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Hydrodynamic theories

needed to
describe
dissipation

V., T =0

Perfect fluid: II"*" =0 typically acausal

/ all coincide at late times,
oh”

differ at early times

Navier Stokes: II#Y = —n(&)

Mueller; Israel & Stewart; BRS3: (D + 1) 1" = —not” + ...

1 1 1
H+QNM:; ((TD)Q + ZwITD + \w|2) [ = —p|w|*cH” — CUTD (nah”) + ...

Anisotropic hydrodynamics (same nonhydro sector as MIS) \ T o1/



The gradient expansion

This works, because the SST can be expressed as a formal infinite series

" = —no"” + T D(nat”) + ...

whose form is fixed by symmetries, and it

The relaxation time
appears as a second order

e defines what we mean by transport coeffticients transport coefficient

» allows comparison between different hydrodynamic theories

e connects the phenomenological and microscopic descriptions
(T = Eut'u” + P(g"" + ur'u”) — na"” + maD(no”) + A\ (OQ)W + ...

Calculated explicitly
IN some examples




|_inearized perturbations in MIS/BRS3

Consider small deviations from equilibrium
5B ~ exp (—i(wt k. :z))

Hydro and nonhydro modes (sound channel)

(+) k 21 nkQ . 1 4 77/{72
W = = \/g 3T + ... WNH = Z(’TH 3T + ...

Velocity of propagation

1 n/s
v=—=4/1+4
\/5\/ I w

The nonhydro sector acts as a regulator ensuring causality,

|Baier et al. 0712.2451]



Regulator independence

‘6 . ﬁ no sensitivity to
Hydro works the nonhydro sector

This can fail at early times or in small systems.

E.g. at the linearized level nonhydro modes dominate for
1

>
vV 2(Tm)(n/s)
Using the causality bound, and and the KSS for eta/s this implies RT<1.

k

Heuristic arguments for small plasma drops lead to conclusions roughly
consistent with [Habich et al. 1512.05354].

So: what if there is regulator dependence?
[MS 1607.06381]



Bjorken flow
Energy-momentum tensor:

<TV’LL> — dlag(_ga PL) PT? 73T) /

. 1 .
Pr=—-E—7E, Pr=E&E- 275

Large proper-time (gradient) expansion:

A hoo ot
20) = Gy (1 G + G )

Dimensionless variables: \
Pr —Pr

w=T1l, R=

P Remnant of

5 7 00 iINitial conditions
— 1 | — n "
/=3 ( 12) nz::of v

ndependent of

Initlal conditions

t = T7cosh A\,

z = 7 sinh \
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|_arge order behaviour

The gradient expansion coefficients have been computed in some
microscopic models with the result

Similar calculations in hydrodynamics also lead to divergent series

" B, . . . 40_I
The singularities of the analytic continuation " Poles of Pade .
of the Borel transform 200 forN=4SYM 2"
n ~n L= |
5O =% .
fB(&) LS ol ~.
n=0 | %
contain information about nonhydro modes of o0 10 0 10 20 30
the system. Re(£)

[Heller et al.1302.0697]



Bjorken flow in MIS/BRS3

Evolution equation

, , w 16 2w 1C, 16 | |
wif +4f (C’TH 3 > f 301 901 0 = 0 numerical solutions
where (not SYM values!) 1.0 /
1
CTH:TTH%GCH, ann/s%za 0.6
Finite order hydrodynamics: .
2 4C,| 8C,C. ” =
f(w) == A A d — |+ - =
3 Qw 27w

Attractor = "resummed hydro™?
[Heller, MS 1503.07514]
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 [he series Is asymptotic
e Single purely damped nonhydro mode, decay rate given

« Resummation ambiguity resolved by resurgence

Re(¢$)

by cut location



The result IS a transseries

0 3 Cp—2Cy, X ,
f p— Z fnw_n _|_ C € 2C 11 w Cri Z fT(L )w—n —|— ¢ o .
n=0

Different “instanton sectors” are related by 0.78
resurgence, which fixes Im(c). |

0.76|

This leaves Re(c) as an integration constant.

0./74

Matching the attractor requires

0.72

RG(C) = (0.049 # 0 0.70
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H+QNM

Replace the MIS relaxation equation by

1 1 1
—_D) +20; =D + |Q|* | [I*"Y = —n|Q|*c*” — c, =D (no*’) + . ..
(3P + 20050+ 07) n3<<na )+
Velocity of sound Q° = Q% + Q2
) — %\/1 SCJQQ[ “QNM frequency”
S
SO
<1 < :
U <7 Co >
- 4Q1(n/s)
Stability (sound channel) requires |Q\2

Co = 5
4Q [Heller et al.1409.5087]



For Bjorken flow

df% +12F7
waf//+aff/_|_12f2f/+wff/2I6‘|'/Yf"|‘wf + 12 — 0
Gradient expansion
2 4 16, w L

= 3 gan | 27077 |w|2(ca — Dw™* + 2\
o tarly time behaviour better Hag

g AdS/CF
* Extra initial conditions are required -

4l ydro 1

o Stringent causality/stability conditions : +QNM1
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o Pattern of poles shows a pair of
complex conjugate nonhydro
mode frequencies - expected.

* [woO-parameter transseries

+00
f(UJ,O':) — Z O-?O-me_(nA++mA_)wq)(n|m) (?,U)

n,1m=>0

 Resurgence relations are
satisfied - the hydro series itself
contains all the information.

[Aniceto, MS 1511.06358]
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summary

e Relativistic hydrodynamic theories include nonhydrodynamics modes
which serve as a regulator for causality

e |nformation about these nonhydrodynamics modes is encoded in the
large order behaviour of the gradient expansion

* |n principle, hydrodynamic theories can be engineered to match the
nonhydrodynamic sector of a given microscopic theory



