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Introduction

The CMB

CMB sky as seen by Planck

D` = `(`+ 1)C`/(2π)

The Planck Collaboration:
Planck results 2015 XIII

Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3 h Mpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04 h Mpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥ Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2 h Mpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m � W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2 h�1 Mpc, centred on
8.24 h�1 Mpc for pre-reconstruction fits and 4.47 h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

from Anderson et al. ’12

SDSS-III (BOSS)
power spectrum.

Galaxy surveys '
matter density fluctuations,
biasing and redshift space
distortions.

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology CERN, August 19, 2016 5 / 33



Introduction

But...
We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go
out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to
z ' 0.2 (main catalog) or even z ' 0.7 (BOSS).

But of course much more for future surveys like DES, Euclid, WFIRST and SKA.
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Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology CERN, August 19, 2016 6 / 33



Introduction

But...
We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.

The measured redshift is perturbed by peculiar velocities and by the gravitational
potential.

Not only the number of galaxies but also the volume is distorted.

The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

For small galaxy catalogs, these effects are not very important, but when we go
out to z ∼ 1 or more, they become relevant. Already for SDSS which goes out to
z ' 0.2 (main catalog) or even z ' 0.7 (BOSS).

But of course much more for future surveys like DES, Euclid, WFIRST and SKA.
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Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology CERN, August 19, 2016 6 / 33



Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

r(z) =

∫ z

0

dz′

H(z′)
=

1
H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩK (1 + z′)2 + ΩΛ

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.

Depending on the observational situation we measure directly r(z) or

dA(z) =
1

(1 + z)
χK (r(z)) the angular diameter distance

dL(z) = (1 + z)χK (r(z)) the luminosity distance.

At small redshift all distances are d(z) = z/H0 +O(z2), for z � 1. At larger redshifts,
the distance depends strongly on ΩK , ΩΛ, · · · .

Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology CERN, August 19, 2016 7 / 33



Cosmological distances

In a Friedmann Universe the (comoving) radial distance is

r(z) =

∫ z

0

dz′

H(z′)
=

1
H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩK (1 + z′)2 + ΩΛ

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

dA(z) =
1

(1 + z)
χK (r(z)) the angular diameter distance

dL(z) = (1 + z)χK (r(z)) the luminosity distance.

At small redshift all distances are d(z) = z/H0 +O(z2), for z � 1. At larger redshifts,
the distance depends strongly on ΩK , ΩΛ, · · · .

Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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What are very large scale galaxy catalogs really measuring?

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See C. Bonvin & RD [arXiv:1105.5080]; Challinor & Lewis,
[arXiv:1105:5092], J. Yoo et al. 2009; J. Yoo 2010)

For each galaxy in a catalog we measure

(θ, φ, z) = (n, z) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(n, z) and
measure the fluctuation of this count:

∆(n, z) =
N(n, z)− N̄(z)

N̄(z)
.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 , n · n′ = cos θ .

This quantity is directly measurable⇒ gauge invariant.
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What are very large scale galaxy catalogs really measuring?

If we convert the measured
ξ(θ, z1, z2) to a power spectrum, we
have to introduce a cosmology, to
convert angles and redshifts into
length scales.

r(z1, z2, θ)
(K =0)

=
√

r 2
1 + r 2

2 − 2r1r2 cos θ.

ri = r(zi ) =
∫ zi

0
dz

H(z)

(Figure by F. Montanari)
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What are very large scale galaxy catalogs really measuring?

True Wm = 0.24

Wrong Wm = 0.3

Wrong Wm = 0.5
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(Figure by F. Montanari)

∆(k)/k = k2P(k)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations to 1st order

∆(n, z) = Ds − 2Φ + Ψ +
1
H
[
Φ̇ + ∂r (V · n)

]

+

( Ḣ
H2 +

2
r(z)H

)(
Ψ + V · n +

∫ r(z)

0
dr(Φ̇ + Ψ̇)

)

+
1

r(z)

∫ r(z)

0
dr
[
2− r(z)− r

r
∆Ω

]
(Φ + Ψ).

( C. Bonvin & RD ’11)
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r(z)H
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1
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Redshift space distortions in the BOSS survey

(from Reid et al. ’12)
Anisotropic clustering in CMASS galaxies 5
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Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξ"(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξ"(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

C"1"2i j =
1

599

600∑

k=1

(
ξk"1 (si) −  ξ"1 (si)

) (
ξk"2 (s j) −  ξ"2 (s j)

)
, (7)

where ξk" (si) is the monopole (" = 0) or quadrupole (" = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξ"(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

C"1"2,red
i j = C"1"2i j /

√
C"1"1ii C"2"2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,

c© 0000 RAS, MNRAS 000, 1–1
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand ∆(n, z) in spherical harmonics,

∆(n, z) =
∑

`m

a`m(z)Y`m(n), C`(z, z′) = 〈a`m(z)a∗`m(z′)〉.

ξ(θ, z, z′) = 〈∆(n, z)∆(n′, z′)〉 =
1

4π

∑

`

(2`+ 1)C`(z, z′)P`(cos θ)

cos θ = n · n′
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The transversal power spectrum

The transverse power spectrum, z′ = z (from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, ∆z = 0.01
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3,∆z = 0.3
(from Bonvin & RD ’11)
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The radial power spectrum
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Real experiments (DES): Shot noise vs. signal
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(From Di Dio, Montanari,
Lesgourgues, RD, 1307.1459
http://cosmology.unige.ch/tools)

The angular power spectrum C` (solid lines) and the shot-noise contribution (dashed
lines) for different top-hat window functions of half-widths: ∆z = 0.1 , ∆z = 0.025,
∆z = 0.0125, ∆z = 0.00625, ∆z = 0.003125.

Cobs
` (z, z) = C`(z, z) + 1

N(z)
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Euclid

(107 galaxy redshifts, 109 galaxies with photo-z)

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology CERN, August 19, 2016 20 / 33



Real experiments (Euclid):
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Real experiments (Euclid): Signal to Noise
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Measuring the lensing potential

At z = z′ density and rsd dominate the signal. Only at very low ` potential terms are
relevant.

At z < z′ we truly measure 〈D(z)κ(z′)〉.

κ(n, z) =

∫ r(z)

0

dr(r(z)− r)

r(z)r
∆2Ψ(rn, z)
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Measuring the lensing potential

Well separated redshift bins measure mainly the lensing-density correlation:

〈∆(n, z)∆(n′, z′)〉 ' 〈∆L(n, z)δ(n′, z′)〉 z > z′

∆L(n, z) = (2− 5s(z))κ(n, z)
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Testing GR with the lensing potential
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Measuring the relativistic terms with LSST

10

FIG. 4: Dependence of the uncertainty on fNL, ✏GR and ✏WL on the assumed Gaussian constant prior on the magnification bias
(left panel) and the evolution bias (right panel). The significance of the detection of the lensing magnification term depends
very strongly on the prior on s. Likewise the error on ✏GR is particularly sensitive to the prior on fevo when both tracers are
combined, and the detection of GR e↵ects only becomes optimal for �fevo . 0.1.

FIG. 5: Joint constraints on fNL, ✏GR and ✏WL for the red
and blue samples (red and blue contours respectively) as well
as for a joint analysis of both (black contours) for optimistic
priors �fevo = �s = 0.1.

values for these uncertainties are given in Table II. Note
that, unlike in the case of ✏GR there is only a mild im-
provement in the figure of merit for fNL and ✏WL in the
multi-tracer analysis with respect to the deepest LSST
blue sample alone. The main reason for this is that, un-
like in the case of the evolution bias, the di↵erences in

the magnification and clustering biases of both tracers
are not so large.

We have also produced forecasts for the Dark Energy
Survey, using the same models adopted for LSST with
a magnitude limit of r = 24 and fsky = 1/8. The re-
sults are also included in Table II: DES should, in the
best-case scenario, be able to make a ⇠ 3� detection of
the relativistic corrections. This result, however, could
be compromised by the possible systematic e↵ects that
could dominate the clustering statistics on large angular
scales. We will discuss these in Section VII.

V. RADIO EXPERIMENTS

A. Cosmological radio surveys

With the forthcoming wide-area radioastronomy facil-
ities, the field of observational large-scale structure will
soon begin to reap the benefits of observing in the ra-
dio regime. The low atmospheric absorption and dust
obscuration in a wide range of radio frequencies makes
it possible to observe objects at significantly higher red-
shifts than are usually targeted in optical/NIR surveys,
and in the next decades radio surveys will be able to
cover comparably wide areas with similar source number
densities. In addition to that, the relative isolation of the
few emission lines of astrophysical interest in the radio
spectrum (e.g. the neutral hydrogen line at 1.4 GHz or
molecular CO at 115 GHz) makes it possible to conduct
intensity mapping observations, producing tomographic
maps of the density fluctuations of these species.

In this section we will describe two main cosmological
probes of the low-redshift Universe in radio experiments:

standard parameters fixed

Alonso & Ferreira
[1507.03550]
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Measuring the relativistic terms with Quasar-Ly-α cross correlations
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Figure 4. The figure shows di↵erent contributions to the anti-symmetric part of the cross-
correlation function. Full red line shows the contribution due to the often neglected redshift
evolution of the bias factors, dashed magenta line shows the contribution due to the relativistic
e↵ects and dashed green line contribution of the lensing terms. The full blue and green lines
represent summing up various di↵erent terms - redshift evolution and Doppler terms (full blue
line), and all the e↵ects (full green line).

in potential term, Eq. (4.26), the terms with odd Bessel function are suppressed by
(H/k)3. The largest single contribution is the Doppler - density correlation which is
boosted by the di↵erence in bias factors (see Eq. 4.25). This result is known in the
literature and has been commented on at various times, mostly in the context of two
galaxy populations [12, 16]. In this paper we have focused on two tracers whose bias
factors are as di↵erent as possible: quasar bias being very large, and Lyman-↵ forest
flux bias being even negative. Thus ensuring that the signal from the Doppler e↵ect is
boosted as much as possible.

The first of the sub-dominant signals is the redshift evolution of the bias factors.
Usually one approximates the redshift dependent quantities within a redshift bin with a
constant value at the mean redshift. However, redshift evolution of the bias factors gives
a fairly large contribution to the asymmetry. This contribution mainly comes from the
standard Kaiser terms - indeed one can easily replicate the results by using well known
Eq. (4.24) and requiring that the bias factors for quasar and Lyman-↵ are evaluated
not at the mean redshift zmean but at z1 and z2 respectively. Strictly speaking, this
e↵ect should not be considered for biases only, but for any redshift dependent prefactors

– 17 –

values of bias factors for the tracers used in this study. Nevertheless, for this particular
case it does allow for an easier estimation of the relativistic e↵ects at the BAO scale -
which is already a target of many surveys and being a robust feature, very accurately
measured.

Figure 6 shows that the signal of the relativistic e↵ects is largest at the BAO scale,
compared to the cross-correlation function computed just Newtonian terms. The size of
the asymmetry is around 10%, and can reach up to 30% at the BAO scale.

The second contaminating e↵ect is that of the weak lensing signal of quasars. In
our specific case the lensing signal can be as large as the e↵ects due to the bias redshift
evolution. Similarly to the bias redshift evolution signal, the lensing signal becomes
more important on larger scales, and requires careful modeling if one is to measure the
overall asymmetry e↵ects to a high precision.
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Figure 6. The figure shows the relative size of the anti-symmetric part of the cross-correlation
function for di↵erent terms. Full red line shows the contribution due to the redshift evolution
of the bias factors, dashed magenta line shows the contribution due to the relativistic e↵ects
and dashed green line contribution of the lensing terms. The full blue and green lines represent
summing up various di↵erent terms - redshift evolution and Doppler terms (full blue line), and
all the e↵ects (full green line). The relativistic e↵ects can be as large as 30% at the BAO scale,
compared to the pure Newtonian calculation (including the bias redshift evolution).

However, the weak lensing e↵ect is proportional to the magnification bias (and on
density bias, since the leading term is < � >), and thus its signal is strongly dependent
on this nuisance parameter. We caution that magnification bias needs to be well known,
and possibly constrained from independent results, to avoid the contamination of the

– 19 –

The antisymmetric part of the
quasar–Ly-α cross correlation function.
Contrary to the quasars, the Ly-α signal
has no lensing term.
The relativistic term is dominated by the
Doppler contribution.

V. Iršič, E. Di Dio & M. Viel
[1510.03436]
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2nd order number counts

In LSS, on intermediate scales, weakly non-linear effects become important. We can
calculate them by going to 2nd order.

Expressing the full 2nd order number counts in longitudinal gauge the expression
becomes very long (several pages) and not very illuminating. It has been calculated
last year by 3 different groups:

D. Bertacca, R. Maartens, and C. Clarkson,[1405.4403,1406.0319]

J. Yoo and M. Zaldarriaga [1406.4140]

E. Di Dio, G. Marozzi, F. Montanari & RD [1407.0376]
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2nd order number counts

The dominant terms are (∝ (k/H)4Ψ2)
(Di Dio, Marozzi, Montanari & RD, [1510.04202], Nielsen & RD [1606.02113])

∆(2)Leading(n, z) ' δ(2) +H−1∂2
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The bispectrum

B (n1,n2,n3, z1, z2, z3) = 〈∆ (n1, z1) ∆ (n2, z2) ∆ (n3, z3)〉
Expanding in spherical harmonics gives

B (n1,n2,n3, z1, z2, z3) =
∑

Bm1m2m3
`1`2`3

(z1, z2, z3)Y`1m1 (n1)Y`2m2 (n2)Y`3m3 (n3) ,

statistical isotropy fully determines the m-dependence of these coefficients,

Bm1m2m3
`1`2`3

(z1, z2, z3) = Gm1,m2,m3
`1,`2,`3

b`1,`2,`3 (z1, z2, z3) ,

where Gm1,m2,m3
`1,`2,`3

is the Gaunt integral.

Ruth Durrer (Université de Genève, DPT & CAP) Testing GR in Cosmology CERN, August 19, 2016 30 / 33



The bispectrum

0 50 100 150 200
10-14

10-13

10-12

10-11

10-10

10-9

10-8

ℓ

ℓ2
b
ℓ,ℓ
,2
ℓ(
0.
95
,1
,1
.0
5)

0 50 100 150 200

10-19

10-17

10-15

10-13

10-11

10-9

ℓ

ℓ2
b
ℓ,ℓ
,2
ℓ(
0.
5,
1
,1
.5
)

(Di Dio, RD, Marozzi & Montanari, [1510.04202] )

(density-density , density-lensing , lensing-lensing)
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Conclusions

So far cosmological LSS data mainly determined ξ(r), or equivalently P(k) or
B(k1, k2, k3). These are easier to measure (less noisy) but:
• they require an fiducial input cosmology converting redshift and angles to length
scales,

r =
√

r(z)2 + r(z′)2 − 2r(z)r(z′) cos θ .
This complicates especially the determination of error bars in parameter estimation
• it is not evident how to correctly include lensing in the bispectrum.

Future large & precise 3d galaxy catalogs like Euclid will be able to determine
directly the measured 3d correlation functions and spectra, ξ(θ, z, z′) and C`(z, z′)
and b`1,`2,`2 (z1, z2, z3) from the data.

These 3d quantities will of course be more noisy, but they also contain more
information.

These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via (redshift space distortions) and to the perturbations of spacetime
geometry (lensing) .
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These 3d quantities will of course be more noisy, but they also contain more
information.

These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via (redshift space distortions) and to the perturbations of spacetime
geometry (lensing) .
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Conclusions

Using the antisymmetric part of the correlation function for different tracers is a
promising tool to detect the relativistic terms.

The spectra C`(z, z′) and b`1,`2,`2 (z1, z2, z3) depend sensitively and in several
different ways on dark energy (growth factor, distance redshift relation), on the
matter and baryon densities, bias, etc. Their measurements provide a new route
to estimate cosmological parameters and to test general relativity.
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