Resonance and exotics production from heavy ion collisions

I: Few words on "Multiquark states"

X(3872), Zc(3900), ... Zb(10610), Zb(10650) + LHCb J/ψ p PRL 115, 072001 (2015)

X(3872)

- 2003 -

Full width $\Gamma < 1.2$ MeV, CL = 90%

3

- 2007 -

$$B \rightarrow K \overline{\pi^{\pm} \psi'}$$

$$M = 4433 \pm 4 \pm 2 \text{ MeV}$$

$$\Gamma = 45^{+18}_{-13} (\text{stat})^{+30}_{-13} (\text{syst}) \text{ MeV}$$

- 2014 -

$$\eta_G = \eta_C (-1)^I$$

G=+ \rightarrow will look at C=-

- 2013 -BESIII $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ (Belle) $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$ $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$

Probably the same Quantum Number as Z(4430)

Hence,

Pentaquark - Pc

- 2015 -

$$\Lambda^0_b \to J/\psi p K$$

$$S = 3/2$$

$$\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$$

 $M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$

 $M_1 = 4380 \pm 8 \pm 29 \,\mathrm{MeV}$

$$S = 5/2$$

 $\Gamma_2 = 39 \pm 5 \pm 19 \,\text{MeV}$

Comact multiquark configuration? Not so easy

- Color singlet configuration:
- Spin 1 configuration from :

 $(1_c \otimes 1_c)$ or $(8_c \otimes 8_c)$ $(P \oplus V) \otimes (P \oplus V)$ where P(S = 0), V(S = 1)

C=+

$$\begin{vmatrix} 1_{c\bar{c}} 1_{q\bar{q}} \left(V_{c\bar{c}} V_{q\bar{q}} \right) \rangle \\ \begin{vmatrix} 1_{c\bar{c}} 1_{q\bar{q}} \left(V_{c\bar{c}} V_{q\bar{q}} \right) \rangle \\ \hline \\ Color Spin \\ \end{vmatrix} \\ \begin{vmatrix} 1_{c\bar{c}} 1_{q\bar{q}} \left(P_{c\bar{c}} V_{q\bar{q}} \right) \rangle \\ \begin{vmatrix} 1_{c\bar{c}} 1_{q\bar{q}} \left(V_{c\bar{c}} P_{q\bar{q}} \right) \rangle \\ \end{vmatrix} \\ \begin{vmatrix} 8_{c\bar{c}} 8_{q\bar{q}} \left(P_{c\bar{c}} V_{q\bar{q}} \right) \rangle \\ \end{vmatrix}$$

7

Comact multiquark configuration? Not so easy

$$H_{Kinetic} = \sum_{i=1}^{4} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) : \frac{p_{cc}^{2}}{2m_{cc}} \bigoplus_{i=1}^{2} \bigoplus_{j=1}^{2} \bigoplus$$

should be strong enough to overcome repulsion from kinetic term
 Otherwise can form molecular configuration

H dibaryon

$$\mathcal{K} = -\sum_{i < j} \left(\lambda_i^c \lambda_j^c \right) \left(\sigma_i \sigma_j \right)$$

$$K = -24$$

K = -8 K = -8

Λ

TABLE III: The expectation value of $-\sum_{i < j} \langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle$ for H-dibaryon with flavor singlet(F^1) and $\Lambda\Lambda$.

$-\sum_{i < j} \langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle$	$i < j = 1 \sim 5$	$i=1\sim 5, j=6$
H-dibaryon, F^1	-16	-8

$-\sum_{i < j} \langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle$	$i < j = 1 \sim 3$	i=4, j=5	$i=4\sim 5, j=6$
$\Lambda\Lambda$	-8	-8	0

FIG. 1. The mass difference (ΔE) between the H-dibaryon and two Λ baryons as a function of the pion mass in the SU(3) limit. (Units are MeV.)

➤ C=+ state (Woosung Park, SHL 14)

$$\left| 1_{c\bar{c}} 1_{q\bar{q}} \left(V_{c\bar{c}} V_{q\bar{q}} \right) \right\rangle = \left| J/\psi + \omega \right\rangle$$

$$\left| 8_{c\bar{c}} 8_{q\bar{q}} \left(V_{c\bar{c}} V_{q\bar{q}} \right) \right\rangle \quad > \quad \mathbf{X}(3872)$$

Or $X(3872) \rightarrow$ molecular bound state of DD^* (Tornqvist 94)

 $\succ C =- \text{ state } \left| 1_{c\bar{c}} 1_{q\bar{q}} \left(V_{c\bar{c}} P_{q\bar{q}} \right) \right\rangle \qquad \left| J/\psi + \pi \right\rangle$ $\left| 1_{c\bar{c}} 1_{q\bar{q}} \left(P_{c\bar{c}} V_{q\bar{q}} \right) \right\rangle \qquad \left| \eta_c + \rho \right\rangle$ $\left| 8_{c\bar{c}} 8_{q\bar{q}} \left(V_{c\bar{c}} P_{q\bar{q}} \right) \right\rangle \qquad > Z(3900)$ $\left| 8_{c\bar{c}} 8_{q\bar{q}} \left(P_{c\bar{c}} V_{q\bar{q}} \right) \right\rangle \qquad Z(4430)$ Or $Z(3900) \rightarrow DD^*$ is molecular states

Or Z(4430) is 2s of X(3872) in diquark picture (Maiani, Polosa, Riquer)

d*(2380)
$$I(J^P) = O(3^+) \qquad \Delta V = \sum_{i,j}^n -\lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j$$

- WASA-at-COSY-

 $(QQ)_4 + 2(QQ)_2$

	Color	Spin	Favor	V
(QQ) ₁	3bar	0	3bar	-2
(QQ) ₂		1	6	2/3
(QQ) ₃	6	0	6	1
(QQ) ₄		1	3bar	-1/3

$$\Delta V = V_{\text{dibaryon}} - \left(V_{\text{baryon1}} - V_{\text{baryon2}}\right)$$

$$\boxed{\begin{array}{c|c} (\text{I,S}) & (3,0) & (2,1) & (1,2) & (1,0) & (0,3) & (0,1) \end{array}}{V_d & 48 & \frac{80}{3} & 16 & 8 & 16 & \frac{8}{3} \\ \Delta V & 32 & \frac{80}{3} & 16 & 24 & 0 & \frac{56}{3} \\ \hline\end{array}}$$

W.Park, A. Park, SHL, (PRD 15)

Real compact multiquark states

> A 3-body or 4 body force could favor $(8_c \otimes 8_c)$ and lead to compact 4 quark state or artificially increase diquark correlation

 \rightarrow T_{cc} T_{cb} : real compact flavor exotic tetraquarks

II: Particle production in Heavy Ion Collision

Hadron production in ($p+\pi \rightarrow C+X$) collision

$$d\sigma\big|_{p+\pi\to C+X} = \int G_{b/\pi}(x_b) G_{a/p}(x_a) \times \int d\sigma\big|_{a+b\to c+d} \times D_{C/c}(x_c)$$

Particle production in heavy ion collision

Normal meson, compact multiquark, molecules, resonances

	Normal meson	Compact multiquark	Molecules	Resonance
Geometrical configuration				
Examples	Nucleon, pion, kaon	?	Deuteron, light nuclei	K*, rho meson

resonance

Production of resonances

ALICE (2015 prc)

Reconstruction

 $K^* \to K + \pi, \quad \Gamma > 50 \,\mathrm{MeV}$

 $\phi \to K + K$, $\Gamma > 5 \text{ MeV}$

Rate equation for K* (resonance) production

$$\frac{dN_{K^*}}{d\tau} = aN_K - bN_{K^*}$$

> Destruction: $b = \Gamma + \sigma_{\pi K^*} v n_{\pi}$

 $\succ \quad \text{Creation} \quad a = \sigma_{\pi K} v n_{\pi} + \sigma_{\rho K} v n_{\rho}$

Thermal Equilibrium

$$\frac{N_{K^*}}{N_K} = \frac{a}{b} \propto \frac{\sigma_{hK} n_h}{\Gamma + \sigma_{hK^*} n_h} \xrightarrow{\tau} 0$$

Freeze out condition for a particle

Two time scale (=cosmology)

$$\tau_{\rm exp} \approx \frac{V}{\dot{V}} = \frac{R}{3\dot{R}}$$
$$\tau_{\rm scatt} = \frac{1}{n\sigma\langle v\rangle}$$

Freeze out condition

$$\tau_{\rm scatt} = \tau_{\rm exp} \rightarrow \left(\frac{\rm N}{\rm R^2}\right) = \frac{3}{\sigma}$$

Freeze out density

$$n_{\rm freeze-out} \propto \frac{1}{\sigma^{3/2} \,\mathrm{N}^{1/2}}$$

Detailed hydrodynamic calculation - 1

S. Cho, SHL, arXiv:1509.04092; S. Cho, T. Song, SHL, arXiv:1511.08019

Detailed calculation - 2

Two time scale (=cosmology)

ALICE (2015 prc)

Production of light nuclear

RHIC/STAR (Yugang Ma)

ALICE – Statistical model

S/N i conserved (Siemens, Kapusta 79)

Rate equation for deuteron (bound states) production

$$\frac{dN_d}{d\tau} = aN_N - bN_d$$

Destruction: $b = c + \sigma_{\pi d} v n_{\pi}$

$$d \longrightarrow N$$

 \succ Creation $a = \sigma_{NN} v n_N$

 $N \xrightarrow{\pi} d$

Thermal Equilibrium

$$\frac{N_d}{N_N} = \frac{a}{b} \propto \frac{\sigma_{NN} n_N}{\sigma_{hd} n_h} \xrightarrow{\tau} \text{constant}$$

Number of Ground state particles remain almost constant

Comparison

➢ K* (Resonance) production

$$\frac{N_{K^*}}{N_K} = \frac{\sigma_{NN} v n_N}{\Gamma_{K^*} + \sigma_{\pi c} v n_\pi} \longrightarrow \frac{\sigma_{NN} v \frac{N_N}{V}}{\Gamma_{K^*} + \sigma_{\pi c} v \frac{N_\pi}{V}} = \xrightarrow{V \to \infty} 0$$

Deuteron (bound state) production

$$\frac{N_d}{N_N} = \frac{a}{b} = \frac{\sigma_{NN} v n_N}{\sigma_{\pi c} v n_\pi} \to \frac{\sigma_{NN} v \frac{N_N}{V}}{\sigma_{\pi c} v \frac{N_\pi}{V}} = \frac{\sigma_{NN} v N_N}{\sigma_{\pi c} v N_\pi} \xrightarrow{V \to \infty} \text{constant}$$

Normal meson, compact multiquark, molecules, resonances

	Normal meson	Compact multiquark	Molecules	Resonance
Geometrical configuration				
Yields /Statistical model	1	< 0.1	~ 1	~ 0.5

Production of resonances

ALICE (2015 prc)

Reconstruction

 $K^* \rightarrow K + \pi, \quad \Gamma > 50 \,\mathrm{MeV}$

 $\phi \rightarrow K + K$, $\Gamma > 5 \text{ MeV}$

 $\Lambda(1529) \rightarrow \overline{K} + N$, $\Gamma > 15 \text{ MeV}$

STAR collaboration (PRL 2006) find

$$\frac{\Lambda(1529)_{AU+AU}}{\Lambda(1529)_{Stat}} \approx 0.4$$

Coalescence model

Hadron production near phase bounday (T_H)

Coalescence model = Statistical model + overlap

$$\frac{dN_H}{d^2 P_T} = g_H \int \prod_{i=1}^n \frac{p_i \cdot d\sigma_i d^3 \mathbf{p}_i}{(2\pi)^3 E_i} f_q(x_i, p_i) f_H(x_1 .. x_n; p_1 .. p_n) \, \delta^{(2)} \left(P_T - \sum_{i=1}^n p_{T,i} \right)$$

Suppression of p-wave resonance
$$(\Lambda^*(1520)/\Lambda)_{Au-Au}/(\Lambda^*(1520)/\Lambda)_{Statistick} < 0.5$$
 (Muller and Kadana En'yo)

Production of multiquark states are suppressed

Coalescence model = Statistical model + overlap

III: Exotics from Heavy Ion Collision

PRL 106, 212001 (2011)

PHYSICAL REVIEW C 84, 064910 (2011)

Exotic hadrons in heavy ion collisions

Sungtae Cho,¹ Takenori Furumoto,^{2,3} Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming Ko,⁵ Su Houng Lee,¹ Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2,7} Shigehiro Yasui,⁸ and Koichi Yazaki^{2,9} (ExHIC Collaboration) New perspective of Hadron Physics from Heavy Ion Collision

\triangleright	large number of c , b quark production		RHIC	LHC
		$N_u = N_d$	245	662
		$N_s = N_{\bar{s}}$	150	405
		$N_c = N_{\bar{c}}$	3	20
		V_C	$1000~{\rm fm}^3$	$2700~{\rm fm}^3$
		$T_C = T_H$	$175 { m MeV}$	$175 { m MeV}$
		V_H	$1908~{\rm fm}^3$	$5152~{\rm fm}^3$
		V_F	$11322~{\rm fm}^3$	$30569~{ m fm}^3$
		T_F	125 MeV	125 MeV

Vertex detector: weakly decaying exotics : FAIR 10⁴ D⁰ /month, LHC 10⁵ D⁰/month

 \succ T_{cc} production

T_{cc}/D	> 0.34 x 10 ⁻⁴	RHIC
	> 0.8 x 10 -4	LHC

	•	
threshold	decay mode	lifetime
$M_{T_{cc}} > M_{D^*} + M_D$	$D^{*-}\bar{D}^{0}$	hadronic decay
$2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D$	$\bar{D}^0 \bar{D}^0 \pi^-$	hadronic decay
$M_{T_{cc}} < 2M_D + M_{\pi}$	$D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}$	0.41×10^{-12} sec.

Details of coalescence model calculation (ExHIC PRL, PRC 2011)

- Model central rapidity, central collision
- Introduce charm fugacity

$$N_{c} = N_{D} + N_{D^{*}} + \frac{1}{2} (N_{D_{s}} + N_{\bar{D}_{s}}) + \frac{1}{2} (N_{\Lambda_{c}} + N_{\bar{\Lambda}_{c}})$$

= 1.04 + 1.53 + $\frac{0.33 + 0.29}{2} + \frac{0.14 + 0.11}{2} = 3$

	RHIC	LHC
$N_{\mu} = N_d$	245	662
$N_s = N_s$	150	405
$N_c = N_c$	3	20
$N_b = N_{\bar{b}}$	0.02	0.8
V _C	1000 fm ³	2700 fm ³
$T_C = T_H$	175 MeV	175 MeV
V_H	1908 fm ³	5152 fm ³
μ_B	20 MeV	0 MeV
μ_s	10 MeV	0 MeV
V_F	11322 fm ³	30569 fm ³
T_F	125 MeV	125 MeV

Coalescence model model and Wigner function

$$N_{h}^{\text{coal}} = g_{h} \prod_{j=1}^{n} \frac{N_{j}}{g_{j}} \prod_{i=1}^{n-1} \frac{\int d^{3} y_{i} d^{3} k_{i} f_{i}(k_{i}) f^{W}(y_{i}, k_{i})}{\int d^{3} y_{i} d^{3} k_{i} f_{i}(k_{i})} \qquad \qquad f_{s}^{W}(y_{i}, k_{i}) = 8 \exp\left(-\frac{y_{i}^{2}}{\sigma_{i}^{2}} - k_{i}^{2} \sigma_{i}^{2}\right) \qquad \qquad \sigma_{i} = 1/\sqrt{\mu_{i}\omega}$$

Parameters to fit normal hadron production including resonance feedown from statistical model

 $m_{u,d} = 300 \text{ MeV}, \ m_c = 500 \text{ MeV}, \ m_c = 1500 \text{ MeV}$ $\omega_{u,d} = 550 \text{ MeV}, \ \omega_s = 519 \text{ MeV}, \ \omega_c = 385 \text{ MeV}$

Configuration	Particle	e RHIC		LHC		
		Coalescence	Statistical	Coalescence	Statistical	
$\bar{q}q$	ω(782)	44.2	40.2	119	108	
	$\rho(770)$	132	127	358	342	
	K *(892)	41.2	47.2	111	135	
	K*(892)	41.2	52.9	111	135	
qqs	Λ(1115)	29.8*	29.8	80.5	77.5	
		(3.0)	(6.5)	(8.1)	(16.5)	
	Λ(1520)	1.6	1.9	4.4	4.8	
qqQ	$\Lambda_c(2286)$	0.60*	0.60	4.0	3.6	
		(0.058)	(0.14)	(0.39)	(0.83)	
	$\Lambda_b(5620)$	$3.6 \times 10^{-3*}$	3.6×10^{-3}	0.14	0.13	
		(3.6×10^{-4})	(9.2×10^{-4})	(0.014)	0.033	

\succ

Hadron coalescence

$$\omega = \frac{3}{2\mu_R \langle r^2 \rangle}$$

or
$$\mathbf{B} \approx \frac{\hbar^2}{2\mu_R a_0^2}, \quad \langle r^2 \rangle \approx \frac{a_0^2}{2}$$

Particle	m (MeV)	g	I	J^{P}	2q/3q/6q	4q/5q/8q	Mol.	ω _{Mol.} (MeV)	Decay mode
Mesons									
$f_0(980)$	980	1	0	0+	$q\bar{q}, s\bar{s}(L=1)$	$q\bar{q}s\bar{s}$	ĒΚ	67.8(B)	$\pi\pi$ (Strong decay)
$a_0(980)$	980	3	1	0^{+}	$q\bar{q}(L=1)$	$q\bar{q}s\bar{s}$	ĒΚ	67.8(B)	$\eta\pi$ (Strong decay)
K(1460)	1460	2	1/2	0-	$q\bar{s}$	$q\bar{q}q\bar{s}$	ĒΚΚ	69.0(R)	$K\pi\pi$ (Strong decay)
D _s (2317)	2317	1	0	0^{+}	$c\bar{s}(L=1)$	$q\bar{q}c\bar{s}$	DK	273(B)	$D_s\pi$ (Strong decay)
T_{cc}^{1a}	3797	3	0	1+	_	$qq\bar{c}\bar{c}$	$\bar{D}\bar{D}^*$	476(B)	$K^{+}\pi^{-} + K^{+}\pi^{-} + \pi^{-}$
X(3872)	3872	3	0	$1^+, 2^{-c}$	$c\bar{c}(L=2)$	$q\bar{q}c\bar{c}$	$\bar{D}D^*$	3.6(B)	$J/\psi\pi\pi$ (Strong decay)
Z ⁺ (4430) ^b	4430	3	1	0 ^{-c}	_	$q\bar{q}c\bar{c}(L=1)$	$D_1 \bar{D}^*$	13.5(B)	$J/\psi\pi$ (Strong decay)
T_{cb}^{0a}	7123	1	0	0^{+}	_	$qq\bar{c}\bar{b}$	$\bar{D}B$	128(B)	$K^{+}\pi^{-} + K^{+}\pi^{-}$
Baryons									
Λ(1405)	1405	2	0	$1/2^{-}$	qqs(L=1)	$qqqs\bar{q}$	ĒΝ	20.5(R)-174(B)	$\pi \Sigma$ (Strong decay)
⊖+(1530) ^b	1530	2	0	1/2+°	_	$qqqq\bar{s}(L=1)$	_	_	KN (Strong decay)
$\bar{K}KN^{a}$	1920	4	1/2	$1/2^{+}$	_	$qqqs\bar{s}(L=1)$	ĒΚΝ	42(R)	$K\pi\Sigma$, $\pi\eta N$ (Strong decay)
$\bar{D}N^{a}$	2790	2	0	$1/2^{-}$	_	$qqqq\bar{c}$	$\bar{D}N$	6.48(R)	$K^+\pi^-\pi^- + p$
\bar{D}^*N^a	2919	4	0	$3/2^{-}$	_	$qqqq\bar{c}(L=2)$	\bar{D}^*N	6.48(R)	$\overline{D} + N$ (Strong decay)
Θ_{cs}^{a}	2980	4	1/2	$1/2^{+}$	_	$qqqs\bar{c}(L=1)$		_	$\Lambda + K^+\pi^-$
BN^{a}	6200	2	0	$1/2^{-}$	_	$qqqq\bar{b}$	BN	25.4(R)	$K^{+}\pi^{-}\pi^{-} + \pi^{+} + p$
B^*N^a	6226	4	0	3/2-	_	$qqqq\bar{b}(L=2)$	B^*N	25.4(R)	B + N (Strong decay)
Dibaryons									
H ^a	2245	1	0	0+	qqqqss		ΞN	73.2(B)	$\Lambda\Lambda$ (Strong decay)
<i>K̄</i> NN ^b	2352	2	1/2	0 ^{-c}	qqqqqs(L=1)	qqqqqq s q	ΚNΝ	20.5(T)-174(T)	ΛN (Strong decay)
$\Omega \Omega^{a}$	3228	1	0	0+	SSSSSS		$\Omega\Omega$	98.8(R)	$\Lambda K^- + \Lambda K^-$
H_c^{++a}	3377	3	1	0^{+}	qqqqsc	_	$\Xi_c N$	187(B)	$\Lambda K^-\pi^+\pi^+ + p$
$\bar{D}NN^{a}$	3734	2	1/2	0-	_	qqqqqq q c	$\bar{D}NN$	6.48(T)	$K^{+}\pi^{-} + d, K^{+}\pi^{-}\pi^{-} + p + p$
BNN ^a	7147	2	1/2	0-	—	qqqqqqqb	BNN	25.4(T)	$K^+\pi^- + d, K^+\pi^- + p + p$

Expectations [overlap] at LHC

Z(3900)

Fachini [STAR]

Summary

- Whats the difference between compact multiquark states and molecular states
 - \rightarrow Need heavy quarks to enhance diquark correlation
 - → Multiquarks will tell us about 3,4-body QCD force

• Measurements from Heavy Ion can discriminate the structures

	Normal meson	Compact multiquark	Molecules	Resonance
Yields /Statistical model	1	< 0.1	1~ 2	~ 0.5

• Flavor exotics will involves two heavy quarks → Heavy ion can easily produce

Suggestions

- 1. Lambda (1405): two poles? $\Lambda(1405) \rightarrow \pi^+ + \Sigma^- \rightarrow \pi^+ + n + \pi^ \Lambda(1405) \rightarrow \pi^- + \Sigma^+ \xrightarrow{50\%} \pi^- + p + \pi^0$
- 2. Dibayrons: $d^*(2323) \rightarrow \Delta + \Delta$
- H, N-Omega, Hc(uuudsc)
- 3. Light molecules or tetraquarks $f_0(980) \rightarrow \pi^+ \pi^-$, $a_0(980) \rightarrow \eta \pi^\pm$
- 4. Heavy Tetraquarks

 $Z(3900) \rightarrow J/\psi + \pi^{+}, \qquad Z(4430) \rightarrow J/\psi + \pi^{+}, \text{ or } \psi' + \pi^{+}$ $X(5568) \rightarrow B_{s}^{0}\pi^{\pm} \quad [bd][\bar{s}\bar{u}]$

$$T^{0}_{cb}(ud\overline{c}\overline{b}) \rightarrow (\overline{D}^{0} + B^{0}) \rightarrow K^{+}\pi^{-} + K^{+}\pi^{-}$$

$$T^{0}_{sb}(ds\overline{u}\overline{b}) \rightarrow (K^{-} + B^{0}) \rightarrow K^{-} + K^{+}\pi^{-}$$

$$\rightarrow (\pi^{-} + B^{0}_{s}) \rightarrow \pi^{-} + J/\psi + \phi$$

$$T^{1}_{cc}(ud\overline{c}\overline{c}) \rightarrow (\overline{D}^{0} + D^{*-}) \rightarrow K^{+}\pi^{-} + K^{+}\pi^{-}\pi^{-}$$

5. Heavy Pentaquarks

 $P_c \rightarrow J/\psi + p$

Back up slides

Hadron production through coalescence \rightarrow

$$c \times \exp\left(-\frac{M}{T}\right) \times \left[\text{overlap}\right]$$

