

Simulating a first-order electroweak phase transition

PRL 112, 041301 (2014) [arXiv:1304.2433], PRD 92, 123009 (2015) [arXiv:1504.03291], JCAP 1604 (2016) 001 [arXiv:1512.06239], and PRD 93, 124037 (2016) [arXiv:1604.08429].

David J. Weir

CERN Theory Workshop, 25 August 2016

Potentially observable!

- First order EWPT can produce observable gravitational wave signatures
- For future projects (including eLISA), the EWPT *is* a scientific objective
- It's *possible* to believe that a phase transition that produces observable GWs also could explain baryogenesis

Gravitational waves

Gravitational waves Weinberg

GR predicts that time-dependent stress energy sources gravitational waves

• Weak field approximation

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}; \quad |h_{\mu\nu}| \ll 1$$

• After some algebra

$$\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\mathrm{TT}}$$

- Source (transverse traceless part of T_{ij}):
 - Astrophysics (neutron stars, black holes)
 - Cosmology (defects, phase transitions, reheating)
- After production, immediately 'decouple' can directly probe (e.g.) EWPT

'ripples in spacetime'

Gravitational wave sources

Lots of potential sources...

... lots of potential detectors ...

GWs are now a Thing

... it was therefore only a matter of time before we saw something.

PRL 116, 061102 (2016)	Selected for a Viewpoint in <i>Physics</i> PHYSICAL REVIEW LETTERS	week ending 12 FEBRUARY 2016
Observation of Gravitational Waves from a Binary Black Hole Merger		
B. P. Abbott <i>et al.</i> * (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)		

What's "next": [e]LISA

- eLISA would have two arms (four laser links), 1M km separation
- Launch as ESA's third large-scale mission (L3) in c.2034
- Cheaper version of LISA (one less arm, smaller separation, higher noise floor, shorter duration)
- In light of events (aLIGO; LISA Pathfinder; international collaboration):
 - Restore missing arm?
 - Increase separation?
 - Extend mission duration?
 - Drop the 'e'???

LISA Pathfinder is orbiting Earth-Sun ${\rm L}_1$

Interferometer + test masses - technology demonstrator

Lisa Pathfinder launches to test space 'ripples' technology

By Jonathan Amos BBC Science Correspondent

© 3 December 2015 | Science & Environment

Lisa Pathfinder's Vega rocket clears the pad at the Kourou spaceport

Europe has launched the Lisa Pathfinder satellite, an exquisite space physics experiment.

Exceeded design expectations by a factor of five!

Close to requirements for LISA.

Thermal phase transitions

Extended Standard Model with first-order PT. Around temperature T_* ,

- Bubbles nucleate in false vacuum with rate β
- Bubbles expand, liberate latent heat characterised by α_{T_*}
- Bubbles interact with plasma
 deposit kinetic energy with efficiency κ
- Friction from plasma acts on bubble walls – walls move with velocity v_{wall}
- Bubbles collide
 - producing gravitational waves

 β , α_{T_*} , v_{wall} (and T_*):

3 (+1) parameters are all you need

Espinosa, Konstandin, No, Servant; Kamionkowski, Kosowsky, Turner (can get κ from α_{T_*} and $v_{\rm wall}$)

What the metric sees at a thermal phase transition

- Bubbles nucleate, most energy goes into plasma, then:
 - 1. $h^2\Omega_{\phi}$: Bubble walls and shocks collide 'envelope phase'
 - 2. $h^2\Omega_{sw}$: Sound waves set up after bubbles have collided, before expansion dilutes KE 'acoustic phase'
 - 3. $h^2\Omega_{turb}$: MHD turbulence 'turbulent phase'
- These sources then add together to give the observed GW power:

 $h^2 \Omega_{\rm GW} pprox h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$

- Each phase's contribution depends on the nature of the phase transition.
- Now: explore steps 1-2 through two types of simulations:
 - 1. The 'envelope approximation' $\rightarrow h^2 \Omega_{\phi}$
 - 2. A field ϕ ('Higgs') coupled by friction to a fluid U^{μ} ('plasma') $\rightarrow h^2 \Omega_{sw}$

1: Envelope [and thin wall] approximation

Kosowsky, Turner and Watkins; Kamionkowski, Kamionkowsky and Turner

- Thin, hollow bubbles, no fluid
- Bubbles expand with velocity $v_{\rm w}$
- Stress-energy tensor $\propto R^3$ on wall
- Overlapping bubbles \rightarrow GWs
- Keep track of solid angle
- Collided portions of bubbles disappear, sourcing gravitational waves
- Resulting power spectrum is simple
 - One length scale
 (average bubble radius R_{*})
 - Two power laws (ω^3 , $\sim \omega^{-1}$)
 - Amplitude
 - \Rightarrow 4 numbers define spectral form

1: Making predictions with the envelope approximation

Espinosa, Konstandin, No and Servant; Huber and Konstandin

4-5 numbers parametrise the transition:

- α_{T_*} , vacuum energy fraction
- $v_{\rm w}$, bubble wall speed
- κ_{ϕ} , conversion 'efficiency' into gradient energy $(\nabla \phi)^2$
- Transition rate:
 - H_* , Hubble rate at transition
 - β , bubble nucleation rate
 - ightarrow ansatz for $h^2\Omega_{\phi}$

NB: applied to colliding shocks in a *thermal* transition ($\kappa = \kappa_f$), energy in GWs is

$$\rho_{\rm GW} \propto \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa_{\rm f}^2 \alpha^2}{(\alpha + 1)^2}$$

assumes the shocks are **thin** and disappear after the bubbles collide: this is an underestimate; the dominant source from the fluid KE is sound waves... 12/28

2: Coupled field and fluid system

- Scalar ϕ + ideal fluid u^{μ}
 - Split stress-energy tensor $T^{\mu\nu}$ into field and fluid bits Ignatius, Kajantie, Kurki-Suonio and Laine

$$\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\text{field}} + T^{\mu\nu}_{\text{fluid}}) = 0$$

- Parameter η sets the scale of friction due to plasma $\partial_{\mu}T^{\mu\nu}_{\text{field}} = \eta u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi \qquad \partial_{\mu}T^{\mu\nu}_{\text{fluid}} = -\eta u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi$
- Effective potential $V(\phi, T)$ does not need to be realistic

$$V(\phi, T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}AT\phi^3 + \frac{1}{4}\lambda\phi^4$$

- γ , T_0 , A, λ chosen to match scenario of interest
- Equations of motion (+ continuity equation)

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial V(\phi,T)}{\partial\phi} = -\eta u^{\mu}\partial_{\mu}\phi$$
$$\partial_{\mu}\left\{\left[\epsilon + p\right]u^{\mu}u^{\nu} - g^{\mu\nu}\left[p - V(\phi,T)\right]\right\} = \left(\eta u^{\mu}\partial_{\mu}\phi + \frac{\partial V(\phi,T)}{\partial\phi}\right)\partial^{\nu}\phi$$
13/28

• The value of η sets the velocity of bubble wall $v_{\rm w}$

Deflagrations ($v_w < c_s$, shock leads); detonations ($v_w > c_s$, shock trails)

2: Velocity profile development - detonation

2: Velocity profile development - deflagration

Here, $\eta = 0.2$ (deflagration)

2: Dynamic range issues

- Most realtime lattice simulations in the early universe have a single [nontrivial] length scale
- Here, many length scales important

• Recently completed simulations with 4200^3 lattices, $\delta x = 2/T_c$ \rightarrow approx 1M CPU hours each (\sim 17.6M total)

2: Simulation slice example [optional movie]

Simulations at 1024^3 , deflagration, fluid kinetic energy density, \sim 250 bubbles

2: Simulation slice example

PHYSICAL REVIEW LETTERS Highlights Recent Accepted Collections Authors Referees Search Press About About

Cover Image: Phys. Rev. Lett. Vol. 112, Iss. 4

Simulated energy density of a fluid-fluid system at the end of initial coalescence: A model for gravitational wave generation in the early Universe.

From the article: Gravitational Waves from the Sound of a First Order Phase Transition Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir Phys. Rev. Lett. **112**, 041301 (2014) • Energy density in gravitational waves ρ_{gw} :

- Stationary source
- Total energy generically scales as $\rho_{\rm GW} \propto t [G\xi_{\rm f}(\bar{\epsilon}+\bar{p})^2 \overline{U}_f^4]$

- Does the acoustic source matter?
 - Sound is damped by (bulk and) shear viscosity Arnold, Dogan and Moore; Arnold, Moore and Yaffe

$$\left(\frac{4}{3}\eta_{\rm s}+\zeta\right)\nabla^2 V^i_{\parallel}+\ldots\Rightarrow \tau_\eta(R)\sim \frac{R^2\epsilon}{\eta_{\rm s}}$$

• Compared to $\tau_{H_*} \sim H_*^{-1}$, on length scales

$$R^2 \gg \frac{1}{H_*} \frac{\eta_{\rm s}}{\epsilon} \sim 10^{-11} \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{100 \,{\rm GeV}}\right)$$

the Hubble damping is faster than shear viscosity damping.

- Does the acoustic source enhance GWs?
 - Yes, we have

$$\Omega_{\rm GW} \approx \left(\frac{\kappa\alpha}{\alpha+1}\right)^2 (H_*\tau_{H_*})(H_*\xi_{\rm f}) \Rightarrow \frac{\Omega_{\rm GW}}{\Omega_{GW}^{\rm envelope}} \gtrsim 60 \frac{\beta}{H_*}.$$

2: Velocity power spectra and power laws

- Weak transition: $\alpha_{T_N} = 0.01$
- Power law behaviour above peak is between k^{-2} and k^{-1}
- "Ringing" due to simultaneous bubble nucleation, not physically important

• Sourced by T_{ij}^{f} only

- Approximate k^{-3} to k^{-4} power spectrum at high k
- Expect causal k^3 at low k
- Curves scaled by t: source 'on' continuously until turbulence/expansion
- ightarrow power law ansatz for $h^2 \Omega_{
 m sw}$

3: Transverse versus longitudinal modes – turbulence?

- Weak transition (small α): physics is linear; most power is in the longitudinal modes – acoustic waves, not turbulence
- Is turbulence is something that would happen later? Pen and Turok
- Power spectrum would have causal k^3 then $k^{-5/3}$ from Kolmogorov velocity power spectrum Caprini, Durrer and Servant
- ightarrow power law ansatz for $h^2 \Omega_{
 m turb}$

Putting it all together - $h^2 \Omega_{gw}$

- We have three sources, $pprox h^2 \Omega_{\phi}$, $h^2 \Omega_{
 m sw}$, $h^2 \Omega_{
 m turb}$
- We know how they vary as a function of T_* , α_T , $v_{\rm w}$, β
- So we can (tentatively) say whether eLISA can detect the phase transition associated with a given model...

(example with
$$T_* = 100 {
m GeV}$$
, $\alpha_{T_*} = 0.5$, $v_{
m w} = 0.95$, $\beta/H_* = 10$)

Putting it all together - physical models to GW power spectra

Map your favourite theory to $(T_*, \alpha_{T_*}, v_w, \beta)$; we can put it on a plot like this

... and tell you if it is detectable by the different [e]LISA cases.

Baryogenesis...?

Can a thermal phase transition yield baryogenesis and GWs?

- The folklore is that lower wall velocities are better, because they allow the \mathcal{CP} -violating processes to take place Megevand; Joyce, Prokopec, Turok
- In particular subsonic wall velocities are required
- But energy in GWs goes as $v_{\rm w}^3$, so faster walls are preferred for an observable gravitational wave power spectrum
- In some cases it seems that $v_{\rm w}$ just shy of $c_{\rm s}$ works well Fromme, Huber, Seniuch
- Can we get baryogenesis and GWs from a viable model?

- Now:
 - Have a good [cosmological] understanding of what happened during a first order PT
 - Recent work shows source may be stronger than previously thought
 - Many models of first order EWPTs can produce observable gravitational waves – forms part of eLISA science case
- Next:
 - Gravitational wave detectors now firmly on the agenda, and eLISA has support; mission could be improved; launch date could come forward from 2034
 - Strong transitions, turbulence, instabilities still poorly understood
 - Wall velocities; connections with baryogenesis need [more] model-specific computations?!