)

→ n-point functions are known functions of the bare parameters

(2) derive a hierarchy of differential ‘flow’ equations

→ relate κ dependent n-point functions and their derivatives wrt κ

(3) solve flow equations starting from bc’s at κ = µ

→ obtain the n-point fcns at κ = 0 (the quantum solutions)
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Tuning

Conventional calculation
definitions of the physical parameters ↔ RConds
→ extract bare parameters (ct’s) directly from RConds

RG calculation
definition of physical parameters (κ = 0)
 constrains initial conditions on the flow equations (κ = µ)

tuning procedure:
– choose the physical parameters
– make a guess for bare parameters from which to start the flow
– solve flow equations - find produced values of physical parameters
– adjust the bare parameters and repeat
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Hierarchy of flow equations

definitions of kernels: Φ
(n,m)
int·κ = 2m

δn

δφn
δm

δGm
Φint

∣∣∣∣G=Gκ
φ=o

rename important kernels:

Φ
(0,1)
int·κ = Σ , Φ

(0,2)
int·κ = Λ , Φ

(0,3)
int·κ = Υ
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derivatives of action flow eqn:

∂κΦ
(n,m)
int·κ

∣∣∣∣G=Gκ
φ=o

=
1

2

∫
dQ ∂κ (Rκ + Σ01

κ ) G 2
κ(Q) Φ

(n,m+1)
int·κ (Q, )

∣∣∣∣G=Gκ
φ=o

⇒ infinite hierarchy of coupled flow eqns for the n-point kernels

important features of these flow equations

I truncate when action is truncated

I preserve symmetries of the action
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3-loop 2pi - symmetric

Φint = 1
8 + 1

48

Σ = 2δΦδG = 1
2 + 1

6

Υ = 2δ
3Φ

δ3G
= (4)

Λ = 2δ
2Φ

δ2G
= +(2)12
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Σ flow equation: ∂κΣ(P) =
1

2

∫
dQ ∂κ(Rκ + Σ) G 2

κ Λ(Q,P)

∂κ = 1
2

Λ flow equation: ∂κΛ(P,K ) =
1

2

∫
dQ ∂κ(Rκ + Σ) G 2

κ Υ(Q,P,K )

∂κ = 1
2

Carrington, Aug 17, 2016, CERN (slide 36 of 48)



Introduction
Variational equations of motion

4pi in 3-dimensions
Renormalization in 4-dimensions
Renormalization group and npi

Conclusions

TRUNCATION

8 leg kernel = const

∂κΥ is an exact differential → don’t need the Υ flow equation

integration constant Υκ=µ = 0 - no 6-vertex in Lagrangian
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CONSISTENCY

must show bc’s (κ = µ) ⇔ RC’s (κ = 0)

Λ flow equation → Λκ(P,Q) + C

C is a κ independent integration constant

apply RC ⇒ choose C = −λ− Λ0(0, 0)

−→ −λ+ Λκ(P,Q)− Λ0(0, 0)

rewrite: −λ+
[
Λκ(0, 0)− Λ0(0, 0)

]︸ ︷︷ ︸
−λκ ← running coupling

+
[
Λκ(P,Q)− Λκ(0, 0)

]
rearrange: − λµ +

[
Λκ(P,Q)− Λµ(0, 0)

]︸ ︷︷ ︸
→ 0 as κ→µ�{P,Q}
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Σ flow equation → G−1
κ = P2 + m2 + Σκ(P) + C

RC’s on 2-pt fcn G−1
0 (0) = m2 ,

d

dP2
G−1

0

∣∣∣∣
P=0

= 1

→ choose C = −(Σ0(0) + P2Σ′0(0)
)

show that with this choice of C the limit κ→ µ� P gives

G−1
µ = Zµ(P2 + m2

µ)

with Zµ and mµ momentum independent

→ all divergent contributions can be absorbed into defns of mµ, Zµ
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comment: the flow equation ∂κΛ doesn’t have to be solved

(1) Λ has only a global (1-loop) divergence

(2) Integration constant (λµ) comes from bare lagrangian

Λκ(P,Q) = −λµ +
λ2

2

∫
dQ Gκ(Q)

[
Gκ(Q + P − K ) + Gκ(Q + P + K )

]

Λ = +(2)12
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satisfies

∂κΛ(P,K ) =
1

2

∫
dQ∂κ (Rκ + Σ) G 2

κ Υ(Q,P,K )

with

Υ(Q,P,K ) = −λ2
(
Gκ(Q + P + K ) + Gκ(Q + P − K )

+Gκ(Q − P + K ) + Gκ(Q − P − K )
)
.

and

lim
κ→µ

Λ(P,K ) = −λµ
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vertex as a function of the momentum cutoff (T =2 and λ=1)

RG

2PI

2PI-Wrong
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4-loop 4pi (symmetric)

action Φ[G ,V ]

→ functional of self-consistently determined 2- and 4-pt functions

⇒ two interdependent hierarchys of flow equations

V flow equation

∂κV (P1,P2,P3) =
1

2

∫
dQ ∂κ

[
Rκ(Q) + Σ(Q)

]
G 2
κ(Q)Φ011(Q; P1,P2,P3)

Q

Q

P1

P2

P3

P4

Q

Q

P1

P3

P2

P4

Q

Q

P1

P4

P2

P3

Φ011 = 4! 2G−4 δ
δV

δ
δGΦint = + +
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V flow eqn has same structure as the 3-loop 2pi Λ flow eqn

choose integration constant C so:

(1) RC Vκ=0(0) = −λ satisfied at κ = 0

(2) overall divergence → ~p independent bare coupling at κ = µ
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Σ flow equations

∂κΣ(P) =
1

2

∫
dQ ∂κ

(
Σ(Q) + Rκ(Q)

)
G 2
κ(Q) Λ(P,Q)

∂κΛ(P,K ) =
1

2

∫
dQ ∂κ

(
Σ(Q) + Rκ(Q)

)
G 2
κ(Q) Υ(P,K ,Q)

Λ as given by the functional derivs contains 2-loop diagrams

- can’t substitute it on the rhs of the first equation

- would give ~p dependent sub-divergences 9 bare parameters

⇒ instead we must solve Λ flow equation
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−+ 1
2

− 1
2 − 1

2
− 1

2
Υ =

– the kernel Υ has divergent 1-loop contributions

– also has a tree vertex

Q: can i replace it with λµ and truncate the hierarchy here ?

combinatorics:
the RC on M ‘tunes’ to λµ which cancels the 1-loop divs in Υ
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4pi RG - Numerical Method · · ·

fundamental problem
3d 4pi calculation: “repr” function to reduce the phase space
4d 2pi calculation: used fft’s to avoid nested summations

⇒ these two are incompatible

options

I spherical co-ordinates to reduce phase space

I spherical fft

I interpolation from cartesian fft
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Conclusions

Higher order npi calculations are needed (in some situations)

I transport coefficients

I thermodynamic quantities at large coupling

RG method is a promising approach: tested on 3-loop 2pi level

4-loop 4pi calculations are in progress
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