On chemical equilibration of long-lived heavy particles (in kinetic equilibrium)^{1,2}

Mikko Laine

University of Bern, Switzerland

 ¹ Seyong Kim and ML, 1602.08105; work in progress.
 ² Supported by the SNF under grant 200020-155935.

Motivation

(i) Cosmology: Could WIMPs/SIMPs be dark matter?

An initially thermal system chemically decouples when pair annihilation is not fast enough to track the equilibrium distribution, which is $n_{\rm eq} \sim (\frac{MT}{2\pi})^{3/2} e^{-M/T}$ at $T \ll M$.

Back of the envelope estimate

Equate the Hubble rate with the co-annihilation rate:

$$H \sim n \langle \sigma v \rangle \iff \frac{T^2}{m_{\rm Pl}} \sim \left(\frac{MT}{2\pi}\right)^{3/2} e^{-M/T} \frac{\alpha^2}{M^2} \stackrel{\alpha \sim 0.01}{\Rightarrow} T \sim \frac{M}{25}$$

Compare $e \equiv Mn$ at the freeze-out with radiation $\sim T^4$:

LHC pushes up lower bound on M, so there is a danger "overclosure".

Could efficient decays help to avoid overclosure?

Indeed co-annihilating particles with $v \ll 1$ interact "strongly".

In particular the "Sommerfeld effect" ³ has been widely discussed.⁴ It is an $\gtrsim O(1)$ correction for $T \lesssim \alpha^2 M$.

³ L.D. Landau and E.M. Lifshitz, *Quantum Mechanics, Non-Relativistic Theory,* Third Edition, §136; V. Fadin, V. Khoze and T. Sjöstrand, *On the threshold behavior of heavy top production,* Z. Phys. C 48 (1990) 613.

⁴ e.g. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, *Non-perturbative effect on thermal relic abundance of dark matter*, hep-ph/0610249; J.L. Feng, M. Kaplinghat and H.-B. Yu, *Sommerfeld Enhancements for Thermal Relic Dark Matter*, 1005.4678.

Rapid summary of the Sommerfeld effect

For attractive *s*-wave interaction:

$$S_1 = \frac{X_1}{1 - e^{-X_1}} , \quad X_1 = \frac{g^2 C_{\rm F}}{4v}$$

Corresponding "spectral function" ($E' \equiv \omega - 2M \equiv Mv^2$):

Z' exchange, M = 3 TeV

What happens below the threshold?

Perhaps there could be bound states?⁵

This sounds exotic, but we are interested in **rare processes** where two dilute particles come together, i.e. $|\partial_t n| \sim e^{-2M/T}$. In bound states they are "already" together, with a less suppressed Boltzmann weight, because of a binding energy $\Delta E > 0$:

$$|\partial_t n_{\text{bound}}| \sim e^{-(2M - \Delta E)/T}$$

If $T \lesssim \Delta E$, this contribution dominates the co-annihilation rate.

⁵ e.g. B. von Harling and K. Petraki, *Bound-state formation for thermal relic dark* matter and unitarity, 1407.7874.

(ii) Heavy ion collision experiments

Could charm chemically equilibrate at Future Circular Collider?

If so, thermodynamic functions change from normal ones, e.g. charm quarks would boost the bulk viscosity by $lpha_s^{-4}$:⁶

$$\delta \zeta = rac{1}{18T} \lim_{\omega o 0^+} \left\{ rac{2M^2 \chi_f \Gamma_{
m chem}}{\omega^2 + \Gamma_{
m chem}^2}
ight\} = rac{M^2 \chi_f}{9T \Gamma_{
m chem}} \,.$$

⁶ ML and K. Sohrabi, *Charm contribution to bulk viscosity*, 1410.6583.

A formalism

Comments on Boltzmann equations

Classic Boltzmann for WIMP abundance:

$$\left(\partial_t + 3H\right)n \approx -\langle \sigma v \rangle \left(n^2 - n_{eq}^2\right)$$
.

Problem: by construction n contains only scattering states.

Boltzmann boosted by on-shell bound states. Problem: How many? Width? Melting? Matrix elements?

General "linear response" formulation:⁷

$$(\partial_t + 3H) n = -\Gamma_{\text{chem}}(n - n_{\text{eq}}) + \mathcal{O}(n - n_{\text{eq}})^2$$

 $\Gamma_{\rm chem} = 2n_{\rm eq} \langle \sigma v \rangle$ is a "transport coefficient", and the total density $n \equiv e/M$ includes the contribution of bound states.

⁷ D. Bödeker and ML, *Heavy quark chemical equilibration rate as a transport coefficient*, 1205.4987; *Sommerfeld effect in heavy quark chemical equilibration*, 1210.6153.

Physical picture of the co-annihilation process

The energy released in the inelastic reaction is $2M \gg T \Rightarrow$ the "hard" process is effectively **local**:

Initial state: $E_{\rm rest}\sim 2M$, $E_{\rm kin}\sim \frac{k^2}{2M}\sim T.$

Final state: $E_{\rm kin}\sim 2p\sim 2M$, $\Delta x\sim \frac{1}{p}\sim \frac{1}{M}\ll \frac{1}{\sqrt{MT}}, \frac{1}{T}.$

Soft effects are encoded in the thermal expectation value of a 4-particle operator (" $\mathcal{M}^*\mathcal{M}$ ") describing the hard process.⁸

⁸ e.g. L.S. Brown and R.F. Sawyer, *Nuclear reaction rates in a plasma*, astro-ph/9610256.

This can be implemented with NRQCD ⁹

Let θ , η annihilate DM and DM'. Like in the optical theorem, decays are contained in an imaginary part of a 4-particle operator:

$$\mathcal{O} = \frac{ic_1 \alpha^2 \,\theta^{\dagger} \eta^{\dagger} \,\eta \theta}{M^2} + O(\alpha^3(2M), v^2)$$

Through a linear response analysis, this yields

$$n_{\,\mathrm{eq}}\Gamma_{\,\mathrm{chem}} = rac{8c_1lpha^2}{M^2}rac{1}{\mathcal{Z}}\sum_m e^{-E_m/T}\langle m| heta^\dagger\eta^\dagger\,\eta heta|m
angle \; .$$

⁹ G.T. Bodwin, E. Braaten and G.P. Lepage, *Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium*, hep-ph/9407339.

Thermal average can be resolved into a Wightman fcn

$$\begin{split} \gamma &\equiv \frac{1}{\mathcal{Z}} \sum_{m} e^{-E_{m}/T} \langle m | \theta^{\dagger} \eta^{\dagger} \eta \theta | m \rangle \\ &= \langle (\theta^{\dagger} \eta^{\dagger}) (0, \mathbf{0}) (\eta \theta) (0, \mathbf{0}) \rangle_{T} \\ &= \int_{\omega, \mathbf{k}} \underbrace{\int_{t, \mathbf{x}} e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \left\langle (\theta^{\dagger} \eta^{\dagger}) (0, \mathbf{0}) (\eta \theta) (t, \mathbf{x}) \right\rangle_{T}}_{\Pi_{<}(\omega, \mathbf{k})} \end{split}$$

Wightman fcn can be expressed through a spectral fcn

$$\Pi_{<}(\omega, \mathbf{k}) = 2n_{\mathsf{B}}(\omega)\rho(\omega, \mathbf{k}) \stackrel{\omega \gg T}{pprox} 2e^{-\omega/T}\rho(\omega, \mathbf{k}) \;.$$

Moreover, in a non-relativistic 2-body problem, the dependence on the center-of-mass momentum \mathbf{k} can be factored out:

$$\begin{split} \omega &= 2M + \frac{k^2}{4M} + E', \quad \rho(\omega, \mathbf{k}) \approx \rho(E'), \\ \Rightarrow \gamma &\approx \left(\frac{MT}{\pi}\right)^{3/2} e^{-2M/T} \int_{-\Lambda}^{\infty} \frac{\mathrm{d}E'}{\pi} e^{-E'/T} \rho(E') \,. \end{split}$$

Spectral fcn is a cut of a Green's function

$$\begin{bmatrix} H - i \Gamma(r) - E' \end{bmatrix} G(E'; \mathbf{r}, \mathbf{r}') = \delta^{(3)}(\mathbf{r} - \mathbf{r}') ,$$
$$\lim_{\mathbf{r}, \mathbf{r}' \to \mathbf{0}} \operatorname{Im} G(E'; \mathbf{r}, \mathbf{r}') = \rho(E') .$$

$$H = -\frac{\nabla_r^2}{M} + V(r) \; .$$

V(r) and $\Gamma(r)$ emerge from gauge exchange

$$V(r) - i \Gamma(r) = g^2 \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left(1 - e^{i\mathbf{k} \cdot \mathbf{r}}\right) i \Delta_{00T}(0, k) .$$

The width represents real scatterings, present in a plasma:

In a nutshell

- Compute thermal (full or HTL) gauge field self-energy
- Determine corresponding time-ordered propagator
- Fourier-transform for potential and width
- Solve for $\rho(E') = \operatorname{Im} G(E'; \mathbf{0}, \mathbf{0})$
- Laplace-transform with weight $e^{-E'/T}$ for γ

Results for QCD

Perturbative side ¹⁰

¹⁰ ML, O. Philipsen, P. Romatschke and M. Tassler, *Real-time static potential in hot* QCD, hep-ph/0611300; A. Beraudo, J.-P. Blaizot and C. Ratti, *Real and imaginary-time* $Q\overline{Q}$ correlators in a thermal medium, 0712.4394; N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, *Static quark-antiquark pairs at finite temperature*, 0804.0993.

Thermal average \Rightarrow bound states dominate singlet decays

Lattice NRQCD confirms this on a qualitative level

Implication for heavy ions

In pQCD the process splits up into two parts, the "colour-singlet" discussed above as well as a "colour-octet" one, in which case the interaction is repulsive and $\bar{S}_8 < 1$.

$$\begin{split} \Gamma_{\rm chem} &= \frac{g^4 C_{\rm F}}{8\pi M^2} \left(\frac{MT}{2\pi}\right)^{3/2} e^{-M/T} \\ &\times \quad \left[\frac{1}{N_{\rm c}} \bar{S}_1 + \left(\frac{N_{\rm c}^2 - 4}{2N_{\rm c}} + N_{\rm f}\right) \; \bar{S}_8\right] \end{split}$$

 $\bar{S}_8\simeq 0.8$ is weighted more than $\bar{S}_1\simeq 15$ so the numerical effect on charm equilibration in QCD is modest: $\Gamma_{\rm chem}^{-1}\sim 150$ fm/c at $T\approx 400$ MeV, and $\Gamma_{\rm chem}^{-1}\sim 40$ fm/c at $T\approx 600$ MeV.

Results for cosmology

Z exchange: no bound states are found

Average $\int dE' e^{-E'/T} \dots \Rightarrow S$ works with $\sim 1\%$ errors.

Z' exchange:¹¹ bound states melt below freeze-out

¹¹ e.g. M. Pospelov, A. Ritz, M.B. Voloshin, *Secluded WIMP Dark Matter*, 0711.4866; W. Shepherd *et al*, *Bound states of weakly interacting dark matter*, 0901.2125.

Gluon exchange between gluinos:¹² like in QCD

¹² e.g. J. Ellis, F. Luo and K.A. Olive, *Gluino Coannihilation Revisited*, 1503.07142.

Sommerfeld effect is large and bound-state effect equally so

Summary

• If precision is needed (NLO corrections, thermal effects, bound-state contributions, non-perturbative studies), techniques do exist for non-relativistic scenarios.

• Weak interactions: we confirm the presence of the Sommerfeld effect. For practical purposes it seems to be all there is to it.

• Strong interactions: the co-annihilation rate is much enhanced because of bound states. This may help to avoid overclosure in cosmology, and could find applications for heavy quarks at FCC.

• Model-specific studies are needed for definite conclusions.