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McGill is in Montréal, Québec, Canada

Mr. McGill going home after a hard day’s work.
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McGill is in Montréal, Québec, Canada

Rutherford carried out his Nobel Prize (1908) winning work at McGill
(1898-1907).
His original equipment on display
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Motivations

Stages in heavy ion collisions

CGC (Color Glass Condensate) & Glasma stages: Dominated by
Classical Yang-Mills field

What is Classical Yang-Mills?

Quantum corrections?
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Motivations

Want to use Closed Time Path + Keldysh Rotation:

Physics Motivation: Ultra-relativistic Heavy Ion Collisions

Dense gluon dynamics (i.e. classical Yang-Mills) dominate the initial
state as well as the formation of Quark-Gluon Plasma
(Local) Thermalization mechanism – Coherent classical field to the
maximum entropy state?

Technical Motivation: How to do classical field theory in QFT

CTP + Keldysh Rotation – Clean separation of Q and C d.o.f.
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Transition Amplitude vs Expectation Value

Transition amplitude in QM

Tfi = 〈f |Û(tf , ti)|i〉
= 〈f |qf 〉〈qf |Û(tf , ti)|qi〉〈qi |i〉

= 〈f |qf 〉
∫ qf

qi

Dq ei
∫ tf

ti
dtL(q,q̇)〈qi |i〉

If a classical path dominates (for instance, large energy), shift
q → qcl + q to get∫ qf

qi

Dq ei
∫ tf

ti
dtL(q,q̇)

= eiScl(qf ,qi )

∫ 0

0
Dq ei

∫ tf
ti

dtδL(q,q̇|qcl)

where δL(q, q̇|qcl) is at least quadratic in q and q̇

The problem here is one of the boundary value problem

This is not what we want
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What we want: Initial value problem

Expectation value in QM

〈O(t)〉 = 〈i |Û(ti , t)ÔSÛ(t , ti)|i〉

is an initial value problem

It is going to involve two transition amplitudes or two path
integrals. One for Û(tf , ti) and another for Û(ti , tf )

How does one formulate classical initial value problem from this?
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Expectation Value

Expectation value

〈O(t)〉i = 〈i |Û(tinit, t)ÔSÛ(t , tinit)|i〉

Time flows from tinit to t and then back to tin. Only the in-state is
specified. ==> Initial value problem

Natural to define the initial density operator

ρ̂i = |i〉〈i |

or more generally

ρ̂init =
∑

n

Pn|n〉〈n| with
∑

n

Pn = 1

so that

〈O(t)〉 = Trρ̂(t)ÔS with ρ̂(t) = Û(t , ti)ρ̂initÛ(ti , t)

Jeon (McGill) CERN BBLB Workshop 8 / 57



Formulating the initial value problem

Closed Time Path (Schwinger-Keldysh, Keldysh-Schwinger, in-in . . . )
Using the scalar theory as an example with V (φ) = g2φ4/4!

t

t init
t

fin

Upper branch (φ1) represents 〈fin|Û(tfin, tinit)|init〉
Lower branch (φ2) represents 〈init|Û(tinit, tfin)|fin〉
Generating functional

Z [J1, J2]

=

∫
[dφf ]〈φf |ρ̂(tfin)|φf 〉

=

∫
[dφf ][dφi

1][dφi
2] 〈φf |ÛJ1 (tfin, tinit)|φi

1〉〈φi
1|ρ̂init|φi

2〉〈φi
2|ÛJ2 (tinit, tfin)|φf 〉
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Closed Time Path – Cont.

Generating functional

Z [J1, J2] =

∫
[dφf ][dφi

1][dφi
2]

∫ φf

φi
1

Dφ1

∫ φf

φi
2

Dφ2 ρinit[φ
1
i , φ

2
i ]

exp
(

i
∫ tf

ti
(L(φ1)− L(φ2) + J1φ1 − J2φ2)

)

tf can be taken to be at t =∞

Propagator takes on the 2× 2 matrix structure

GCTP =

(
G11 G12
G21 G22

) G11 = G∗22 = GF = 〈Tφ(x)φ(y)〉
G12 = 〈φ1(x)φ2(y)〉 = 〈φ(x)φ(y)〉
G21 = 〈φ2(x)φ1(y)〉 = 〈φ(y)φ(x)〉
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Keldysh rotation, AKA r-a formalism

Introduce a change of variables

φc ( = φr ) =
φ1 + φ2

2
and Jc = J1 − J2

φq ( = φa) = φ1 − φ2 and Jq =
J1 + J2

2

The time derivative terms in the Lagrangian:

φ̇2
1

2
−
φ̇2

2
2

= φ̇cφ̇q = ∂t (φ̇cφq)− φ̈cφq

Upon integrations by part (φf
q = 0 because φf

1 = φf
2)∫

(L(φ1)− L(φ2)) =

∫ tfin

tinit

(
φqE [φc]− g2

4!
φ3

qφc

)
− φ̇i

cφ
i
q

where E [φc] =
δS[φc]

δφc
is the sourceless classical field equation
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Keldysh rotation – Cont.

Carrying out [dφi
q] integral with the surface term −φ̇i

cφ
i
q transforms

the initial density matrix to the Wigner form∫
[dφi

q]e−iφ̇i
cφ

i
qρ[φi

c + φi
q/2, φ

i
c − φi

q/2] = ρW [φi
c , φ̇

i
c]

and the Generating functional now becomes

Z [Jc , Jq]

=

∫
Dφc

∫
Dφq ρW [φi

c , φ̇
i
c]

exp
(

i
∫ tf

ti

(
φq(E [φc] + Jq)− g2

4!
φ3

qφc + Jcφc

))
with no functional integration over φq at tinit and tfin

If the φ3
qφc term is ignored, the evolution of the field is entirely

classical with Jq as the source and with the initial data (φi
c , φ̇

i
c)
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Free field theory and the Propagators

Free field theory

Z [Jc , Jq] =

∫
Dφc

∫
Dφq ρW [φi

c , φ̇
i
c]

exp
(

i
∫ tf

ti

(
φq(−∂2 −m2)φc + Jqφq + Jcφc

))
Integrating over φq yields

Z [Jc , Jq] =

∫
DφcρW [φi

c , φ̇
i
c] δ[(∂2 + m2)φc − Jq] exp

(
i
∫ tf

ti
Jcφc

)
Solve the classical EoM in the (t ,k) space

φc(t ,k) = φh(t ,k) +

∫ tf

ti
dt ′GR(t − t ′,k) Jq(t ′,−k)

where GR(t − t ′,k) = θ(t − t ′) sin(Ek (t − t ′))/Ek and
φh(t ,k) = φi

c(k) cos(Ek (t − ti)) + φ̇i
c(k) sin(Ek (t − ti))/Ek
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Free field theory and the Propagators

Z [Jc , Jq] =

∫
DφcρW [φi

c , φ̇
i
c] δ[(∂2 + m2)φc − Jq] exp

(
i
∫ tf

ti
Jcφc

)

Integrating over φc produces the Jacobian
∣∣∣Det(∂2 + m2)

∣∣∣−1

Changing variables from φf to φ̇i produces
∣∣∣∣Det

(
δφf

δφ̇i

)∣∣∣∣
Since φ̇i =

δS
δφi

, this is the inverse of the van Vleck determinant∣∣∣Det(∂2 + m2)
∣∣∣ which cancels the Jacobian

Z [Jc , Jq] =

∫
[dφi

c][dπi
c] ρW [φi

c , π
i
c] exp

(
i
∫ tf

ti
Jcφc[φi

c , π
i
c , Jq]

)
with πi

c = φ̇i
c
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Propagators

Since
∫

Jφc =

∫
JcGRJq +

∫
Jcφh[φi

c , φ̇
i
c],

These two are obvious
〈φc(t)φq(t ′)〉 = iGR(t − t ′) (time always flows from φq to φc)
〈φq(t)φq(t ′)〉 = 0

The symmetric propagator GS = 〈φcφc〉 depends on ρW [φi
c , π

i
c]

Classical vacuum: ρW = δ[φi
c ]δ[πi

c ] which gives 〈φc(t)φc(t ′)〉 = 0
Quantum perturbative vacuum:

ρW [φ, π] = exp
(
−
∫

d2k
(2π)3Ek

(
E2

k φ(k)φ(−k) + π(k)π(−k)
))

which gives 〈φc(t)φc(t ′)〉 = FT
[
πδ(p2 −m2)

]
Thermal medium: 〈φc(t)φc(t ′)〉 = FT

[
(1/2 + nB(p0))2πδ(p2 −m2)

]
Quantum effect: Non-vanishing GS = 〈φcφc〉
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Almost classical interpretation

Z [Jc , Jq ] =

∫
Dφc

∫
Dφq ρW [φi

c , φ̇
i
c ] exp

(
i
∫ (

φq(E [φc ] + Jq)−
g2

4!
φ3

qφc + Jcφc

))

ρW [φi
c , φ̇

i
c] ∼ Probability distribution of the initial data (Not strictly,

since it’s a Wigner transform)

If for some reason φq � φc , then drop the φ3
q term to get∫

Dφqei
∫
φq(E [φc ]+Jq) = δ[E [φc] + Jq]

which enforces the classical equation of motion

Origin of quantum effects
ρW [φi

c , φ̇
i
c ]: Includes quantum effects. Especially the zero-point

motions.
Quantum vertex g2φ3

qφc/4!: Provides correlations absent in the
classical theory
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When the classical field dominates

Let V = g2φ4/4!. The EoM is

(∂2 + m2)φc +
g2

3!
φ3

c = Jq

Suppose we have a physical source Jq = Jphys.

If Jphys = O(1/g), then

φc = O(1/g)

and the interaction term is as big as the free field terms.
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The Lagrangian

Let ϕ be the solution of the classical EoM and let φc → ϕ+ φc

The Lagrangian

L = φq(E [ϕ+ φc ] + Jphys) +
g2

4!
φ3

qϕ+
g2

4!
φ3

qφc

= φq

(∂2 + m2 +
g2

2
ϕ2︸ ︷︷ ︸

O(1)

)φc +
g2

2
ϕ︸︷︷︸

O(g)

φ2
c +

g2

3!
φ3

c︸ ︷︷ ︸
O(g2)


+

g2

4!
ϕ︸︷︷︸

O(g)

φ3
q +

g2

4!
φ3

qφc︸ ︷︷ ︸
O(g2)

One can do perturbation theory if one knows
GR = 1/(∂2 + m2 + g2ϕ2/2)

If interested in only the leading order corrections, just ignore φ3
q

terms and solve classical field equations with the fluctuating initial
condition.
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LO + NLO

Carrying out
∫
Dφq integrals results in δ[E [φc] + Jq]

Carrying out
∫
Dφc integrals results in Det−1

(
δE [φc]

δφc

)
Swapping the boundry value problem (with φi , φf ) with the initial
value problem (with φi , φ̇i ) results in

Det
(
δφf

δφ̇i

)
= Det

(
δ2S
δφiδφf

)−1

= Det
(
δE [φc]

δφc

)

Any observable up to LO + NLO (with π = φ̇)

〈O(t)〉 =

∫
[dφi

c][dπi
c]ρW [φi

c , π
i
c]O[φcl(t), πcl(t)]
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LO + NLO + NNLO

In principle

〈O(t)〉 =

∫
Dφc

∫
Dφq ρW [φi

c , φ̇
i
c ] exp

(
i
∫ (

φq(E [φc ] + Jq)−
φ3

q

4!
V ′′′(φc)

))
O[φc , πc ]

=

∫
Dφc

∫
Dφq ρW [φi

c , φ̇
i
c ] exp

(
i
∫

(φq(E [φc ] + Jq))

)
×
(

1− i
∫

d4x
φ3

q

4!
V ′′′(φc) + · · ·

)
O[φc , φ̇c ]

=

∫
Dφc ρW [φi

c , φ̇
i
c ] δ[E [φc ] + Jq ]O[φc , φ̇c ]

− i
∫

d4x
δ3

δJq(x)3

∫
Dφc ρW [φi

c , φ̇
i
c ] δ[E [φc ] + Jq ]O[φc , φ̇c ]

1
4!

V ′′′(φc(x)) + · · ·

provide that ρW [φi
c , φ̇

i
c] is also accurate up to the first order

quantum correction

In practice, not so easy
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Vacuum Initial State Density

The vacuum functional satisfies the Schrödinger equation

H|Ψ〉 = 0

where

H =

∫
d3x

(
π2

2
+

(∇φ)2

2
+

m2

2
φ2 + V (φ)

)
and

π(x) = −i
δ

δφ(x)
Perturbative vacuum (products of SHO ground states)

〈φ|Ψ〉 = exp
(
−1

2

∫
d3k

(2π)3 Ekφ(k)φ(−k)

)
Vacuum Wigner functional

ρW [φ, π] = exp
(
−
∫

d3k
(2π)3Ek

(
E2

k φ(k)φ(−k) + π(k)π(−k)
))
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Coherent State

Coherent state: Eigenfunctional of the annihilation operator – Minimum
uncertainty state ∼ Classical field

Creation operator in the φ representation

A†(k) =

(
Ekφ(−k)− (2π)3 δ

δφ(k)

)
Annihilation operator in the φ representation

A(k) =

(
Ekφ(k) + (2π)3 δ

δφ(−k)

)
Commutator

[A(k),A†(k′)] = 2Ek (2π)3δ(k− k′)
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Coherent States

Ground state: Solving

〈φ|A(k)|Ψ〉 = 0

gives

〈φ|Ψ〉 = N exp
(
−
∫

d3q
(2π)3

Eq

2
φ(q)φ(−q)

)

Coherent state: Solving

〈φ|A(k)|ϕ+ iΠ〉 = ϕ(k)〈φ|ϕ+ iΠ〉

yields

〈φ|ϕ+ iΠ〉 = exp
(

i
∫

d3k
(2π)3 Π(k)φ(−k)− 1

2

∫
d3k

(2π)3 Ek |φ(k)− ϕ(k)|2
)
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Coherent State Initial Density Matrix

Wigner transform of the coherent state functional

ρW [φ, π] = exp
[
−
∫

d2k
(2π)3Ek

(
E2

k |φ(k)− ϕ(k)|2 + |π(k)− Π(k)|2
)]

Since this is just a shifted vacuum functional, in practice:

φi
c = ϕ+ δφ

πi
c = Π + δπ

where δφ and δπ follows the usual Gaussian vacuum distributions.
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Application 0
Scattering Amplitude

Expansion of Self-Energy
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Kadanoff Baym Equation

Standard application of the CTP formalism

KB Eq in the more-or-less standard form:

(p · ∂)G<,> =
1
2
(
Π>G< − Π<G>

)

In Quasi-particle approximation with

G>(X ,p) = 2πδ(p2 −m2)
[
θ(p0)(1 + f+(X ,p)) + θ(−p0)f−(X ,−p)

]
this can become Kinetic theory equation (e.g. the Boltzmann eq)

provided that the self-energy is expanded in scattering amplitudes
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Two-sweep CTP

A,2

t

A,1

B,2 B,1

Simon Caron-Huot’s Masters Thesis
By separating the A fields and B fields, one can show

Π>(P) =
∑

n,{Q}

1
n!
|Mar ···r (P; Q1, · · · ,Qn)|2

×G>(Q1) · · ·G>(Qn)(2π)4δ(4)(Q1 + · · ·+ Qn − P)

where

r ,a index = c,q index

Mar ···r (P; Q1, · · · ,Qn): Fully retarded and 1-PI correlation function

G>(Q): Full Wightman function
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Scattering Matrix Expansion

Π>(P) =
∑

n

1
n!
|Mar ···r (P; Q1, · · · ,Qn)|2

×G>(Q1) · · ·G>(Qn)(2π)4δ(4)(Q1 + · · ·+ Qn − P)

This appears in the Kadanoff-Baym equation

Becomes the collision terms in the kinetic theory

Tells you what to calculate for the in-medium scttering amplitude
– It’s not the usual Feynman (time-ordered) amplitude in vacuum
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Application 1
Color Glass Condensate and

the JIMWLK RG Equation
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Application – Color Glass Condensate

[Venugopalan, McLerran, JIMWLK, Gelis, Hatta, Fukushima, Dumitru,
Kovchegov, Itakura, Lappi, Nara, . . . ]

Main idea: Highly accelerated hadrons are composed of
Large x partons: 2D frozen-in-time (Color Glass) color current
Small x gluons: Weizsäcker-Williams field generated by large x
partons (Condensate) ==> Classical field

Small x part of the gluon PDF ∼ 〈AclAcl〉
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Yang-Mills with an external color current

Try first

L = −1
4

Gµν
a Ga

µν − Jµa Aa
µ

Classical EoM OK: [Dµ,Gµν ] = Jν with [Dµ, Jµ] = 0
Trouble: Gauge transformation

A′ = UAU† − 1
ig

U∂U†

J ′ = UJU†

In QED, JµAµ is gauge invariant as long as ∂µJµ = 0
In the full QCD, the color current is a part of ψ̄γµDµψ. Without the
ψ̄γµ∂µψ term, however, the L above is not gauge invariant even if
[Dµ, Jµ] = 0
Way out: Non-local interaction. Use Tr ln(γµDµ) or TrρW or
Trρ ln W where W is the Wilson line along uµ = Jµ/ρ with Ui = Uf
[Jalilian-Marian, Jeon, Venugopalan, Phys.Rev.D63:036004,2001]
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CTP-YM

CTP Lagrangian for pure glue with a color current

L = ηa
ν ([Dµ,Gµν ]− Jν)a +

ig
4

[Dµ, ην ]a[ηµ, ην ]a

where Dµ and Gµν contains only

Aµ =
A1,µ + A2,µ

2

whereas ηµ = A1,µ − A2,µ

The source Jµ = Jµ1 = Jµ2 is the physical external source

In principle,

A′1,2 = U1,2A1,2U†1,2 +
1
ig

U1,2∂U†1,2

where U1 and U2 are not necessarily the same.
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CTP-YM

If U1 6= U2, L = L1 − L2 is not gauge invariant since neither L1 nor
L2 is gauge invariant

If U1 = U2 = U,

A′ = UAU† +
1
ig

U∂U†

η′ = UηU†

and the Jµa η
a
µ term is gauge invariant.

When one is given a color current Jµ without the corresponding
kinetic energy term, this is the results in a gauge invariant local
theory

Let

A = Acl + a

then systematic perturbative study is possible.
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An exact solution of Classical YM equation

There aren’t too many exact solution of classical Yang-Mills
equation even in static situations

When Jµ = δµ±ρ(x∓,x⊥), an exact solution of CYM can be found
– MV (McLerran-Venugopalan) model

Abelian subgroup solution: Suppose

Jµ = Jµ3 t3 + Jµ8 t8

and

Aµ = Aµ3 t3 + Aµ8 t8

then since [t3, t8] = 0 (both are diagonal), the classical YM
equations reduces to two sets of Maxwell equations – Of limited
utility.
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JIMWLK equation

– Quantum correction (RG equation) on top of the MV solution

Formulated in the light-cone coordinate system x± =
x0 ± x3
√

2
Main idea: The properties of small x gluons are determined by the
underlying color charge distribution.

Vacuum fluctuation introduces all x scales even though the color
charge density ρ itself is soft

Where is the dividing line between small x and large x? ==> RG
approach is necessary

Main point: This quantum correction to the MV model can be still
treated within the classical theory

CTP calc: [Jeon, Annals Phys. 340 (2014) 119-170]

JIMWLK = Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
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Tadpole diagrams

a
ηa

a a

a η

a

Caution: a here is the c field or the “r ” field fluctuation and η here is the q field
or the “a” field

Leading order quantum corrections

This is O(1/g) if the UV regulated tadpole contribution is O(1/g2)

The same as the size of the classical source Jphys = O(1/g)

Large x gluons can act like an additional O(1/g) source
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Tadpole = Source Correlation at the initial time

Furthermore, since

GS(x , y) ∼
∫

u,v
∂u+GR(x ,u) G0

S(u − v) ∂v+GR(v , y)

tadpoles can be generated by 2-point correlation of classical
sources

y

x y x u v y

J J

u vx

Schematically, 〈J(u)J(v)〉 ∼ ∂u+∂v+G0
S(u − v)

The symmetric propagator is just the transformed Minkowski one

G0
S(x) =

∫
k

e−ik+x−−ik−x++ik⊥·x⊥ πδ(2k+k− − k2
⊥)

Jeon (McGill) CERN BBLB Workshop 37 / 57



Basic Idea

Construct the source correction Y [λ, ρ] so that for any observable
O[A] ∫

DρWρ[ρ]

∫
[dai ]ρW [ai ]O[A[ρ,ai ]]

=

∫
DρWρ[ρ]

∫
DλY [λ, ρ]O[A[ρ+ λ]]

=

∫
DρW ′

ρ[ρ′]O[A[ρ′]]

including the leading quantum corrections

W [ρ]: Geometric color charge distribution

Y [λ, ρ]: Gives the same 〈ai〉 and 〈ai(x)ai(y)〉
(calculating these correctly in CTP-YM is the main task)

The combined density W ′
ρ[ρ′] =

∫
DλW [ρ− λ]Y [λ, ρ− λ]
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JIMWLK equation
The conbined density can be shown to satisfy

∂W
∂Y

= HW

where

H =
1

2π

∫
u⊥,v⊥

δ

δαa(u⊥)
ηab(u⊥|v⊥)

δ

δαb(v⊥)

with

η(x⊥|y⊥)

= −
∫

u⊥

(
1− V †(u⊥)V (y⊥)− V †(x⊥)V (u⊥) + V †(x⊥)V (y⊥)

)
∂ i

xGT (x⊥ − u⊥)∂y
i GT (u⊥ − y⊥)

where

V (u−1 ,u
−
2 ; u⊥1) = P exp

(
ig
∫ u−1

u−2

dz− A−(z−,u⊥)

)
is the color rotation factor when crossing the current and ∇2

⊥GT (x) = δ(2)(x)
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JIMWLK equation

To get the rapidity evolution of the gluon PDF,

Solve

∂W
∂Y

= HW

At a given Y , sample ρ from W

Solve CYM with the sampled ρ

Calculate the gluon number density

Average over many configurations
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Thermalization
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Initial Conditions in Heavy Ion Collisions

Initial condition before the collision – Composed of classical
particles (source) and the classical field they generate
Initial moments right after the collision – Interaction of two
classical Yang-Mills fields from the two nuclei ==> Glasma
Around τ ≈ 0.5 fm, hydrodynamics starts to apply – Local
equilibrium (or some semblance of it) is necessary
In particular, in the local rest frame

Tµµ ≈


ε 0 0 0
0 Px 0 0
0 0 Py 0
0 0 0 Pz


with Px ≈ Py ≈ Pz ≈ ε/3

How do we get here?
Glasma: [Lappi, McLerran, Romatschke, Gelis, Fukushima, Venugopalan,
Jeon, Itakura, . . . ]
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Thermalization in CTP

Scalar theory example

Simple Simulation: Build up scalar field with

−∂2φ− g2

3!
φ3 = J

where J = O(1/g) is the source for t < 0

See what happens at t > 0
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Thermalization in CTP

Scalar theory example
[Dusling, Epelbaum, Gelis, Venugopalan (DEGS)]
Spatially homogeneous case without vacuum fluctuations:
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Energy is conserved, but pressure oscillates wildly
(Analytic solution possible in terms of Jacobi elliptic function)
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Thermalization in CTP

Scalar theory example
Add vacuum noise

〈O〉 =

∫
[dφi ][dπi ] ρv [φi , πi ] δ[E [ϕ+ φ]]δ[E [$ + π]] O(ϕ+ φ,$ + π)

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0  50  100  150  200  250

time

P ε/3
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Miline Space Vacuum
Functionals
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Initial condition in τ

Why τ? – Time dilation
τ = 

t d

t

z

t
d

If the three fireballs all start out from t = 0, z = 0 and evolve exactly
the same way (e.g. thermalization), the state of the cyan at t = td is
the same as the state of the brown and magenta at τ = td
Appropriate “time” variable

Relativistic case: τ =
√

t2 − z2 = t
√

1 − v2
z is the most natural time

variable – Local time at z
Non-relativistic case: z = vz t � t ==> t is the the most natural time
variable.
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Milne space

Milne space

τ =
√

t2 − z2

η = tanh−1(z/t)

or

t = τ cosh η
z = τ sinh η

Lorentz boost by vz = z/t = tanh η yields

t ′ = t/ cosh η = τ

z ′ = 0

If the collective velocity vz = z/t ==> Boost invariant Bjorken
expansion

Jeon (McGill) CERN BBLB Workshop 48 / 57



Glasma Initial Condition

τ had

τ freeze

D E  = ρi
i1 1

ρi
i

d  T   = 0µ

µ ν

df/dt = C[f]

Free streaming
t

z

2 2

µ

µ ν
D  G   = 0

QGP

D E  = 

AA i
1

i
2 Glasma

Hydroτ

Hadronic Cascade

0

Glasma initial condition set at τ = 0+

Calculate

〈O〉 =

∫
[dφi ][dπi ] ρv [φi , πi ] δ[E [ϕ+ φ]]δ[E [$ + π]] O(ϕ+ φ,$ + π)

in the τ−η coordinate system ==> Need to know the vacuum
Wigner functional in the τ−η coordinate system in the forward
light cone
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Milne space vacuum functional

Scalar theory [Long and Shore, 1996]

Schrödinger Equation for the perturbative vacuum∫
dηd2x⊥τ

(
− 1

2τ2
δ2

δφ2 − φ

(
∇2
⊥ −

∂2
η

τ2

)
φ

)
〈φ|vac〉 = i

∂

∂τ
〈φ|vac〉

Can’t let the RHS vanish because of the 1
τ2 term in the LHS

Gaussian ansatz

〈φ|vac〉 = N (τ) exp
(
−τ

2

2

∫
dηxd2x⊥

∫
dηy d2y⊥G(τ, x , y)φ(x)φ(y)

)

In the momentum space, GT (τ, k̃) satisfies

i∂τ (τ2GT ) = τ3G2
T −

(
τk2
⊥ +

k2
η

τ

)
with k̃ = (k⊥, kη)
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Milne space vacuum functional

Scalar theory
Solution

G(τ, x , y) =

∫
d2q⊥dqη

(2π)3 eiq⊥·(x⊥−y⊥)+iqη(ηx−ηy )
−i∂τH(1)

iqη
(mq

T τ)

τH(1)
iqη

(mq
T τ)

Wigner functional [Jeon & Epelbaum Annals of Phys. 364, 1, 2016]

ρW [τ, φ, π] = N exp

(
−2
∫

d3k̃
(2π)3

∣∣∣π(k̃)a∗(τ, k̃)− φ(k̃)e∗(τ, k̃)
∣∣∣2)

where π = τ∂τφ and

a(τ, k̃) =

√
π

4
eπkη/2H(2)

ikη (k⊥τ)

e(τ, k̃) = τ∂τa(τ, k̃)
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Gauge theory vacuum

Abelian gauge theory Lagrangian

L =
τ

2
(∂τA⊥)2 − τ

2
(∇× A⊥)2 +

1
2τ

A⊥·∂2
ηA⊥

+
1
2

(∂τAη)2 +
1
2τ

Aη∇2
⊥Aη −

1
τ

Aη∂η∇⊥·A⊥

Gauss law

0 =
∂η∂τAη
τ2 +∇⊥·∂τA⊥

Decompose A⊥ = AT + AL with

AT = i
∫

d2k⊥
(2π)2 eik⊥·x⊥ AT (k̂⊥ × ez)

and

AL = ∇⊥ϕ
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Wigner functional

[Jeon & Epelbaum Annals of Phys. 364, 1, 2016]
Equations for AT are identical to the scalar case
Equations for Aη is much more complicated because Aη and ϕ
couple, but solvable.
Longitudinal Wigner functional

ρL[τ,Aη, πη]

= N exp

(
−2
∫

d3k̃
(2π)3

1
k2
⊥

∣∣∣e∗(τ,−k̃)πη + k2
⊥a∗(τ,−k̃)Aη

∣∣∣2)

with πη =
1
τ
∂τAη and

a(τ, k̃) =

√
π

4
eπkη/2H(2)

ikη (k⊥τ)

e(τ, k̃) = τ∂τa(τ, k̃)
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Scalar theory in Milne space
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Yang-Mills in Milne space
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Yang-Mills in Milne space
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Conclusions, Problems & Perspectives

CTP is useful in thinking about initial value problems
Conceptually
Practically

Strong classical + 1st order quantum correction can be done
within classical physics – Perfect way to simulate QFT in real time
Difficulties: Higher order corrections

Feynman diagrams are useful conceptually but not computationally
– Fourier transform does not produce δ(Ei − Ef ) when ti < t < ff
φ3

qφc terms are intrinsically quantum – Hard to include in purely
classical evolution
Need to calculate δρW

Lots of interesting problems still to be considered:
Glasma evolution with quantum corrections
Field to Particle transition
NNLO JIMWLK
Fermions? ...
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