
David Mateos
ICREA & University of Barcelona

with Maximilian Attems, Jorge Casalderrey, Michal Heller,  Daniel Santos-Olivan, 
Carlos Sopuerta, Miquel Triana,  Wilke van der Schee and Miguel Zilhao 

Holographic Heavy Ion Collisions



• Holography applied to QCD — limitations.

• Holography applied to heavy ion collisions —- overview.  

‣ For newest results (non-conformal theories) see talk by 
Jorge Casalderrey on Thursday.  

Plan

• Holography applied to cosmology — not for today.  



Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration



Heavy ion collisions
Collision time

‣ Far from equilibrium dynamics ‣ Hydrodynamics
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Gravetat quàntica en M = Teoria sense gravetat a @M

S ⇠ logNestats ⇠ log 2Nspins ⇠ Nspins ⇠ volum (7)

SU(2)
L

⇥ U(1)
Y

! U(1)EM

s =
⇡2

2
N2

c T
3 (8)

z = 1/r

hO(x)i = � logZ
CFT

��(x)
= �̃(x) (9)

�(x, r) = �(x) +
�̃(x)

r4
+ · · · (10)

B(t = 0, ⇢)

A = ⇢2(1� ⇢4h/⇢
4) , ⌃ = ⇢ , B = 0 , ⇢h = ⇡T (11)

1

• What determines when hydro becomes applicable?

• What are the initial conditions for hydro?

• How long is             ?   Data indicates                                 .                         thydro (1)
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‣ Hadronization

• What is the nature of the hydro expansion?

• Mixture of strong & weak coupling physics.

• All explained by QCD, but QCD is hard. 



                Gauge Theory
in 4D
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String Theory 
in 5D

Maldacena ‘97

The gauge/string duality
( = AdS/CFT correspondence = Holography)



From viewpoint of a theorist

• Duality is a remarkable development: 

Quantum gravity = Ordinary QFT



At present the duality has its own limitations          

Complementary tool

In terms of applications to QCD
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Suppresses quantum corrections. Suppresses string corrections.

Limitations
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Limitations

Classical Gravity!



gs ⇥ 1
Nc
⌅ 1

� = a d⌅

Nc = 3
dE

dx
⇤ 2� 8 GeV/fm (1)

⇥S = �a

⇤
dx3 � Tr

�
A � F +

2

3
A3

⇥
. (2)

⇥S =

⇤
⌅(x) TrF � F , ⌅(x) = ax3 . (3)

Tµ� (4)

Jµ (5)

tchar ⌅ texpan (6)

g�⇥
s (7)

S =
A

4G
(8)

⇤ =
⌥abs( ⇧ 0)

16⌃G
=

A

16⌃G
(9)

⇤

s
⌃ 1

⇧2
⇧⌥ (10)

sBek-Haw =
SBek-Haw

V3
=
⌃2

2
N2

c T 3 (11)

⇤ (12)

sBek-Haw =
3

4
sfree (13)

SCFT = SBek-Haw =
A

4G
(14)

THaw =
1

�
, � =

⌃R2

r0
(15)

TCFT (16)

r = r0 Horizon IR (17)

T > Tdec (18)

⇥Aµ = ⌦µf (19)

1

Nc ⇧⌥
M ⇥ �QCD (1)

R4

 4
s

= ⌅ = g2
YMNc (2)

 4
s ⇥

1

g2
YMNc

(3)

gs ⇥
1

Nc

(4)

⌥ = a d⇤

Nc = 3
dE

dx
⇤ 2� 8 GeV/fm (5)

�S = �a

⇤
dx3 � Tr

�
A � F +

2

3
A3

⇥
. (6)

�S =

⇤
⇤(x) TrF � F , ⇤(x) = ax3 . (7)

Tµ� (8)

Jµ (9)

tchar ⌅ texpan (10)

g�⇥
s (11)

S =
A

4G
(12)

⇥ =
⌃abs(� ⇧ 0)

16⇧G
=

A

16⇧G
(13)

⇥

s
⌃ 1

⌅2
⇧⌥ (14)

sBek-Haw =
SBek-Haw

V3
=

⇧2

2
N2

c T 3 (15)

⇥ (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

⌅ = g2
YMNc ⇧⌥

M ⇥ �QCD (1)

R4

 4
s

= ⌅ = g2
YMNc (2)

 4
s ⇥

1

g2
YMNc

(3)

gs ⇥
1

Nc

(4)

⌥ = a d⇤

Nc = 3
dE

dx
⇤ 2� 8 GeV/fm (5)

�S = �a

⇤
dx3 � Tr

�
A � F +

2

3
A3

⇥
. (6)

�S =

⇤
⇤(x) TrF � F , ⇤(x) = ax3 . (7)

Tµ� (8)

Jµ (9)

tchar ⌅ texpan (10)

g�⇥
s (11)

S =
A

4G
(12)

⇥ =
⌃abs(� ⇧ 0)

16⇧G
=

A

16⇧G
(13)

⇥

s
⌃ 1

⌅2
⇧⌥ (14)

sBek-Haw =
SBek-Haw

V3
=

⇧2

2
N2

c T 3 (15)

⇥ (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

⌅ = g2
YMNc ⇧⌥

M ⇥ �QCD (1)

R4

 4
s

= ⌅ = g2
YMNc (2)

 s ⇥
1

⌅1/4
(3)

gs ⇥
1

Nc

(4)

⌥ = a d⇤

Nc = 3
dE

dx
⇤ 2� 8 GeV/fm (5)

�S = �a

⇤
dx3 � Tr

�
A � F +

2

3
A3

⇥
. (6)

�S =

⇤
⇤(x) TrF � F , ⇤(x) = ax3 . (7)

Tµ� (8)

Jµ (9)

tchar ⌅ texpan (10)

g�⇥
s (11)

S =
A

4G
(12)

⇥ =
⌃abs(� ⇧ 0)

16⇧G
=

A

16⇧G
(13)

⇥

s
⌃ 1

⌅2
⇧⌥ (14)

sBek-Haw =
SBek-Haw

V3
=

⇧2

2
N2

c T 3 (15)

⇥ (16)

sBek-Haw =
3

4
sfree (17)

SCFT = SBek-Haw =
A

4G
(18)

1

Suppresses quantum corrections. Makes the string tiny.

Solving large-       would be great progress!
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Limitations
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Suppresses quantum corrections. Makes the string tiny.

Limitations

• Asymptotically free.
• Dynamically generated scale.
• Confinement.
• Deconfinement phase transition.
• …
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Strong coupling means no asymptotic freedom!

Limitations
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Need not be CFT!

• Confinement.
• SχSB.
• Thermal phase 

transitions.
• Etc.QCD
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but it is:
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Limitations



Therefore

• However, it may still provide useful insights.

• At present gauge/string duality is not a tool for precision 
QCD physics.

• In particular, if strong coupling + far from equilibrium 
then holography is the only first-principle tool.



What we would like to do

Heavy ion collisions in QCD



What we can do

Caricatures: 
Lumps of energy and charge

 Gravitational + electromagnetic waves

Holographic heavy ion collisions



Formation and evolution of the QGP

Black hole horizon



Holographic heavy ion collisions in CFT
Chesler & Yaffe ’10

Width 

Two infinite bricks of energy 
in transverse plane

Two gravitational 
shock waves

Toy model for collisions of infinite nuclei with no baryon charge:



Holographic heavy ion collisions in CFT

• No transverse dynamics.
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• I emphasize: EOS is a statement about average pressure.
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Pressures at mid rapidity 
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Incoming shocks Collision region Receding fragments
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Pressures at mid rapidity 
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• Hydro works when gradients are still very large: 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FIG. 1. Energy and pressures for collisions of thick (left column) and thin (right column) shocks. The grey planes lie at the
origin of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

• Realizes Landau model approximately:                                           
Energy gets compressed, stops and explodes hydrodynamically.

• No clear separation between plasma and receding fragments.

• The receding maxima move at v ~ 0.88.

Full-stopping scenario
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FIG. 1. Energy and pressures for collisions of thick (left column) and thin (right column) shocks. The grey planes lie at the
origin of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
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sions. In the case of E and P
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one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

Transparency scenario

• Clear separation between receding  fragments and plasma.

• Shocks pass through one another and plasma gets created in 
between.

• The receding maxima move at v ~ 1 despite infinite coupling.

Low energy collision (thick shocks)

High energy collision (thin shocks)

Qualitatively different dynamics depending on the collision energy:



Longitudinal coherence and asymmetric collisions
Casalderrey, Heller, D.M. & van der Schee ’13

• Motivation: p+A collisions have asymmetric longitudinal extent/structure.

• Question: Does any of this leave an imprint on the resulting plasma?

• Motivation: In fact, A+A collisions also have longitudinal structure (albeit symmetric).
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Longitudinal coherence and asymmetric collisions
Casalderrey, Heller, D.M. & van der Schee ’13

• Answer: Longitudinal structure leaves no imprint if                                   (coherence).
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1st order viscous hydro
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1st order viscous hydro
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• Answer: Longitudinal structure leaves no imprint if                                   (coherence).

• Implication: In coherent regime c.o.m. of QGP equals c.o.m. of all participating nucleons.



Width 

Two infinite bricks of energy and 
conserved U(1) charge

Two gravitational + electromagnetic 
shock waves

Collisions with baryon charge Casalderrey, D.M., van der Schee & Triana ’16 

Toy model for collisions of infinite nuclei with baryon charge:



Collisions with baryon charge Casalderrey, D.M., van der Schee & Triana ’16

• We find significant stopping of baryon number.  

• Hence good model for low- and moderate-energy 
collisions but not for high-energy. 

• At high energies, rapidity shifts of valence quarks 
involve large momentum transfers and are suppressed 
by asymptotic freedom. yp = tanh

�1

(v

loc

)

vz = tanh(1) ⇡ 0.76

p
s < 20

37% 8.4%p
sNN = 17 200

• Suggests using a hybrid model.
Casalderrey, Gulhan, Milhano, Pablos & Rajagopal ’14

Iancu & Mukhopadhyay ’15

Mukhopadhyay, Preis, Rebhan & Stricker ’16



Beyond conformal symmetry
Attems, Casalderrey, D.M., Santos-Olivan, Sopuerta, Triana & Zilhao ’16

Infinite bricks of energy

Gravitational waves

For details see talk by Jorge Casalderrey on Thursday.



‣ EOS does NOT hold out of equilibrium.

3

µ! = 0.12, respectively) for several di↵erent values of
µ�⇤. We then extract the boundary stress tensor and we
focus on its value at mid-rapidity, z = 0, as a function of
time [21]. We choose t = 0 as the time at which the two
shocks would have exactly overlapped in the absence of
interactions [3].

We define the hydrodynamization time, t
hyd

, as the
time beyond which both pressures are correctly predicted
by the constitutive relations of first-order viscous hydro-
dynamics,

P hyd

L

= P
eq

+ P
⌘

+ P
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, (12a)

P hyd
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with a 10% accuracy, so that �P
L,T

− P hyd

L,T

� �P̄ < 0.1. In

(12) we have denoted by P
⌘

and P
⇣

the shear and the
bulk contributions to the hydrodynamic pressures, re-
spectively, which are proportional to the corresponding
viscosities. The di↵erent coe�cients in front of P

⌘

in
these two equations reflect the tracelessness of the shear
tensor. We define the equilibration time, t

eq

, as the time
beyond which the average pressure coincides with the
equilibrium pressure with a 10% accuracy, meaning that�P̄ − P

eq

� �P̄ < 0.1.
We expect on physical grounds that increasing the ini-

tial energy in the shocks increases the energy deposited
in, and hence the hydrodynamization temperature of,
the resulting plasma. We have confirmed that, indeed,
T
hyd

�⇤ increases monotonically with µ�⇤. On the grav-
ity side this means that, for su�ciently large (small) µ�⇤,
the horizon forms in the UV (IR) region of the solution,
where the geometry is approximately AdS. As a conse-
quence, in these two limits the plasma formation and sub-
sequent relaxation proceed approximately as in a CFT.
In contrast, for µ ∼ ⇤ the relaxation of the plasma takes
place in the most non-conformal region where the bulk
viscosity e↵ects are largest. In this intermediate region
we see several e↵ects that are absent in a CFT.

First, hydrodynamization times are longer than in a
CFT. This is illustrated by the red curve in Fig. 2(bot-
tom) whose maximum, indicated by the first vertical line
from the left, is 2.5 times larger than the conformal re-
sult, which is indicated by the horizontal line [20]. As
expected, at high T

hyd

�⇤ we see that t
hyd

T
hyd

asymptot-
ically approaches its conformal value (we have checked
that at T

hyd

�⇤ = 4.8 the di↵erence is 0.5%). We expect
the same to be true at low T

hyd

�⇤ [22].
Second, the equation of state is not obeyed out of equi-

librium. This is illustrated in Fig. 3(bottom) for a colli-
sion of 1�4 -shocks with µ�⇤ = 0.94, for which the hydro-
dynamization temperature is T

hyd

�⇤ = 0.24. We see that
the equilibrium and the average pressures are not within
10% of one another until a time t

eq

= 9.8�⇤ = 2.4�T
hyd

.
This is further illustrated in Fig. 2(bottom), which shows
the dependence of the equilibration time on the hydrody-
namization temperature for 1�2 -collisions. We see that

PL
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PT
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
pressure hydrodynamizes much faster than the longitudinal
one, PT and P hyd

T are virtually on top of one another for
the times shown. Hydrodynamization and equilibration take
place at thyd⇤ = 4.3 and teq⇤ = 9.8, respectively, as indicated
by the vertical lines. At thyd the di↵erence between P̄ and
Peq is 17%, whereas the di↵erence between P̄ and P̄hyd is 2%.
At teq the di↵erence between PL and P hyd

L is 4%. The PT �PL

ratio is 4.5 at thyd and 2.1 at teq.

for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
t
eq

should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd

< t
eq

for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025

•  Main conclusions:
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‣ Hydrodynamization without equilibration.
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µ! = 0.12, respectively) for several di↵erent values of
µ�⇤. We then extract the boundary stress tensor and we
focus on its value at mid-rapidity, z = 0, as a function of
time [21]. We choose t = 0 as the time at which the two
shocks would have exactly overlapped in the absence of
interactions [3].

We define the hydrodynamization time, t
hyd

, as the
time beyond which both pressures are correctly predicted
by the constitutive relations of first-order viscous hydro-
dynamics,
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(12) we have denoted by P
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and P
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the shear and the
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spectively, which are proportional to the corresponding
viscosities. The di↵erent coe�cients in front of P
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in
these two equations reflect the tracelessness of the shear
tensor. We define the equilibration time, t

eq

, as the time
beyond which the average pressure coincides with the
equilibrium pressure with a 10% accuracy, meaning that�P̄ − P

eq

� �P̄ < 0.1.
We expect on physical grounds that increasing the ini-

tial energy in the shocks increases the energy deposited
in, and hence the hydrodynamization temperature of,
the resulting plasma. We have confirmed that, indeed,
T
hyd

�⇤ increases monotonically with µ�⇤. On the grav-
ity side this means that, for su�ciently large (small) µ�⇤,
the horizon forms in the UV (IR) region of the solution,
where the geometry is approximately AdS. As a conse-
quence, in these two limits the plasma formation and sub-
sequent relaxation proceed approximately as in a CFT.
In contrast, for µ ∼ ⇤ the relaxation of the plasma takes
place in the most non-conformal region where the bulk
viscosity e↵ects are largest. In this intermediate region
we see several e↵ects that are absent in a CFT.

First, hydrodynamization times are longer than in a
CFT. This is illustrated by the red curve in Fig. 2(bot-
tom) whose maximum, indicated by the first vertical line
from the left, is 2.5 times larger than the conformal re-
sult, which is indicated by the horizontal line [20]. As
expected, at high T

hyd

�⇤ we see that t
hyd

T
hyd

asymptot-
ically approaches its conformal value (we have checked
that at T

hyd

�⇤ = 4.8 the di↵erence is 0.5%). We expect
the same to be true at low T

hyd

�⇤ [22].
Second, the equation of state is not obeyed out of equi-

librium. This is illustrated in Fig. 3(bottom) for a colli-
sion of 1�4 -shocks with µ�⇤ = 0.94, for which the hydro-
dynamization temperature is T

hyd

�⇤ = 0.24. We see that
the equilibrium and the average pressures are not within
10% of one another until a time t

eq

= 9.8�⇤ = 2.4�T
hyd

.
This is further illustrated in Fig. 2(bottom), which shows
the dependence of the equilibration time on the hydrody-
namization temperature for 1�2 -collisions. We see that
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
pressure hydrodynamizes much faster than the longitudinal
one, PT and P hyd

T are virtually on top of one another for
the times shown. Hydrodynamization and equilibration take
place at thyd⇤ = 4.3 and teq⇤ = 9.8, respectively, as indicated
by the vertical lines. At thyd the di↵erence between P̄ and
Peq is 17%, whereas the di↵erence between P̄ and P̄hyd is 2%.
At teq the di↵erence between PL and P hyd

L is 4%. The PT �PL

ratio is 4.5 at thyd and 2.1 at teq.

for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
t
eq

should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd

< t
eq

for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025
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the horizon forms in the UV (IR) region of the solution,
where the geometry is approximately AdS. As a conse-
quence, in these two limits the plasma formation and sub-
sequent relaxation proceed approximately as in a CFT.
In contrast, for µ ∼ ⇤ the relaxation of the plasma takes
place in the most non-conformal region where the bulk
viscosity e↵ects are largest. In this intermediate region
we see several e↵ects that are absent in a CFT.
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CFT. This is illustrated by the red curve in Fig. 2(bot-
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sult, which is indicated by the horizontal line [20]. As
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�⇤ we see that t
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ically approaches its conformal value (we have checked
that at T
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�⇤ = 4.8 the di↵erence is 0.5%). We expect
the same to be true at low T
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Second, the equation of state is not obeyed out of equi-

librium. This is illustrated in Fig. 3(bottom) for a colli-
sion of 1�4 -shocks with µ�⇤ = 0.94, for which the hydro-
dynamization temperature is T
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�⇤ = 0.24. We see that
the equilibrium and the average pressures are not within
10% of one another until a time t
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= 9.8�⇤ = 2.4�T
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.
This is further illustrated in Fig. 2(bottom), which shows
the dependence of the equilibration time on the hydrody-
namization temperature for 1�2 -collisions. We see that
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
pressure hydrodynamizes much faster than the longitudinal
one, PT and P hyd

T are virtually on top of one another for
the times shown. Hydrodynamization and equilibration take
place at thyd⇤ = 4.3 and teq⇤ = 9.8, respectively, as indicated
by the vertical lines. At thyd the di↵erence between P̄ and
Peq is 17%, whereas the di↵erence between P̄ and P̄hyd is 2%.
At teq the di↵erence between PL and P hyd

L is 4%. The PT �PL

ratio is 4.5 at thyd and 2.1 at teq.

for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
t
eq

should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd

< t
eq

for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025

•  Main conclusions:

‣ EOS does NOT hold out of equilibrium.
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‣ Hydrodynamization without equilibration.
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µ�⇤. We then extract the boundary stress tensor and we
focus on its value at mid-rapidity, z = 0, as a function of
time [21]. We choose t = 0 as the time at which the two
shocks would have exactly overlapped in the absence of
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, as the time
beyond which the average pressure coincides with the
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We expect on physical grounds that increasing the ini-

tial energy in the shocks increases the energy deposited
in, and hence the hydrodynamization temperature of,
the resulting plasma. We have confirmed that, indeed,
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�⇤ increases monotonically with µ�⇤. On the grav-
ity side this means that, for su�ciently large (small) µ�⇤,
the horizon forms in the UV (IR) region of the solution,
where the geometry is approximately AdS. As a conse-
quence, in these two limits the plasma formation and sub-
sequent relaxation proceed approximately as in a CFT.
In contrast, for µ ∼ ⇤ the relaxation of the plasma takes
place in the most non-conformal region where the bulk
viscosity e↵ects are largest. In this intermediate region
we see several e↵ects that are absent in a CFT.

First, hydrodynamization times are longer than in a
CFT. This is illustrated by the red curve in Fig. 2(bot-
tom) whose maximum, indicated by the first vertical line
from the left, is 2.5 times larger than the conformal re-
sult, which is indicated by the horizontal line [20]. As
expected, at high T
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�⇤ we see that t
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T
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asymptot-
ically approaches its conformal value (we have checked
that at T
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�⇤ = 4.8 the di↵erence is 0.5%). We expect
the same to be true at low T

hyd

�⇤ [22].
Second, the equation of state is not obeyed out of equi-

librium. This is illustrated in Fig. 3(bottom) for a colli-
sion of 1�4 -shocks with µ�⇤ = 0.94, for which the hydro-
dynamization temperature is T

hyd

�⇤ = 0.24. We see that
the equilibrium and the average pressures are not within
10% of one another until a time t

eq

= 9.8�⇤ = 2.4�T
hyd

.
This is further illustrated in Fig. 2(bottom), which shows
the dependence of the equilibration time on the hydrody-
namization temperature for 1�2 -collisions. We see that
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
pressure hydrodynamizes much faster than the longitudinal
one, PT and P hyd

T are virtually on top of one another for
the times shown. Hydrodynamization and equilibration take
place at thyd⇤ = 4.3 and teq⇤ = 9.8, respectively, as indicated
by the vertical lines. At thyd the di↵erence between P̄ and
Peq is 17%, whereas the di↵erence between P̄ and P̄hyd is 2%.
At teq the di↵erence between PL and P hyd

L is 4%. The PT �PL

ratio is 4.5 at thyd and 2.1 at teq.

for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
t
eq

should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd

< t
eq

for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025

3

µ! = 0.12, respectively) for several di↵erent values of
µ�⇤. We then extract the boundary stress tensor and we
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ity side this means that, for su�ciently large (small) µ�⇤,
the horizon forms in the UV (IR) region of the solution,
where the geometry is approximately AdS. As a conse-
quence, in these two limits the plasma formation and sub-
sequent relaxation proceed approximately as in a CFT.
In contrast, for µ ∼ ⇤ the relaxation of the plasma takes
place in the most non-conformal region where the bulk
viscosity e↵ects are largest. In this intermediate region
we see several e↵ects that are absent in a CFT.

First, hydrodynamization times are longer than in a
CFT. This is illustrated by the red curve in Fig. 2(bot-
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from the left, is 2.5 times larger than the conformal re-
sult, which is indicated by the horizontal line [20]. As
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ically approaches its conformal value (we have checked
that at T
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�⇤ = 4.8 the di↵erence is 0.5%). We expect
the same to be true at low T

hyd

�⇤ [22].
Second, the equation of state is not obeyed out of equi-

librium. This is illustrated in Fig. 3(bottom) for a colli-
sion of 1�4 -shocks with µ�⇤ = 0.94, for which the hydro-
dynamization temperature is T
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�⇤ = 0.24. We see that
the equilibrium and the average pressures are not within
10% of one another until a time t
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This is further illustrated in Fig. 2(bottom), which shows
the dependence of the equilibration time on the hydrody-
namization temperature for 1�2 -collisions. We see that
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
pressure hydrodynamizes much faster than the longitudinal
one, PT and P hyd

T are virtually on top of one another for
the times shown. Hydrodynamization and equilibration take
place at thyd⇤ = 4.3 and teq⇤ = 9.8, respectively, as indicated
by the vertical lines. At thyd the di↵erence between P̄ and
Peq is 17%, whereas the di↵erence between P̄ and P̄hyd is 2%.
At teq the di↵erence between PL and P hyd

L is 4%. The PT �PL

ratio is 4.5 at thyd and 2.1 at teq.

for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
t
eq

should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd

< t
eq

for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025
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•  Main conclusions:

‣ Hydrodynamization without equilibration.
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‣ Required bulk viscosity about 1/10 of QCD at Tc. 

‣ Hydro time 2.5 longer than in CFT. 

‣ EOS does NOT hold out of equilibrium.

Beyond conformal symmetry
Attems, Casalderrey, D.M., Santos-Olivan, Sopuerta, Triana & Zilhao ’16
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µ! = 0.12, respectively) for several di↵erent values of
µ�⇤. We then extract the boundary stress tensor and we
focus on its value at mid-rapidity, z = 0, as a function of
time [21]. We choose t = 0 as the time at which the two
shocks would have exactly overlapped in the absence of
interactions [3].

We define the hydrodynamization time, t
hyd

, as the
time beyond which both pressures are correctly predicted
by the constitutive relations of first-order viscous hydro-
dynamics,

P hyd

L

= P
eq

+ P
⌘

+ P
⇣

, (12a)

P hyd

T

= P
eq

− 1

2

P
⌘

+ P
⇣

, (12b)

with a 10% accuracy, so that �P
L,T

− P hyd

L,T

� �P̄ < 0.1. In

(12) we have denoted by P
⌘

and P
⇣

the shear and the
bulk contributions to the hydrodynamic pressures, re-
spectively, which are proportional to the corresponding
viscosities. The di↵erent coe�cients in front of P

⌘

in
these two equations reflect the tracelessness of the shear
tensor. We define the equilibration time, t

eq

, as the time
beyond which the average pressure coincides with the
equilibrium pressure with a 10% accuracy, meaning that�P̄ − P

eq

� �P̄ < 0.1.
We expect on physical grounds that increasing the ini-

tial energy in the shocks increases the energy deposited
in, and hence the hydrodynamization temperature of,
the resulting plasma. We have confirmed that, indeed,
T
hyd

�⇤ increases monotonically with µ�⇤. On the grav-
ity side this means that, for su�ciently large (small) µ�⇤,
the horizon forms in the UV (IR) region of the solution,
where the geometry is approximately AdS. As a conse-
quence, in these two limits the plasma formation and sub-
sequent relaxation proceed approximately as in a CFT.
In contrast, for µ ∼ ⇤ the relaxation of the plasma takes
place in the most non-conformal region where the bulk
viscosity e↵ects are largest. In this intermediate region
we see several e↵ects that are absent in a CFT.

First, hydrodynamization times are longer than in a
CFT. This is illustrated by the red curve in Fig. 2(bot-
tom) whose maximum, indicated by the first vertical line
from the left, is 2.5 times larger than the conformal re-
sult, which is indicated by the horizontal line [20]. As
expected, at high T

hyd

�⇤ we see that t
hyd

T
hyd

asymptot-
ically approaches its conformal value (we have checked
that at T

hyd

�⇤ = 4.8 the di↵erence is 0.5%). We expect
the same to be true at low T

hyd

�⇤ [22].
Second, the equation of state is not obeyed out of equi-

librium. This is illustrated in Fig. 3(bottom) for a colli-
sion of 1�4 -shocks with µ�⇤ = 0.94, for which the hydro-
dynamization temperature is T

hyd

�⇤ = 0.24. We see that
the equilibrium and the average pressures are not within
10% of one another until a time t

eq

= 9.8�⇤ = 2.4�T
hyd

.
This is further illustrated in Fig. 2(bottom), which shows
the dependence of the equilibration time on the hydrody-
namization temperature for 1�2 -collisions. We see that
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
pressure hydrodynamizes much faster than the longitudinal
one, PT and P hyd

T are virtually on top of one another for
the times shown. Hydrodynamization and equilibration take
place at thyd⇤ = 4.3 and teq⇤ = 9.8, respectively, as indicated
by the vertical lines. At thyd the di↵erence between P̄ and
Peq is 17%, whereas the di↵erence between P̄ and P̄hyd is 2%.
At teq the di↵erence between PL and P hyd

L is 4%. The PT �PL

ratio is 4.5 at thyd and 2.1 at teq.

for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
t
eq

should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd

< t
eq

for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025
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FIG. 3. Longitudinal, transverse and average pressures, their
hydrodynamic approximations, and the equilibrium pressure
extracted from the equation of state, all in units of ⇤4, for a
collision of 1�4 -shocks with µ�⇤ = 0.94. The hydrodynamiza-
tion temperature is Thyd�⇤ = 0.24. Because the transverse
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for su�ciently large µ�⇤ the equilibration time becomes
negative, meaning that the average and the equilibrium
pressures di↵er by less than 10% even before the shocks
collide. The reason is simply that in these cases the en-
ergy density in the Gaussian tails in front of the shocks,
which start to overlap at negative times, becomes much
higher than ⇤. At these energy densities the physics
becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of
this symmetry. An analogous argument implies that
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should also become negative for collisions with suf-
ficiently small µ�⇤ [22].

Third, hydrodynamization can take place before equili-
bration. Indeed, we see in Fig. 2(bottom) that t

hyd
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for collisions for which the hydrodynamization temper-
ature is between the first and the fourth vertical line.
Comparing with Fig. 2(top) we see that at these two tem-
peratures the viscosity-to-entropy ratios are ⇣�s = 0.025



Off-centre collisions of finite nuclei

Localised lumps of energy
Non-zero impact parameter

Gravitational waves

Chesler & Yaffe ’15



Off-centre collisions of finite nuclei Chesler & Yaffe ’15

See development of transverse flow.

But essentially no elliptic flow. 
(perhaps due to transverse Gaussians).



Infinite vs finite brick

Gravitational waves

p+A collisions and the smallest drops of QGP Chesler ’15

• Produce droplets of size                            that are well described by hydro. 

1st order viscous hydro
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Thank you.


