Cosmological constraints on the Higgs-gravity coupling

Arttu Rajantie

CERN TH Institute 24 August 2016 Herranen, Markkanen, Nurmi & AR, PRL113(2014)211102 Herranen, Markkanen, Nurmi & AR, PRL115(2015)241301 AR & Stopyra, arXiv:1606.00849 Figueroa, AR & Torrenti, in progress

Higgs cosmology

27 – 28 March 2017 The Royal Society at Chicheley Hall, Buckinghamshire

Organised by Professor Arttu Rajantie, Dr Malcolm Fairbairn, Dr Tommi Markkanen and Dr Astrid Eichhorn

For further details, or to request an invitation, please visit **royalsociety.org/events**

For enquiries contact kavli.events@royalsociety.org

The Standard Model

- Six leptons, six quarks, three gauge fields
 + Higgs scalar φ
- 19 parameters all have been measured
- All renormalisable terms allowed by symmetries in Minkowski space

The Standard Model

- Six leptons, six quarks, three gauge fields
 + Higgs scalar φ
- 19 parameters all have been measured
- All renormalisable terms allowed by symmetries in Minkowski space

(Buttazzo et al 2013)

 Can be extrapolated all the way to the Planck scale

It all depends on some precise numbers related to the Higgs that researchers are currently

Instability Bounds

(Buttazzo et al. 2013)

- Vacuum lifetime ~ $\exp(S_{\text{bounce}}) \sim \exp\left(\frac{8\pi^2}{3|\lambda|}\right)$
- Longer than the age of the Universe We are safe!

The Standard Model

- Six leptons, six quarks, three gauge fields
 + Higgs scalar φ
- 19 parameters all have been measured
- All renormalisable terms allowed by symmetries in Minkowski space

Higgs-Gravity Coupling

Curved spacetime:

 $\mathcal{L} = \mathcal{L}_{SM} + \xi R \phi^{\dagger} \phi$ (Chernikov&Tagirov 1968)

- One more renormalisable term: Higgs-curvature coupling ξ
- Required for renormalisability, runs with energy – Cannot be set to zero!
- Last unknown parameter in the Standard Model

Running ξ

$$\mu \frac{d\xi}{d\mu} = \left(\xi - \frac{1}{6}\right) \frac{12\lambda + 6y_t^2 - \frac{3}{2}g'^2 - \frac{9}{2}g^2}{16\pi^2}$$

- Becomes negative if $\xi_{\rm EW} = 0$
- Conformal value $\xi = 1/6$ RG invariant at 1 loop

Vacuum Instability and $oldsymbol{\xi}$

- Tunneling rate: $\Gamma \sim e^{-B}$, where B = action of the Euclidean "bounce" solution (Coleman 1977)
- Coupled field and Einstein equations
- Perturbative gravitational correction (Isidori et al 2007) $\Delta B = \frac{32\pi^2}{45M_{Pl}^2\rho^2|\lambda|^2}, \text{ where } \rho = \text{radius of the instanton}$
- AR & Stopyra, arXiv:1606.00849:
 Full numerical solution including ξ

Vacuum Instability and ξ

AR & Stopyra, arXiv:1606.00849

Tunneling rate \(\Gamma\) ~ e^{-B}: Larger \(|\xi| \infty\) more stable vacuum
 Perturbative \(\Delta B\) = \frac{32\pi^2(1-6\xi)^2}{45M_{Pl}^2\rho^2\lambda^2}\) (Salvio et al, arXiv:1608:02555)

Vacuum Instability Today

AR & Stopyra, arXiv:1606.00849

Fastest at $\xi \approx 1/6$, where almost the same as Minkowski

Effect on Stability

AR & Stopyra, arXiv:1606.00849

Measuring ξ

Curved spacetime:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \xi R \phi^{\dagger} \phi$$

- Ricci scalar R very small today Difficult to measure
- Colliders: Suppresses Higgs couplings (Atkins&Calmet 2012)
 - $\,\circ\,$ LHC Bound $|\xi| \lesssim 2.6 \times 10^{15}$
 - Future (?) ILC: $|\xi| \lesssim 4 \times 10^{14}$
- In contrast, R was high in the early Universe: Cosmological effects?

Example: Higgs Inflation (Bezrukov&Shaposhnikov 2008)

- Higgs as inflaton: Dominates energy density
- ► Jordan → Einstein frame: $\phi \sim \frac{M_{Pl}}{\sqrt{\xi}} \exp\left(\frac{\chi}{\sqrt{6}M_{Pl}}\right)$

$$V(\phi) = \frac{\lambda \phi^4}{4} \rightarrow U(\chi) \sim \frac{\lambda M_{Pl}^4}{4\xi^2} \left[1 - \exp\left(-\sqrt{\frac{2}{3}}\frac{\chi}{M_{Pl}}\right) \right]$$

• During inflation $\phi \gtrsim M_{Pl}/\sqrt{\xi}$

Example: Higgs Inflation (Bezrukov&Shaposhnikov 2008)

- Higgs as inflaton: Dominates energy density
- ► Jordan → Einstein frame: $\phi \sim \frac{M_{Pl}}{\sqrt{\xi}} \exp\left(\frac{\chi}{\sqrt{6}M_{Pl}}\right)$

$$V(\phi) = \frac{\lambda \phi^4}{4} \rightarrow U(\chi) \sim \frac{\lambda M_{Pl}^4}{4\xi^2} \left[1 - \exp\left(-\sqrt{\frac{2}{3}}\frac{\chi}{M_{Pl}}\right) \right]$$

- CMB amplitude $\Rightarrow \xi \sim -49000\sqrt{\lambda}$
- Spectral index
 n_s ≈ 0.97

 Tensor/scalar ratio:
 r ≈ 0.003

Example: Higgs Inflation (Bezrukov&Shaposhnikov 2008)

- Higgs as inflaton: Dominates energy density
- ► Jordan → Einstein frame: $\phi \sim \frac{M_{Pl}}{\sqrt{\xi}} \exp\left(\frac{\chi}{\sqrt{6}M_{Pl}}\right)$

$$V(\phi) = \frac{\lambda \phi^4}{4} \rightarrow U(\chi) \sim \frac{\lambda M_{Pl}^4}{4\xi^2} \left[1 - \exp\left(-\sqrt{\frac{2}{3}}\frac{\chi}{M_{Pl}}\right) \right]$$

Problem: Eff. potential $V_{\rm eff}(\phi) \approx \frac{1}{4}\lambda(\phi)\phi^4 < 0$ for $\phi \ge 10^{10} {\rm GeV}$

(Buttazzo et al 2013)

Higgs During Inflation

- Instead of Higgs inflation, assume inflaton sector decoupled from the Higgs: Higgs dynamics in expanding background
- Ricci scalar in FRW spacetime:

$$R = 6\left(\frac{\dot{a}^2}{a^2} + \frac{\ddot{a}}{a}\right) = 3(1 - 3w)H^2$$

- Radiation dominated (w = 1/3): R = 0
- Matter dominated (w = 0): $R = 3H^2$
- Inflation / de Sitter (w = -1): $R = 12H^2$
- Effective Higgs mass term $m_{eff}^2 = m_{H}^2 + \xi R$: Time-dependent and very high in the early Universe

Higgs During Inflation

- Let us consider $\xi = 0$ first
- Inflation: $H \leq 9 \times 10^{13}$ GeV (Planck+BICEP2 2015)
- ▶ Higgs mass $m_{\rm H} \approx 125~{\rm GeV} \ll H$: Light scalar field – nearly scale invariant fluctuations
- Fokker-Planck equation (Starobinsky&Yokoyama 1994) $\frac{\partial P[\phi]}{\partial t} = \frac{\partial}{\partial \phi} \left[\frac{H^3}{8\pi^2} \frac{\partial P}{\partial \phi} + \frac{V'(\phi)}{3H} P \right]$
- Equilibrium distribution

$$P(\phi) \propto \exp\left[-\frac{8\pi^2}{3H^4}V(\phi)\right]$$

Higgs Fluctuations

- Equilibrium $P(\phi) \propto \exp\left[-\frac{8\pi^2}{3H^4}V(\phi)\right]$
- Tree-level potential $V(\phi) = \lambda(\phi^2 - v^2)^2$
- Nearly scale-invariant fluctuations with amplitude $\phi \sim \lambda^{1/4} H$

JUN 24, 2014 03:42 PM ET // BY IAN O'NEILL

Gravity to the Rescue

- Inflation: Constant $R = 12H^2$
- Effective mass term

$$m_{\rm eff}^2 = m_{\rm H}^2 + \xi R = m_{\rm H}^2 + 12\xi H^2$$

- Tree level: (Espinosa et al 2008)
 - $\xi > 0$: Increases barrier height Makes the low-energy vacuum more stable
 - $\xi < 0$: Decreases barrier height Makes the low energy vacuum less stable
- Also contributes to loop corrections

One-Loop Potential

$$\begin{split} V_{\rm eff} &= -\frac{1}{2} m^2(t) \phi^2(t) + \frac{1}{2} \xi(t) R \phi^2(t) + \frac{1}{4} \lambda(t) \phi^4(t) \\ &+ \sum_{i=1}^9 \frac{n_i}{64\pi^2} M_i^4(\phi) \bigg[\log \frac{|M_i^2(\phi)|}{\mu^2(t)} - c_i \bigg], \end{split}$$

(HMNR 2014)

Note: For
$$R \gg \phi$$
,
there are $\log R/\mu^2$ terms

- RG improved potential becomes $V(\phi) \approx \lambda(R^{1/2})\phi^4$
- Negative for all ϕ , no barrier if $\xi = 0$

$$M_i^2(\phi) = \kappa_i \phi^2(t) - \kappa'_i + \theta_i R,$$

Φ	i	n_i	ĸ _i	κ'_i	$ heta_i$	c _i
	1	2	$g^{2}/4$	0	1/12	3/2
W^{\pm}	2	6	$g^2/4$	0	1/12	5/6
	3	-2	$g^2/4$	0	-1/6	3/2
	4	1	$(g^2 + g'^2)/4$	0	1/12	3/2
Z^0	5	3	$(g^2 + g'^2)/4$	0	1/12	5/6
	6	-1	$(g^2 + g'^2)/4$	0	-1/6	3/2
t	7	-12	$y_{t}^{2}/2$	0	1/12	3/2
ϕ	8	1	3λ	m^2	$\xi - 1/6$	3/2
Xi	9	3	λ	m^2	$\xi - 1/6$	3/2

(De)Stabilicing the Dotontial Higgs Boson Threatened The Early Universe, But Gravity Saved The Day

by VANESSA JANEK on NOVEMBER 19, 2014

 $\blacktriangleright \quad \text{If } H \ge$

there

vacuu

inflati

(HMNR 2014)

End of Inflation

Reheating:

Inflation ($R = 12H^2$) \rightarrow radiation domination (R = 0)

- Effective Higgs mass $m_{eff}^2 = m_{H}^2 + \xi R$ changes rapidly:
 - Excites the Higgs field
 - "Geometric preheating" (Bassett&Liberati 1998, Tsujikawa et al. 1999)
- Could this throw it over the barrier, triggering the instability?

Inflaton Oscillations

- After inflation, Universe is dominated by an almost uniform inflaton field χ oscillating in its potential $V_{inf}(\chi)$
- Ricci scalar

$$R = \frac{1}{M_{Pl}^2} [4V_{inf}(\chi) - \dot{\chi}^2]$$

At the minimum

$$R \sim -\frac{V_{\text{inf}}(\chi_{\text{ini}})}{M_{Pl}^2} < 0$$

• Tachyonic Higgs mass $m_{\rm eff}^2 < 0$ if $\xi > 0$ (HMNR 2015)

Inflaton Oscillations

• Example: $m^2\chi^2$ chaotic inflation

Tachyonic Growth

- Tachyonic growth rate $\mu \sim \sqrt{\xi |R|} \sim \xi^{1/2} m \chi_{ini} / M_{Pl}$
- Duration in time $\Delta t \sim 1/m$
- Growth during first oscillation $e^{\mu\Delta t} \sim e^{\xi^{1/2}\chi_{ini}/M_{Pl}}$
- Higgs variance at horizon scale:

$$\langle \phi^2 \rangle_H \sim \frac{2}{3\sqrt{3}\xi} \left(\frac{H}{2\pi}\right)^2 e^{\frac{2\sqrt{\xi}\chi_{\rm ini}}{M_{\rm Pl}}} \sim \frac{H^2}{\xi} e^{2\sqrt{\xi}}$$
 (HMNR 2015)

Vacuum Instability

user: akraja

Thu Jun 9 15:26:44

Detailed Calculations

Time:0

0.0006931

0.0003482

- 3.230e-06 --0.0003417

----0.0006860 vlax: 0.0006931

- Ema et al, arXiv:1602:00483
 - Lattice simulation
 - $\delta \xi \lesssim 20$
- Kohri et al, arXiv:1602.02100
 - Linearised calculation
 - $\delta \xi \lesssim 40$
- Figueroa, AR & Torrenti, in progress:
 - Lattice simulations

Lattice Simulations: $m^2 \chi^2$

Figueroa, AR & Torrenti, in progress

Instability Time

- Stability depends on speed of reheating, top mass
- $M_t = 173.34$ GeV: vacuum decays before mt = 100 if $\xi \gtrsim 9$

Constraints on ξ

 Minimal scenario:
 Standard Model + m²φ² chaotic inflation, no direct coupling to inflaton

$0.06 \leq \xi \leq 9$

- > 15 orders of magnitude stronger than the LHC bound $|\xi| \lesssim 2.6 \times 10^{15}$
- Caveats:
 - Inflaton coupling Would still need $|\xi| \lesssim O(1)$
 - New physics Could stabilise potential altogether
- Future work: Standard Model couplings, de Sitter tunneling

Summary

- Last unknown parameter in the Standard Model: Higgs-gravity coupling ξ
 - Required for renormalisability in curved spacetime
- Assuming no new physics except inflation:
 - Triggers vacuum decay during inflation unless $\xi \gtrsim 0.06$
 - Triggers vacuum decay after inflation unless $\xi \leq 9$
 - Gravitational effects slow down vacuum decay today Fastest rate for near-conformal coupling $\xi \approx 0.16676$

Running Coupling

λ becomes negative at $\mu \gtrsim 10^{10} \text{ GeV}$

Buttazzo et al., JHEP 2013