The Self-Interacting Dark Matter Paradigm

Hai-Bo Yu University of California, Riverside

CERN TH INSTITUTE, August 23, 2016

Review for Physics Reports: Sean Tulin, HBY arXiv: 1609.XXXXX

Cold Collisionless Dark Matter

Large scales: very well

• Small scales (dwarf galaxies, subhalos, galaxy clusters): ?

Core VS. Cusp Problem

• DM-dominated systems (dwarfs, LSBs) from THINGS Oh+(2011)

Flores, Primack (1994), Moore (1994)

Too-Big-to-Fail Problem

Milky Way dwarf galaxies Boylan-Kolchin, Bullock, Kaplinghat (2011)

- Most massive subhalos in CDM simulations are too dense to host observed galaxies in the Milky Way
- On the other hand, it is easier for stars to form in massive subhalos

subhalos in Andromeda, field dwarfs in Local Group, and field galaxies

Even Galaxy Clusters!

• Seven well-resolved galaxy clusters

• CDM halos contain more DM in the central regions than needed Dark matter deficit problem

Baryon Physics?

• Violent baryonic feedback process

Blumenthal, Flores, Primack (1986) Navarro, Eke, Frenk (1996)

 \bf{O}

Baryon Physics?

• Violent baryonic feedback process

depends on the stellar mass Governato+ (2012)

depends on when it occurs Onorbe+(2015)

galaxies with cores larger than $r*$ Papastergis, Shankar (2015)

depends on the recipe of hydrodynamical simulations!

Other group did not see the effect Oman+ (2015) ("NFW" group)

Baryon Physics?

• Violent baryonic feedback process

Dark Matter Physics?

Self-interactions can reduce the central DM density

Spergel, Steinhardt (2000)

Recent simulations: Irvine group, MIT group, ETHOS Collaboration See Zavala's talk

 $\sigma/m_x \sim 1$ cm²/g for v ~ 40-100 km/s $\Gamma \simeq n\sigma v = (\rho/m_x)\sigma v \sim H_0$

Challenges

 σ ~ 1 cm² (m_x/g)~2×10⁻²⁴ cm² (m_x/GeV) • A really large scattering cross section!

For a WIMP: $σ~10^{-38}$ cm² (m_X/100 GeV)

SIDM indicates a new mass scale

• How to avoid the constraints on large scales? σ/m_x < 2 cm²/g for 3000 km/s (Bullet cluster) Robertson+(2016)

In particular, if σ~constant σ/m_x < 0.1 cm²/g for 1000 km/s (stellar kinematics) Kaplinghat, Tulin, HBY (PRL 2015)

a nuclear-scale cross section

SIDM Particle Physics

 $X |$ $| X$ $\boldsymbol{\mathsf{X}}$ $\boldsymbol{\mathsf{I}}$ $\boldsymbol{\mathsf{X}}$ ɸ

• SIDM indicates light mediators

$$
\sigma \approx 5 \times 10^{-23} \,\mathrm{cm}^2 \left(\frac{\alpha_X}{0.01}\right)^2 \left(\frac{m_X}{10 \,\mathrm{GeV}}\right)^2 \left(\frac{10 \,\mathrm{MeV}}{m_\phi}\right)^4
$$

in the perturbative and small velocity limit

• With a light mediator, DM self-scattering is velocity-dependent

Feng, Kaplinghat, HBY (2009); Buckley, Fox (2009), Loeb, Weiner (2010); Tulin, HBY, Zurek (2012) (2013)

The first SIDM simulations with a Yukawa potential: Vogelsberger, Zavala, Loeb (2012)

The SIDM Paradigm

• The SIDM paradigm is predictive

the WIMP paradigm

the SIDM paradigm

Mixing with the SM Sector

• The mediator may dominate the energy density of the Universe

 Φ

SM

SM

• The mediator decays before BBN: lifetime of φ is ~I second

$$
\epsilon \gtrsim 10^{-10} \sqrt{10 \text{ MeV}/m_\phi}
$$

A simple (super) model

Kaplinghat, Tulin, HBY (PRD 2013)

SIDM at Colliders

• Striking collider signals

pp→Monojet+Missing Energy

An, Echenard, Pospelov, Zhang (PRL 2015) Tsai, Wang, Zhao (PRD 2015) Shepherd, Tait, Zaharijas (PRD 2009)

SIDM Direct Detection

• Bound on the mixing parameter and smoking-gun signatures

SIDM Indirect Detection

• Lighting up the galactic center, but not dwarf galaxies!

Kaplinghat, Linden, HBY (PRL 2015)

What if SIDM is Hidden…

• The mediator decays before BBN: lifetime of φ is ~I second

Need unique signatures, independent of DM-SM interactions

Idea1: Halo Morphology

• SIDM halos are more spherically symmetric than CDM ones

Peter+(2013)

Tying SIDM to Baryons

• SIDM: equilibrium ideal gas with gravity

Isothermal Maxwellian distribution

$$
\rho = \rho_0 e^{-\Phi_{\rm tot}/\sigma_0^2}
$$

• If $\Phi_{\rm tot}$ ~ $\Phi_{\rm b}$, SIDM follows the stellar distribution! $\rho=\rho_0e^{-\Phi_b/\sigma_0^2}$ 0

Stellar bulge in the Milky Way

Kaplinghat, Linden, Keeley, HBY (PRL 2014)

Tying SIDM to Baryons

• SIDM may follow the stellar distribution; halo morphology

SIDM density contour

Kaplinghat, Linden, Keeley, HBY (PRL 2014)

Correlation between the stellar distribution and the SIDM distribution

Idea 2: Dark Matter "Colliders"

"B-factory" (v~30 km/s) "LEP" (v~200 km/s) "LHC" (v~1000 km/s)

Observations on all scales

Dwarf galaxies MW-size galaxies Clusters

Self-scattering

kinematics Measure particle physics parameters σ_X , m_X , gx

Modelling SIDM Halos

• An analytical model based on simulations

rate
$$
\times
$$
 time $\approx \frac{\langle \sigma v \rangle}{m} \rho(r_1) t_{\text{age}} \approx 1$

$$
\rho(r) = \begin{cases} \rho_{\text{iso}}(r), & r < r_1 \\ \rho_{\text{NFW}}(r), & r > r_1 \end{cases}
$$

Matching conditions:

$$
\rho_{\rm iso}(r_1) = \rho_{\rm NFW}(r_1)
$$

$$
M_{\rm iso}(r_1) = M_{\rm NFW}(r_1)
$$

Modelling SIDM Halos

• The model works remarkably

Solid: simulations, Elbert+(2015) Dashed: analytical modelling

 $0 \text{ cm}^2\text{/g}$ 1 cm²/g 5 $cm²/g$ $10 \text{ cm}^2\text{/g}$

The equilibrium assumption works!

Kaplinghat, Tulin, HBY (PRL 2015)

SIDM from Dwarfs to Clusters

- Consider 5 THINGS dwarfs (red), 7 LSBs (blue), 6 galaxy clusters (green)
- 8 simulated halos with $\sigma/m=1$ cm²/g (gray) for calibration

Kaplinghat, Tulin, HBY (PRL 2015)

Measuring Dark Matter Mass

• Self-scattering kinematics determines SIDM mass

More Galaxies…

SIDM is doing systematically better than CDM in explaining rotation curves of spiral galaxies

Idea 3: Dark Acoustic Oscillation

• Roles of dark radiation

- extra d.o.f., CMB/BBN
- damp the DM power spectrum
- reduce the number of sub-halos

ETHOS Collaboration, See Zavala's talk

Summary and Outlook

- It is time to think about new approaches to the dark matter problem
- CDM has serious issues on galactic scales
- The SIDM paradigm provides a solution with novel features
	- Smoking-gun signatures in direct and indirect detection experiments
	- Measure dark matter mass via self-scattering kinematics
	- Tie dark matter to baryons

Go beyond the dark matter mass deficit problem

Diversity

• Puzzle 1: The diversity of spiral galaxies

Uniformity

• Puzzle 2: Constant DM halo surface density

• Puzzle 3: The baryonic Tully-Fisher relation

We have a lot to do!

MY WEEKEND $SSAL$ OKED

Stay tuned! Thank You