Three Pieces in Closed Time Path

Sangyong Jeon

Department of Physics McGill University
Montréal, QC, CANADA

CERN
August 24, 2016

McGill is in Montréal, Québec, Canada

Mr. McGill going home after a hard day's work.

McGill is in Montréal, Québec, Canada

Rutherford carried out his Nobel Prize (1908) winning work at McGill (1898-1907).
His original equipment on display

McGill Team

- Charles Gale
- Sangyong Jeon
- Chun Shen \rightarrow BNL
- Alina Czajka
- Li Yan \leftarrow Saclay
- Sangwook Ryu \rightarrow Frankfurt
- Michael Richard
- Igor Kozlov
- Chanwook Park
- Scott McDonald
- Mayank Singh
- Sigtryggur Hauksson

MUSIC (Hydro), MARTINI (Jets), AdS/QCD, FTFT, Many-body QCD, ... Former members: Björn Schenke, Clint Young, Gabriel Denicol, Matt Luzum, Gojko Vujanovic, Jean-Francois Paquet, Abhijit Majumder, Mohammed Mia, Abhee Kanti Dutt-Mazumder, Prashanth Jaikumar, Champak B. Das, Thomas Epelbaum, ...

Motivations

Stages in heavy ion collisions

CGC

Hydrodynamics "Glasma"
hadronic phase and freeze-out
(Color Glass Condensate) \& Glasma stages: Dominated by Classical Yang-Mills field

- What is Classical Yang-Mills?
- Quantum corrections?

Motivations

Want to use Closed Time Path + Keldysh Rotation:

- Physics Motivation: Ultra-relativistic Heavy Ion Collisions
- Dense gluon dynamics (i.e. classical Yang-Mills) dominate the initial state as well as the formation of Quark-Gluon Plasma
- (Local) Thermalization mechanism - Coherent classical field to the maximum entropy state?
- Technical Motivation: How to do classical field theory in QFT
- CTP + Keldysh Rotation - Clean separation of Q and C d.o.f.

Transition Amplitude vs Expectation Value

- Transition amplitude in QM

$$
\begin{aligned}
T_{f i} & =\langle f| \hat{U}\left(t_{f}, t_{i}\right)|i\rangle \\
& =\left\langle f \mid q_{f}\right\rangle\left\langle q_{f}\right| \hat{U}\left(t_{f}, t_{i}\right)\left|q_{i}\right\rangle\left\langle q_{i} \mid i\right\rangle \\
& =\left\langle f \mid q_{f}\right\rangle \int_{q_{i}}^{q_{f}} \mathcal{D} q e^{i \int_{t_{i}}^{t_{f}} d t L(q, \dot{q})}\left\langle q_{i} \mid i\right\rangle
\end{aligned}
$$

- If a classical path dominates (for instance, large energy), shift $q \rightarrow q_{\mathrm{cl}}+q$ to get

$$
\int_{q_{i}}^{q_{t}} \mathcal{D} q e^{i \int_{t_{i}}^{t_{f}} d t L(q, \dot{q})}=e^{i S_{\mathrm{cl}}\left(q_{t}, q_{i}\right)} \int_{0}^{0} \mathcal{D} q e^{i \int_{t_{i}}^{t_{t}} d t \delta L\left(q, \dot{q} \mid q_{\mathrm{cl}}\right)}
$$

where $\delta L\left(q, \dot{q} \mid q_{\mathrm{cl}}\right)$ is at least quadratic in q and \dot{q}

- The problem here is one of the boundary value problem
- This is not what we want

What we want: Initial value problem

- Expectation value in QM

$$
\langle O(t)\rangle=\langle i| \hat{U}\left(t_{i}, t\right) \hat{O}_{S} \hat{U}\left(t, t_{i}\right)|i\rangle
$$

is an initial value problem

- It is going to involve two transition amplitudes or two path integrals. One for $\hat{U}\left(t_{f}, t_{i}\right)$ and another for $\hat{U}\left(t_{i}, t_{f}\right)$
- How does one formulate classical initial value problem from this?

Expectation Value

- Expectation value

$$
\langle O(t)\rangle_{i}=\langle i| \hat{U}\left(t_{\text {init }}, t\right) \hat{O}_{S} \hat{U}\left(t, t_{\text {init }}\right)|i\rangle
$$

Time flows from $t_{\text {init }}$ to t and then back to $t_{\text {in }}$. Only the in-state is specified. \Longrightarrow Initial value problem

- Natural to define the initial density operator

$$
\hat{\rho}_{i}=|i\rangle\langle i|
$$

or more generally

$$
\hat{\rho}_{\text {init }}=\sum_{n} P_{n}|n\rangle\langle n| \text { with } \sum_{n} P_{n}=1
$$

so that

$$
\langle O(t)\rangle=\operatorname{Tr} \hat{\rho}(t) \hat{O}_{S} \text { with } \hat{\rho}(t)=\hat{U}\left(t, t_{i}\right) \hat{\rho}_{\mathrm{init}} \hat{U}\left(t_{i}, t\right)
$$

Formulating the initial value problem

Closed Time Path (Schwinger-Keldysh, Keldysh-Schwinger, in-in ...) Using the scalar theory as an example with $V(\phi)=g^{2} \phi^{4} / 4$!

- Upper branch $\left(\phi_{1}\right)$ represents \langle fin $| \hat{U}\left(t_{\text {fin }}, t_{\text {init }}\right) \mid$ init \rangle
- Lower branch $\left(\phi_{2}\right)$ represents \langle init $| \hat{U}\left(t_{\text {init }}, t_{\text {fin }}\right) \mid$ fin \rangle
- Generating functional
$Z\left[J_{1}, J_{2}\right]$

$$
=\int\left[d \phi_{f}\right]\left\langle\phi_{f}\right| \hat{\rho}\left(t_{\text {fin }}\right)\left|\phi_{f}\right\rangle
$$

$$
\left.=\int\left[d \phi_{f}\right]\left[d \phi_{1}^{i}\right]\left[d \phi_{2}^{i}\right]\left\langle\phi_{f}\right| \hat{U}_{U_{1}}\left(t_{\text {fin }}, t_{\text {init }}\right)\left|\phi_{1}^{i}\right\rangle\left\langle\phi_{1}^{i}\right| \hat{\rho}_{\text {init }}\left|\phi_{2}^{i}\right\rangle\left\langle\phi_{2}^{i}\right| \hat{U}_{J_{2}}\left(t_{\text {tinit }}, t_{\text {fin }}\right)\left|\phi_{f}\right\rangle_{2}\right\rangle
$$

Closed Time Path - Cont.

- Generating functional

$$
\begin{aligned}
Z\left[J_{1}, J_{2}\right]= & \int\left[d \phi_{f}\right]\left[d \phi_{1}^{i}\right]\left[d \phi_{2}^{i}\right] \int_{\phi_{1}^{i}}^{\phi_{f}} \mathcal{D} \phi_{1} \int_{\phi_{2}^{i}}^{\phi_{f}} \mathcal{D} \phi_{2} \rho_{\mathrm{init}}\left[\phi_{i}^{1}, \phi_{i}^{2}\right] \\
& \exp \left(i \int_{t_{i}}^{t_{f}}\left(L\left(\phi_{1}\right)-L\left(\phi_{2}\right)+J_{1} \phi_{1}-J_{2} \phi_{2}\right)\right)
\end{aligned}
$$

- t_{f} can be taken to be at $t=\infty$
- Propagator takes on the 2×2 matrix structure
$\mathbf{G}_{\mathrm{CTP}}=\left(\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right)$

$$
\begin{aligned}
G_{11} & =G_{22}^{*}=G_{F}=\langle\boldsymbol{T} \phi(x) \phi(y)\rangle \\
G_{12} & =\left\langle\phi_{1}(x) \phi_{2}(y)\right\rangle=\langle\phi(x) \phi(y)\rangle \\
G_{21} & =\left\langle\phi_{2}(x) \phi_{1}(y)\right\rangle=\langle\phi(y) \phi(x)\rangle
\end{aligned}
$$

Keldysh rotation, AKA r-a formalism

- Introduce a change of variables

$$
\begin{aligned}
& \phi_{c}\left(=\phi_{r}\right)=\frac{\phi_{1}+\phi_{2}}{2} \quad \text { and } \quad J_{c}=J_{1}-J_{2} \\
& \phi_{q}\left(=\phi_{a}\right)=\phi_{1}-\phi_{2} \quad \text { and } \quad J_{q}=\frac{J_{1}+J_{2}}{2}
\end{aligned}
$$

- The time derivative terms in the Lagrangian:

$$
\frac{\dot{\phi}_{1}^{2}}{2}-\frac{\dot{\phi}_{2}^{2}}{2}=\dot{\phi}_{c} \dot{\phi}_{q}=\partial_{t}\left(\dot{\phi}_{c} \phi_{q}\right)-\ddot{\phi}_{c} \phi_{q}
$$

Upon integrations by part ($\phi_{q}^{f}=0$ because $\phi_{1}^{f}=\phi_{2}^{f}$)

$$
\int\left(L\left(\phi_{1}\right)-L\left(\phi_{2}\right)\right)=\int_{t_{\text {mit }}}^{t_{\text {tin }}}\left(\phi_{q} E\left[\phi_{c}\right]-\frac{g^{2}}{4!} \phi_{q}^{3} \phi_{c}\right)-\dot{\phi}_{c}^{i} \phi_{q}^{i}
$$

where $E\left[\phi_{c}\right]=\frac{\delta S\left[\phi_{c}\right]}{\delta \phi_{c}}$ is the sourceless classical field equation

Keldysh rotation - Cont.

- Carrying out $\left[d \phi_{q}^{i}\right]$ integral with the surface term $-\dot{\phi}_{c}^{i} \phi_{q}^{i}$ transforms the initial density matrix to the Wigner form

$$
\int\left[d \phi_{q}^{i}\right] e^{-i \dot{\phi}_{c}^{i} \phi_{q}^{i}} \rho\left[\phi_{c}^{i}+\phi_{q}^{i} / 2, \phi_{c}^{i}-\phi_{q}^{i} / 2\right]=\rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right]
$$

and the Generating functional now becomes

$$
\begin{aligned}
Z\left[J_{c},\right. & \left.J_{q}\right] \\
= & \int \mathcal{D} \phi_{c} \int \mathcal{D} \phi_{q} \rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \\
& \quad \exp \left(i \int_{t_{i}}^{t_{f}}\left(\phi_{q}\left(E\left[\phi_{c}\right]+J_{q}\right)-\frac{g^{2}}{4!} \phi_{q}^{3} \phi_{c}+J_{c} \phi_{c}\right)\right)
\end{aligned}
$$

with no functional integration over ϕ_{q} at $t_{\text {init }}$ and $t_{\text {fin }}$

- If the $\phi_{q}^{3} \phi_{c}$ term is ignored, the evolution of the field is entirely classical with J_{q} as the source and with the initial data $\left(\phi_{\underline{c}}^{i}, \dot{\phi}_{c}^{i}\right)$

Free field theory and the Propagators

- Free field theory

$$
\begin{aligned}
Z\left[J_{c}, J_{q}\right]= & \int \mathcal{D} \phi_{c} \int \mathcal{D} \phi_{q} \rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \\
& \exp \left(i \int_{t_{i}}^{t_{f}}\left(\phi_{q}\left(-\partial^{2}-m^{2}\right) \phi_{c}+J_{q} \phi_{q}+J_{c} \phi_{c}\right)\right)
\end{aligned}
$$

- Integrating over ϕ_{q} yields

$$
Z\left[J_{c}, J_{q}\right]=\int \mathcal{D} \phi_{c} \rho w\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \delta\left[\left(\partial^{2}+m^{2}\right) \phi_{c}-J_{q}\right] \exp \left(i \int_{t_{i}}^{t_{t}} J_{c} \phi_{c}\right)
$$

- Solve the classical EoM in the (t, \mathbf{k}) space

$$
\phi_{c}(t, \mathbf{k})=\phi_{h}(t, \mathbf{k})+\int_{t_{i}}^{t_{f}} d t^{\prime} G_{R}\left(t-t^{\prime}, \mathbf{k}\right) J_{q}\left(t^{\prime},-\mathbf{k}\right)
$$

where $G_{R}\left(t-t^{\prime}, \mathbf{k}\right)=\theta\left(t-t^{\prime}\right) \sin \left(E_{k}\left(t-t^{\prime}\right)\right) / E_{k}$ and $\phi_{h}(t, \mathbf{k})=\phi_{c}^{i}(\mathbf{k}) \cos \left(E_{k}\left(t-t_{i}\right)\right)+\dot{\phi}_{c}^{i}(\mathbf{k}) \sin \left(E_{k}\left(t-t_{i}\right)\right) / E_{k}$

Free field theory and the Propagators

$Z\left[J_{c}, J_{q}\right]=\int \mathcal{D} \phi_{c} \rho w\left[\phi_{c}^{i}, \phi_{c}^{i}\right] \delta\left[\left(\partial^{2}+m^{2}\right) \phi_{c}-J_{q}\right] \exp \left(i \int_{t_{i}}^{t_{c}} J_{c} \phi_{c}\right)$

- Integrating over ϕ_{c} produces the Jacobian $\left|\operatorname{Det}\left(\partial^{2}+m^{2}\right)\right|^{-1}$
- Changing variables from ϕ_{f} to $\dot{\phi}_{i}$ produces $\left|\operatorname{Det}\left(\frac{\delta \phi_{f}}{\delta \dot{\phi}_{i}}\right)\right|$ Since $\dot{\phi}_{i}=\frac{\delta S}{\delta \phi_{i}}$, this is the inverse of the van Vleck determinant $\left|\operatorname{Det}\left(\partial^{2}+m^{2}\right)\right|$ which cancels the Jacobian

$$
Z\left[J_{c}, J_{q}\right]=\int\left[d \phi_{c}^{i}\right]\left[d \pi_{c}^{i}\right] \rho_{W}\left[\phi_{c}^{i}, \pi_{c}^{i}\right] \exp \left(i \int_{t_{i}}^{t_{t}} J_{c} \phi_{c}\left[\phi_{c}^{i}, \pi_{c}^{i}, J_{q}\right]\right)
$$

with $\pi_{c}^{i}=\dot{\phi}_{c}^{i}$

Propagators

Since $\int J \phi_{c}=\int J_{c} G_{R} J_{q}+\int J_{c} \phi_{h}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right]$,

- These two are obvious
- $\left\langle\phi_{c}(t) \phi_{q}\left(t^{\prime}\right)\right\rangle=i G_{R}\left(t-t^{\prime}\right)$ (time always flows from ϕ_{q} to $\left.\phi_{c}\right)$
- $\left\langle\phi_{q}(t) \phi_{q}\left(t^{\prime}\right)\right\rangle=0$
- The symmetric propagator $G_{S}=\left\langle\phi_{c} \phi_{c}\right\rangle$ depends on $\rho_{W}\left[\phi_{c}^{i}, \pi_{c}^{i}\right]$
- Classical vacuum: $\rho_{W}=\delta\left[\phi_{c}^{i}\right] \delta\left[\pi_{c}^{i}\right]$ which gives $\left\langle\phi_{c}(t) \phi_{c}\left(t^{\prime}\right)\right\rangle=0$
- Quantum perturbative vacuum:

$$
\rho_{W}[\phi, \pi]=\exp \left(-\int \frac{d^{2} k}{(2 \pi)^{3} E_{k}}\left(E_{k}^{2} \phi(\mathbf{k}) \phi(-\mathbf{k})+\pi(\mathbf{k}) \pi(-\mathbf{k})\right)\right)
$$

which gives $\left\langle\phi_{c}(t) \phi_{c}\left(t^{\prime}\right)\right\rangle=F T\left[\pi \delta\left(p^{2}-m^{2}\right)\right]$

- Thermal medium: $\left\langle\phi_{c}(t) \phi_{c}\left(t^{\prime}\right)\right\rangle=F T\left[\left(1 / 2+n_{B}\left(p^{0}\right)\right) 2 \pi \delta\left(p^{2}-m^{2}\right)\right]$
- Quantum effect: Non-vanishing $G_{S}=\left\langle\phi_{C} \phi_{C}\right\rangle$

Almost classical interpretation

$$
Z\left[J_{c}, J_{q}\right]=\int \mathcal{D} \phi_{c} \int \mathcal{D} \phi_{q} \rho_{W}\left[\phi_{c}^{i},,_{c}^{i}\right] \exp \left(i \int\left(\phi_{q}\left(E\left[\phi_{c}\right]+J_{q}\right)-\frac{g^{2}}{4!} \phi_{q}^{3} \phi_{c}+J_{c} \phi_{c}\right)\right)
$$

- $\rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \sim$ Probability distribution of the initial data (Not strictly, since it's a Wigner transform)
- If for some reason $\phi_{q} \ll \phi_{c}$, then drop the ϕ_{q}^{3} term to get

$$
\int \mathcal{D} \phi_{q} e^{i \int \phi_{q}\left(E\left[\phi_{c}\right]+J_{q}\right)}=\delta\left[E\left[\phi_{c}\right]+J_{q}\right]
$$

which enforces the classical equation of motion

- Origin of quantum effects
- $\rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right]$: Includes quantum effects. Especially the zero-point motions.
- Quantum vertex $g^{2} \phi_{q}^{3} \phi_{c} / 4$!: Provides correlations absent in the classical theory

When the classical field dominates

- Let $V=g^{2} \phi^{4} / 4!$. The EoM is

$$
\left(\partial^{2}+m^{2}\right) \phi_{c}+\frac{g^{2}}{3!} \phi_{c}^{3}=J_{q}
$$

- Suppose we have a physical source $J_{q}=J_{\text {phys }}$.
- If $J_{\text {phys }}=O(1 / g)$, then

$$
\phi_{c}=O(1 / g)
$$

and the interaction term is as big as the free field terms.

The Lagrangian

- Let φ be the solution of the classical EoM and let $\phi_{c} \rightarrow \varphi+\phi_{c}$
- The Lagrangian

$$
\begin{aligned}
L= & \phi_{q}\left(E\left[\varphi+\phi_{c}\right]+J_{\text {phys }}\right)+\frac{g^{2}}{4!} \phi_{q}^{3} \varphi+\frac{g^{2}}{4!} \phi_{q}^{3} \phi_{c} \\
= & \phi_{q}((\partial^{2}+m^{2}+\underbrace{\frac{g^{2}}{2} \varphi^{2}}_{O(1)}) \phi_{c}+\underbrace{\frac{g^{2}}{2} \varphi}_{O(g)} \phi_{c}^{2}+\underbrace{\frac{g^{2}}{3!} \phi_{c}^{3}}_{O\left(g^{2}\right)}) \\
& +\underbrace{\frac{g^{2}}{4!} \varphi}_{O(g)} \phi_{q}^{3}+\underbrace{\frac{g^{2}}{4!} \phi_{q}^{3} \phi_{c}}_{O\left(g^{2}\right)}
\end{aligned}
$$

- One can do perturbation theory if one knows $G_{R}=1 /\left(\partial^{2}+m^{2}+g^{2} \varphi^{2} / 2\right)$
- If interested in only the leading order corrections, just ignore ϕ_{q}^{3} terms and solve classical field equations with the fluctuating initial condition.

$\mathrm{LO}+\mathrm{NLO}$

- Carrying out $\int \mathcal{D} \phi_{q}$ integrals results in $\delta\left[E\left[\phi_{c}\right]+J_{q}\right]$
- Carrying out $\int \mathcal{D} \phi_{c}$ integrals results in $\operatorname{Det}^{-1}\left(\frac{\delta E\left[\phi_{c}\right]}{\delta \phi_{c}}\right)$
- Swapping the boundry value problem (with ϕ_{i}, ϕ_{f}) with the initial value problem (with $\phi_{i}, \dot{\phi}_{i}$) results in

$$
\operatorname{Det}\left(\frac{\delta \phi_{f}}{\delta \dot{\phi}_{i}}\right)=\operatorname{Det}\left(\frac{\delta^{2} S}{\delta \phi_{i} \delta \phi_{f}}\right)^{-1}=\operatorname{Det}\left(\frac{\delta E\left[\phi_{c}\right]}{\delta \phi_{c}}\right)
$$

- Any observable up to LO + NLO (with $\pi=\dot{\phi}$)

$$
\langle\mathcal{O}(t)\rangle=\int\left[d \phi_{c}^{i}\right]\left[d \pi_{c}^{i}\right] \rho_{W}\left[\phi_{c}^{i}, \pi_{c}^{i}\right] \mathcal{O}\left[\phi_{\mathrm{cl}}(t), \pi_{\mathrm{cl}}(t)\right]
$$

$\mathrm{LO}+\mathrm{NLO}+\mathrm{NNLO}$

- In principle

$$
\begin{aligned}
\langle\mathcal{O}(t)\rangle= & \int \mathcal{D} \phi_{c} \int \mathcal{D} \phi_{q} \rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \exp \left(i \int\left(\phi_{q}\left(E\left[\phi_{c}\right]+J_{q}\right)-\frac{\phi_{q}^{3}}{4!} V^{\prime \prime \prime}\left(\phi_{c}\right)\right)\right) \mathcal{O}\left[\phi_{c}, \pi_{c}\right] \\
= & \int \mathcal{D} \phi_{c} \int \mathcal{D} \phi_{q} \rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \exp \left(i \int\left(\phi_{q}\left(E\left[\phi_{c}\right]+J_{q}\right)\right)\right) \\
& \times\left(1-i \int d^{4} x \frac{\phi_{q}^{3}}{4!} V^{\prime \prime \prime}\left(\phi_{c}\right)+\cdots\right) \mathcal{O}\left[\phi_{c}, \dot{\phi}_{c}\right] \\
= & \int \mathcal{D} \phi_{c} \rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \delta\left[E\left[\phi_{c}\right]+J_{q}\right] \mathcal{O}\left[\phi_{c}, \dot{\phi}_{c}\right] \\
& -i \int d^{4} x \frac{\delta^{3}}{\delta J_{q}(x)^{3}} \int \mathcal{D} \phi_{c} \rho_{W}\left[\phi_{c}^{i}, \dot{\phi}_{c}^{i}\right] \delta\left[E\left[\phi_{c}\right]+J_{q}\right] \mathcal{O}\left[\phi_{c}, \dot{\phi}_{c}\right] \frac{1}{4!} V^{\prime \prime \prime}\left(\phi_{c}(x)\right)+\cdots
\end{aligned}
$$

provide that $\rho_{W}\left[\phi_{c}^{i}, \phi_{c}^{i}\right]$ is also accurate up to the first order quantum correction

- In practice, not so easy

Vacuum Initial State Density

- The vacuum functional satisfies the Schrödinger equation

$$
\mathcal{H}|\Psi\rangle=0
$$

where

$$
\mathcal{H}=\int d^{3} x\left(\frac{\pi^{2}}{2}+\frac{(\nabla \phi)^{2}}{2}+\frac{m^{2}}{2} \phi^{2}+V(\phi)\right)
$$

and

$$
\pi(\mathbf{x})=-i \frac{\delta}{\delta \phi(\mathbf{x})}
$$

- Perturbative vacuum (products of SHO ground states)

$$
\langle\phi \mid \Psi\rangle=\exp \left(-\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} E_{k} \phi(\mathbf{k}) \phi(-\mathbf{k})\right)
$$

- Vacuum Wigner functional

$$
\rho_{W}[\phi, \pi]=\exp \left(-\int \frac{d^{3} k}{(2 \pi)^{3} E_{k}}\left(E_{k}^{2} \phi(\mathbf{k}) \phi(-\mathbf{k})+\pi(\mathbf{k}) \pi(-\mathbf{k})\right)\right)
$$

Coherent State

Coherent state: Eigenfunctional of the annihilation operator - Minimum uncertainty state \sim Classical field

- Creation operator in the ϕ representation

$$
\mathcal{A}^{\dagger}(\mathbf{k})=\left(E_{k} \phi(-\mathbf{k})-(2 \pi)^{3} \frac{\delta}{\delta \phi(\mathbf{k})}\right)
$$

- Annihilation operator in the ϕ representation

$$
\mathcal{A}(\mathbf{k})=\left(E_{k} \phi(\mathbf{k})+(2 \pi)^{3} \frac{\delta}{\delta \phi(-\mathbf{k})}\right)
$$

- Commutator

$$
\left[\mathcal{A}(\mathbf{k}), \mathcal{A}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=2 E_{k}(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

Coherent States

- Ground state: Solving

$$
\langle\phi| \mathcal{A}(\mathbf{k})|\Psi\rangle=0
$$

gives

$$
\langle\phi \mid \Psi\rangle=\mathcal{N} \exp \left(-\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{E_{q}}{2} \phi(\mathbf{q}) \phi(-\mathbf{q})\right)
$$

- Coherent state: Solving

$$
\langle\phi| \mathcal{A}(\mathbf{k})|\varphi+i \Pi\rangle=\varphi(\mathbf{k})\langle\phi \mid \varphi+i \Pi\rangle
$$

yields

$$
\langle\phi \mid \varphi+i \Pi\rangle=\exp \left(i \int \frac{d^{3} k}{(2 \pi)^{3}} \Pi(\mathbf{k}) \phi(-\mathbf{k})-\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} E_{k}|\phi(\mathbf{k})-\varphi(\mathbf{k})|^{2}\right)
$$

Coherent State Initial Density Matrix

- Wigner transform of the coherent state functional

$$
\rho_{W}[\phi, \pi]=\exp \left[-\int \frac{d^{2} k}{(2 \pi)^{3} E_{k}}\left(E_{k}^{2}|\phi(\mathbf{k})-\varphi(\mathbf{k})|^{2}+|\pi(\mathbf{k})-\Pi(\mathbf{k})|^{2}\right)\right]
$$

- Since this is just a shifted vacuum functional, in practice:

$$
\begin{aligned}
\phi_{c}^{i} & =\varphi+\delta \phi \\
\pi_{c}^{i} & =\Pi+\delta \pi
\end{aligned}
$$

where $\delta \phi$ and $\delta \pi$ follows the usual Gaussian vacuum distributions.

Application 0 Scattering Amplitude Expansion of Self-Energy

Kadanoff Baym Equation

- Standard application of the CTP formalism
- KB Eq in the more-or-less standard form:

$$
(p \cdot \partial) G^{<,>}=\frac{1}{2}\left(\Pi^{>} G^{<}-\Pi^{<} G^{>}\right)
$$

- In Quasi-particle approximation with
$G^{>}(X, p)=2 \pi \delta\left(p^{2}-m^{2}\right)\left[\theta\left(p^{0}\right)\left(1+f_{+}(X, p)\right)+\theta\left(-p_{0}\right) f_{-}(X,-p)\right]$
this can become Kinetic theory equation (e.g. the Boltzmann eq) provided that the self-energy is expanded in scattering amplitudes

Two-sweep CTP

Simon Caron-Huot's Masters Thesis
By separating the A fields and B fields, one can show

$$
\begin{aligned}
\Pi^{>}(P)= & \sum_{n,\{Q\}} \frac{1}{n!}\left|\mathcal{M}_{a r \ldots r}\left(P ; Q_{1}, \cdots, Q_{n}\right)\right|^{2} \\
& \times G^{>}\left(Q_{1}\right) \cdots G^{>}\left(Q_{n}\right)(2 \pi)^{4} \delta^{(4)}\left(Q_{1}+\cdots+Q_{n}-P\right)
\end{aligned}
$$

where

- r, a index $=c, q$ index
- $\mathcal{M}_{a r \ldots r}\left(P ; Q_{1}, \cdots, Q_{n}\right)$: Fully retarded and 1-PI correlation function
- $G^{>}(Q)$: Full Wightman function

Scattering Matrix Expansion

$$
\begin{aligned}
\Pi^{>}(P)= & \sum_{n} \frac{1}{n!}\left|\mathcal{M}_{a r \cdots \cdots}\left(P ; Q_{1}, \cdots, Q_{n}\right)\right|^{2} \\
& \times G^{>}\left(Q_{1}\right) \cdots G^{>}\left(Q_{n}\right)(2 \pi)^{4} \delta^{(4)}\left(Q_{1}+\cdots+Q_{n}-P\right)
\end{aligned}
$$

- This appears in the Kadanoff-Baym equation
- Becomes the collision terms in the kinetic theory
- Tells you what to calculate for the in-medium scttering amplitude - It's not the usual Feynman (time-ordered) amplitude in vacuum

Application 1
 Color Glass Condensate and the JIMWLK RG Equation

Application - Color Glass Condensate

[Venugopalan, McLerran, JIMWLK, Gelis, Hatta, Fukushima, Dumitru, Kovchegov, Itakura, Lappi, Nara, ...]

- Main idea: Highly accelerated hadrons are composed of
- Large x partons: 2D frozen-in-time (Color Glass) color current
- Small x gluons: Weizsäcker-Williams field generated by large x partons (Condensate) \Longrightarrow Classical field
- Small x part of the gluon PDF $\sim\left\langle A_{\mathrm{cl}} A_{\mathrm{cl}}\right\rangle$

Yang-Mills with an external color current

Try first

$$
L=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}-J_{a}^{\mu} A_{\mu}^{a}
$$

- Classical EoM OK: $\left[D_{\mu}, G^{\mu \nu}\right]=J^{\nu}$ with $\left[D_{\mu}, J^{\mu}\right]=0$
- Trouble: Gauge transformation
- $A^{\prime}=U A U^{\dagger}-\frac{1}{i g} U \partial U^{\dagger}$
- $J^{\prime}=U J U^{\dagger}$
- In QED, $J^{\mu} A_{\mu}$ is gauge invariant as long as $\partial_{\mu} J^{\mu}=0$
- In the full QCD, the color current is a part of $\bar{\psi} \gamma^{\mu} D_{\mu} \psi$. Without the $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ term, however, the L above is not gauge invariant even if $\left[D_{\mu}, J^{\mu}\right]=0$
- Way out: Non-local interaction. Use $\operatorname{Tr} \ln \left(\gamma^{\mu} D_{\mu}\right)$ or $\operatorname{Tr} \rho W$ or $\operatorname{Tr} \rho \ln W$ where W is the Wilson line along $u^{\mu}=J^{\mu} / \rho$ with $U_{i}=U_{f}$ [Jalilian-Marian, Jeon, Venugopalan, Phys.Rev.D63:036004,2001]

CTP-YM

- CTP Lagrangian for pure glue with a color current

$$
\mathcal{L}=\eta_{\nu}^{a}\left(\left[D_{\mu}, G^{\mu \nu}\right]-J^{\nu}\right)_{a}+\frac{i g}{4}\left[D_{\mu}, \eta_{\nu}\right]^{a}\left[\eta^{\mu}, \eta^{\nu}\right]_{a}
$$

where D_{μ} and $G^{\mu \nu}$ contains only

$$
A_{\mu}=\frac{A_{1, \mu}+A_{2, \mu}}{2}
$$

whereas $\eta_{\mu}=A_{1, \mu}-A_{2, \mu}$

- The source $J^{\mu}=J_{1}^{\mu}=J_{2}^{\mu}$ is the physical external source
- In principle,

$$
A_{1,2}^{\prime}=U_{1,2} A_{1,2} U_{1,2}^{\dagger}+\frac{1}{i g} U_{1,2} \partial U_{1,2}^{\dagger}
$$

where U_{1} and U_{2} are not necessarily the same.

CTP-YM

- If $U_{1} \neq U_{2}, \mathcal{L}=L_{1}-L_{2}$ is not gauge invariant since neither L_{1} nor L_{2} is gauge invariant
- If $U_{1}=U_{2}=U$,

$$
\begin{aligned}
& A^{\prime}=U A U^{\dagger}+\frac{1}{i g} U \partial U^{\dagger} \\
& \eta^{\prime}=U_{\eta} U^{\dagger}
\end{aligned}
$$

and the $J_{a}^{\mu} \eta_{\mu}^{a}$ term is gauge invariant.

- When one is given a color current J^{μ} without the corresponding kinetic energy term, this is the results in a gauge invariant local theory
- Let

$$
A=A_{\mathrm{cl}}+a
$$

then systematic perturbative study is possible.

An exact solution of Classical YM equation

- There aren't too many exact solution of classical Yang-Mills equation even in static situations
- When $J^{\mu}=\delta^{\mu \pm} \rho\left(x^{\mp}, \mathbf{x}_{\perp}\right)$, an exact solution of CYM can be found
- MV (McLerran-Venugopalan) model
- Abelian subgroup solution: Suppose

$$
J^{\mu}=J_{3}^{\mu} t_{3}+J_{8}^{\mu} t^{8}
$$

and

$$
A^{\mu}=A_{3}^{\mu} t^{3}+A_{8}^{\mu} t^{8}
$$

then since $\left[t^{3}, t^{8}\right]=0$ (both are diagonal), the classical YM equations reduces to two sets of Maxwell equations - Of limited utility.

JIMWLK equation

- Quantum correction (RG equation) on top of the MV solution
- Formulated in the light-cone coordinate system $x^{ \pm}=\frac{x^{0} \pm x^{3}}{\sqrt{2}}$
- Main idea: The properties of small x gluons are determined by the underlying color charge distribution.
- Vacuum fluctuation introduces all x scales even though the color charge density ρ itself is soft
- Where is the dividing line between small x and large x ? $\Longrightarrow R G$ approach is necessary
- Main point: This quantum correction to the MV model can be still treated within the classical theory
- CTP calc: [Jeon, Annals Phys. 340 (2014) 119-170]

JIMWLK = Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner

Tadpole diagrams

Caution: a here is the c field or the " r " field fluctuation and η here is the q field or the " a " field

- Leading order quantum corrections
- This is $O(1 / g)$ if the UV regulated tadpole contribution is $O\left(1 / g^{2}\right)$
- The same as the size of the classical source $J_{\text {phys }}=O(1 / g)$
- Large x gluons can act like an additional $O(1 / g)$ source

Tadpole $=$ Source Correlation at the initial time

- Furthermore, since

$$
G_{S}(x, y) \sim \int_{u, v} \partial_{u^{+}} G_{R}(x, u) G_{S}^{0}(u-v) \partial_{v^{+}} G_{R}(v, y)
$$

tadpoles can be generated by 2-point correlation of classical
sources

- Schematically, $\langle J(u) J(v)\rangle \sim \partial_{u^{+}} \partial_{v^{+}} G_{S}^{0}(u-v)$
- The symmetric propagator is just the transformed Minkowski one

$$
G_{S}^{0}(x)=\int_{k} e^{-i k^{+} x^{-}-i k^{-} x^{+}+i \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}} \pi \delta\left(2 k^{+} k^{-}-\mathbf{k}_{\perp}^{2}\right)
$$

Basic Idea

- Construct the source correction $Y[\lambda, \rho]$ so that for any observable $\mathcal{O}[A]$

$$
\begin{aligned}
& \int \mathcal{D} \rho W_{\rho}[\rho] \int\left[d a_{i}\right] \rho_{W}\left[a_{i}\right] \mathcal{O}\left[A\left[\rho, a_{i}\right]\right] \\
&=\int \mathcal{D} \rho W_{\rho}[\rho] \int \mathcal{D} \lambda Y[\lambda, \rho] \mathcal{O}[A[\rho+\lambda]] \\
& \quad=\int \mathcal{D} \rho W_{\rho}^{\prime}\left[\rho^{\prime}\right] \mathcal{O}\left[A\left[\rho^{\prime}\right]\right]
\end{aligned}
$$

including the leading quantum corrections

- W[ρ]: Geometric color charge distribution
- $Y[\lambda, \rho]$: Gives the same $\left\langle a_{i}\right\rangle$ and $\left\langle a_{i}(x) a_{i}(y)\right\rangle$
(calculating these correctly in CTP-YM is the main task)
- The combined density $W_{\rho}^{\prime}\left[\rho^{\prime}\right]=\int \mathcal{D} \lambda W[\rho-\lambda] Y[\lambda, \rho-\lambda]$

JIMWLK equation

The conbined density can be shown to satisfy

$$
\frac{\partial W}{\partial Y}=\mathcal{H} W
$$

where

$$
\mathcal{H}=\frac{1}{2 \pi} \int_{\mathbf{u}_{\perp}, \mathbf{v}_{\perp}} \frac{\delta}{\delta \alpha_{a}\left(\mathbf{u}_{\perp}\right)} \eta^{a b}\left(\mathbf{u}_{\perp} \mid \mathbf{v}_{\perp}\right) \frac{\delta}{\delta \alpha_{b}\left(\mathbf{v}_{\perp}\right)}
$$

with

$$
\begin{aligned}
& \eta\left(\mathbf{x}_{\perp} \mid \mathbf{y}_{\perp}\right) \\
&=-\int_{\mathbf{u}_{\perp}}\left(1-V^{\dagger}\left(\mathbf{u}_{\perp}\right) V\left(\mathbf{y}_{\perp}\right)-V^{\dagger}\left(\mathbf{x}_{\perp}\right) V\left(\mathbf{u}_{\perp}\right)+V^{\dagger}\left(\mathbf{x}_{\perp}\right) V\left(\mathbf{y}_{\perp}\right)\right) \\
& \partial_{x}^{i} G_{T}\left(\mathbf{x}_{\perp}-\mathbf{u}_{\perp}\right) \partial_{i}^{y} G_{T}\left(\mathbf{u}_{\perp}-\mathbf{y}_{\perp}\right)
\end{aligned}
$$

where

$$
V\left(u_{1}^{-}, u_{2}^{-} ; \mathbf{u}_{\perp 1}\right)=\mathcal{P} \exp \left(i g \int_{u_{2}^{-}}^{u_{1}^{-}} d z^{-} A_{-}\left(z^{-}, \mathbf{u}_{\perp}\right)\right)
$$

is the color rotation factor when crossing the current and $\nabla_{\perp}^{2} G_{T}(\mathbf{x})_{\equiv}=\delta^{(2)}(\mathbf{z})$,

JIMWLK equation

To get the rapidity evolution of the gluon PDF,

- Solve

$$
\frac{\partial W}{\partial Y}=\mathcal{H} W
$$

- At a given Y, sample ρ from W
- Solve CYM with the sampled ρ
- Calculate the gluon number density
- Average over many configurations

Thermalization

Initial Conditions in Heavy Ion Collisions

- Initial condition before the collision - Composed of classical particles (source) and the classical field they generate
- Initial moments right after the collision - Interaction of two classical Yang-Mills fields from the two nuclei \Longrightarrow Glasma
- Around $\tau \approx 0.5 \mathrm{fm}$, hydrodynamics starts to apply - Local equilibrium (or some semblance of it) is necessary
- In particular, in the local rest frame

$$
T^{\mu \mu} \approx\left(\begin{array}{cccc}
\varepsilon & 0 & 0 & 0 \\
0 & P_{x} & 0 & 0 \\
0 & 0 & P_{y} & 0 \\
0 & 0 & 0 & P_{z}
\end{array}\right)
$$

with $P_{x} \approx P_{y} \approx P_{z} \approx \varepsilon / 3$
How do we get here?
Glasma: [Lappi, McLerran, Romatschke, Gelis, Fukushima, Venugopalan, Jeon, Itakura, ...]

Thermalization in CTP

Scalar theory example

- Simple Simulation: Build up scalar field with

$$
-\partial^{2} \phi-\frac{g^{2}}{3!} \phi^{3}=J
$$

where $J=O(1 / g)$ is the source for $t<0$

- See what happens at $t>0$

Thermalization in CTP

Scalar theory example
[Dusling, Epelbaum, Gelis, Venugopalan (DEGS)]
Spatially homogeneous case without vacuum fluctuations:

$\mathrm{T}^{11}=\mathrm{T}^{00} / 3$ แแแ"เแ"
Energy is conserved, but pressure oscillates wildly (Analytic solution possible in terms of Jacobi elliptic function)

Thermalization in CTP

Scalar theory example Add vacuum noise

$$
\langle O\rangle=\int\left[d \phi_{i}\right]\left[d \pi_{i}\right] \rho_{v}\left[\phi_{i}, \pi_{i}\right] \delta[E[\varphi+\phi]] \delta[E[\varpi+\pi]] O(\varphi+\phi, \varpi+\pi)
$$

$g=0.5$, DEGS, NPA 850, 69, 2011

$g=1.0$, EG, NPA 872, 210, 2011

Miline Space Vacuum Functionals

Initial condition in τ

- Why τ ? - Time dilation

- If the three fireballs all start out from $t=0, z=0$ and evolve exactly the same way (e.g. thermalization), the state of the cyan at $t=t_{d}$ is the same as the state of the brown and magenta at $\tau=t_{d}$
- Appropriate "time" variable
- Relativistic case: $\tau=\sqrt{t^{2}-z^{2}}=t \sqrt{1-v_{z}^{2}}$ is the most natural time variable - Local time at z
- Non-relativistic case: $z=v_{z} t \ll t \Longrightarrow t$ is the the most natural time variable.

Milne space

- Milne space

$$
\begin{aligned}
& \tau=\sqrt{t^{2}-z^{2}} \\
& \eta=\tanh ^{-1}(z / t)
\end{aligned}
$$

or

$$
\begin{aligned}
t & =\tau \cosh \eta \\
z & =\tau \sinh \eta
\end{aligned}
$$

- Lorentz boost by $v_{z}=z / t=\tanh \eta$ yields

$$
\begin{aligned}
t^{\prime} & =t / \cosh \eta=\tau \\
z^{\prime} & =0
\end{aligned}
$$

- If the collective velocity $v_{z}=z / t \Longrightarrow$ Boost invariant Bjorken expansion

Glasma Initial Condition

- Glasma initial condition set at $\tau=0^{+}$
- Calculate
$\langle O\rangle=\int\left[d \phi_{i}\right]\left[d \pi_{i}\right] \rho_{v}\left[\phi_{i}, \pi_{i}\right] \delta[E[\varphi+\phi]] \delta[E[\varpi+\pi]] O(\varphi+\phi, \varpi+\pi)$
in the $\tau-\eta$ coordinate system \Longrightarrow Need to know the vacuum Wigner functional in the $\tau-\eta$ coordinate system in the forward light cone

Milne space vacuum functional

Scalar theory [Long and Shore, 1996]

- Schrödinger Equation for the perturbative vacuum

$$
\int d \eta d^{2} x_{\perp} \tau\left(-\frac{1}{2 \tau^{2}} \frac{\delta^{2}}{\delta \phi^{2}}-\phi\left(\nabla_{\perp}^{2}-\frac{\partial_{\eta}^{2}}{\tau^{2}}\right) \phi\right)\langle\phi \mid \mathrm{vac}\rangle=i \frac{\partial}{\partial \tau}\langle\phi \mid \mathrm{vac}\rangle
$$

- Can't let the RHS vanish because of the $\frac{1}{\tau^{2}}$ term in the LHS
- Gaussian ansatz

$$
\langle\phi \mid \mathrm{vac}\rangle=\mathcal{N}(\tau) \exp \left(-\frac{\tau^{2}}{2} \int d \eta_{x} d^{2} x_{\perp} \int d \eta_{y} d^{2} y_{\perp} G(\tau, x, y) \phi(x) \phi(y)\right)
$$

- In the momentum space, $G_{T}(\tau, \tilde{k})$ satisfies

$$
i \partial_{\tau}\left(\tau^{2} G_{T}\right)=\tau^{3} G_{T}^{2}-\left(\tau k_{\perp}^{2}+\frac{k_{\eta}^{2}}{\tau}\right)
$$

with $\tilde{k}=\left(\mathbf{k}_{\perp}, k_{\eta}\right)$

Milne space vacuum functional

Scalar theory

- Solution

$$
G(\tau, x, y)=\int \frac{d^{2} q_{\perp} d q_{\eta}}{(2 \pi)^{3}} e^{i q_{\perp} \cdot\left(\mathbf{x}_{\perp}-\mathbf{y}_{\perp}\right)+i q_{\eta}\left(\eta_{x}-\eta_{y}\right)} \frac{-i \partial_{\tau} H_{i q_{\eta}}^{(1)}\left(m_{T}^{q} \tau\right)}{\tau H_{i q_{\eta}}^{(1)}\left(m_{T}^{q} \tau\right)}
$$

- Wigner functional [Jeon \& Epelbaum Annals of Phys. 364, 1, 2016]

$$
\rho_{W}[\tau, \phi, \pi]=\mathcal{N} \exp \left(-2 \int \frac{d^{3} \tilde{k}}{(2 \pi)^{3}}\left|\pi(\tilde{k}) a^{*}(\tau, \tilde{k})-\phi(\tilde{k}) e^{*}(\tau, \tilde{k})\right|^{2}\right)
$$

where $\pi=\tau \partial_{\tau} \phi$ and

$$
\begin{aligned}
& a(\tau, \tilde{k})=\sqrt{\frac{\pi}{4}} e^{\pi k_{\eta} / 2} H_{i k_{\eta}}^{(2)}\left(k_{\perp} \tau\right) \\
& e(\tau, \tilde{k})=\tau \partial_{\tau} a(\tau, \tilde{k})
\end{aligned}
$$

Gauge theory vacuum

- Abelian gauge theory Lagrangian

$$
\begin{aligned}
L= & \frac{\tau}{2}\left(\partial_{\tau} \mathbf{A}_{\perp}\right)^{2}-\frac{\tau}{2}\left(\nabla \times \mathbf{A}_{\perp}\right)^{2}+\frac{1}{2 \tau} \mathbf{A}_{\perp} \cdot \partial_{\eta}^{2} \mathbf{A}_{\perp} \\
& +\frac{1}{2}\left(\partial_{\tau} A_{\eta}\right)^{2}+\frac{1}{2 \tau} A_{\eta} \nabla_{\perp}^{2} A_{\eta}-\frac{1}{\tau} A_{\eta} \partial_{\eta} \nabla_{\perp} \cdot \mathbf{A}_{\perp}
\end{aligned}
$$

- Gauss law

$$
0=\frac{\partial_{\eta} \partial_{\tau} A_{\eta}}{\tau^{2}}+\nabla_{\perp} \cdot \partial_{\tau} \mathbf{A}_{\perp}
$$

- Decompose $\mathbf{A}_{\perp}=\mathbf{A}_{T}+\mathbf{A}_{L}$ with

$$
\mathbf{A}_{T}=i \int \frac{d^{2} k_{\perp}}{(2 \pi)^{2}} e^{i \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}} A_{T}\left(\hat{\mathbf{k}}_{\perp} \times \mathbf{e}_{z}\right)
$$

and

$$
\mathbf{A}_{L}=\nabla_{\perp} \varphi
$$

Wigner functional

[Jeon \& Epelbaum Annals of Phys. 364, 1, 2016]

- Equations for A_{T} are identical to the scalar case
- Equations for A_{η} is much more complicated because A_{η} and φ couple, but solvable.
- Longitudinal Wigner functional

$$
\begin{aligned}
& \rho_{L}\left[\tau, A_{\eta}, \pi_{\eta}\right] \\
& \quad=\mathcal{N} \exp \left(-2 \int \frac{d^{3} \tilde{k}}{(2 \pi)^{3}} \frac{1}{k_{\perp}^{2}}\left|e^{*}(\tau,-\tilde{k}) \pi_{\eta}+k_{\perp}^{2} a^{*}(\tau,-\tilde{k}) A_{\eta}\right|^{2}\right)
\end{aligned}
$$

with $\pi_{\eta}=\frac{1}{\tau} \partial_{\tau} A_{\eta}$ and

$$
\begin{aligned}
& a(\tau, \tilde{k})=\sqrt{\frac{\pi}{4}} e^{\pi k_{\eta} / 2} H_{i k_{\eta}}^{(2)}\left(k_{\perp} \tau\right) \\
& e(\tau, \tilde{k})=\tau \partial_{\tau} a(\tau, \tilde{k})
\end{aligned}
$$

Scalar theory in Milne space

$g=4$, DEGV, PRD 86, 085040, 2012

Yang-Mills in Milne space

Berges, Boguslavski, Schlichting, Venugopalan, PRD 89, 074011 (2014) (arXiv 1303.5650)
$N_{T}=256-512, N_{\eta}=1024-4096$

Yang-Mills in Milne space

$g=0.1$
$g=0.5$
EG, PRL 111, 232301, 2013 (arXiv 1307.2214)
$N_{T}=64, N_{\eta}=128$

Conclusions, Problems \& Perspectives

- CTP is useful in thinking about initial value problems
- Conceptually
- Practically
- Strong classical + 1st order quantum correction can be done within classical physics - Perfect way to simulate QFT in real time
- Difficulties: Higher order corrections
- Feynman diagrams are useful conceptually but not computationally - Fourier transform does not produce $\delta\left(E_{i}-E_{f}\right)$ when $t_{i}<t<f_{f}$
- $\phi_{q}^{3} \phi_{c}$ terms are intrinsically quantum - Hard to include in purely classical evolution
- Need to calculate $\delta \rho_{W}$
- Lots of interesting problems still to be considered:
- Glasma evolution with quantum corrections
- Field to Particle transition
- NNLO JIMWLK
- Fermions? ...

