The equation of state and the sphaleron rate in the Standard Model

Kari Rummukainen

University of Helsinki and Helsinki Institute of Physics

D'Onofrio, Rummukainen, Tranberg arXiv:1404.3565 D'Onofrio, Rummukainen, arXiv:1508.07161

Big Bang and the little bangs, CERN 8/2016

The "Bump"

- The "bump" has ceased to be (... or is it just resting?)
- the Standard Model rules (still)

Phase transitions in the Standard Model

- No phase transitions in the Standard Model (at $\mu = 0$)
 - QCD and EW "phase transitions" are cross-overs
- $\bullet\,$ Many BSM models have a first order EW phase transition $\mapsto\,$
 - EW baryogenesis (Kainulainen)
 - Gravitational waves (Weir)

In this talk:

- Precision results of EW:
 - Pseudocritical temperature
 - Equation of state "softness", width of the cross-over
 - Sphaleron rate
- Why study these?
 - it's the Standard.
 - Background to cosmological applications, e.g. leptogenesis
 - Precision properties of physics

Phase diagram of the electroweak SM

- After lots of activity on and off the lattice:
- ightarrow No phase transition at all, smooth "cross-over" for $m_{
 m Higgs}{\gtrsim}72\,{
 m GeV}$

Overall EOS

[Laine, Schröder 2006]

- Perturbation theory + Lattice QCD + Hadron RG
- Here EW transition featureless

Equation of state and the pseudocritical temperature

3d effective theory

- Tool for perturbative and lattice computations
- Modes p > g²T are perturbative (at weak coupling): can be integrated out in stages:
 - 1. $p \gtrsim T$: fermions, non-zero Matsubara frequencies
 - \rightarrow 3d theory (dimensional reduction)

- 2. Electric modes $p \sim gT$
- Obtain a "magnetic theory" for modes p≲g²T. Fully contains the non-perturbative thermal physics.

3d effective theory

3d effective Lagrangian:

$$L = \frac{1}{4} F_{ij}^a F_{ij}^a + \frac{1}{4} B_{ij} B_{ij} + (D_i \phi)^\dagger D_i \phi + m_3^2 \phi^\dagger \phi + \lambda_3 (\phi^\dagger \phi)^2$$

SU(2) + U(1) gauge + Higgs
Parameters:

$$g_3^2 \sim g_W^2 T$$
$$x \equiv \lambda_3/g_3^2$$
$$y \equiv m_3^2/g_3^4$$
$$z \equiv g_3'^2/g_3^2$$

Calculating the EOS

- Developed by Laine and Meyer 2015
- $\bullet\,$ Higgs mass parameter ν and ${\cal T}$ are the only dimensionful parameters
- For dimensional reasons:

$$\frac{p(T)}{T^4} = \frac{p_{\rm R}}{T^4} \left(\frac{\bar{\mu}}{T}, \frac{\nu^2(\bar{\mu})}{T^2}, g^2(\bar{\mu})\right) - \frac{p_{0\rm R}(\bar{\mu}, \nu^2(\bar{\mu}), g^2(\bar{\mu}))}{T^4}$$

 $\bar{\mu}$: $\overline{\rm MS}$ scale, $p_{0\rm R}$: zero-temperature pressure $g^2(\bar{\mu})$: all dimensionless couplings in the SM

• Interaction measure:

$$\begin{split} \Delta &= T \frac{\mathrm{d}}{\mathrm{d}T} \frac{p(T)}{T^4} \\ &= -\frac{\partial(p_{\mathrm{R}}/T^4)}{\partial \ln(\bar{\mu}/T)} - \frac{2\nu^2 [Z_m \langle \phi^{\dagger} \phi \rangle_{4\mathrm{d}}]_{\mathrm{R}}}{T^4} + \frac{4p_{0\mathrm{R}}}{T^4} \\ &\equiv \Delta_1 + \Delta_2 + \Delta_3 \end{split}$$

• Applying 3d effective theory: $\Delta_2 = \Delta_2^A + \Delta_2^B \frac{\langle \phi^{\dagger} \phi \rangle_{\rm 3D}}{\tau}$

Calculating the EOS

- Thus, $\Delta = \Delta_1 + \Delta_3 + \Delta_2^A + \delta_2^B rac{\langle \phi^\dagger \phi \rangle_{3\mathrm{D}}}{T}$
- All Δ_i 's computed perturbatively, uncertainty $O(g^6)$ [Laine, Meyer]
- On the other hand, $\langle \phi^\dagger \phi \rangle_{\rm 3D}$ can be perturbatively computed in the symmetric phase and in the broken phase
- Expansions fail near $m^2/g_3^4\equiv y\sim 0$ i.e. just at the cross-over
- $\Rightarrow\,$ Non-perturbative evaluation of $\langle \phi^{\dagger}\phi\rangle$ needed \Rightarrow Lattice simulations
 - Using thermodynamic identities, other quantities can be obtained: p, e, heat capacity C_V , speed of sound $c_s \ldots$
 - Laine and Meyer did the analysis, but using poor quality lattice data (provided by me et al.).
- \Rightarrow Revisit with new simulations

Higgs field expectation value

- Red dots: 3D lattice (continuum limit)
- Green bands:
 - Broken phase: 2-loop Coleman-Weinberg [Kajantie et al 95]
 - Symmetric phase: 3-loop [Laine and Meyer 2015]
- Agreement remarkably good away from the cross-over
- P.T. does not converge near the cross-over

Higgs susceptibility & pseudocritical temperature

• Define pseudocritical T: maximum location of the $\langle \phi^{\dagger} \phi \rangle$ susceptibility $\chi_{\phi^{\dagger} \phi}$:

 $T_c = 159.6 \pm 0.1 \pm 1.5 \,\, {
m GeV}$

- 1st error: lattice errors
- 2nd error: estimate of the systematic uncertainty in 3d action

Right: continuum extrapolation of χ

Interaction measure

- Convert $\langle \phi^{\dagger}\phi \rangle$ to interaction measure $\Delta = (\epsilon 3p)/T^4$
- Band: lattice errors + variation $\bar{\mu} = (0.5...2)\pi T$.
- Non-trivial feature between broken phase (low *T*) and symmetric phase (high *T*) behaviour
- Width of the cross-over region $\sim 2 \dots 3 \text{ GeV}$

Pressure and energy density

• Pressure:

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \int_{T_0}^T dT' \frac{\Delta(T')}{T'}$$

- Use reference temperature ${\cal T}_0 = 140 \mbox{ GeV}, \label{eq:tau}$
- pert. pressure $p(T_0)/T_0^4 = 11.173$ [Laine, Schröder 2006]
- Energy density $e = \Delta + 3p$
- $p(T_0)$ has $\sim 1\%$ uncertainty \rightarrow uncertainty for e and p

More thermodynamics

- Heat capacity $C_V = e'(T)$
- Speed of sound: $c_s^2 = p'/e'$
- EOS parameter w = p/e

Cross-over well defined, but very soft!

Masses

Sphaleron rate

Background

• Anomaly: baryon number B and gauge topology are connected:

$$\Delta B = \Delta L = 3\Delta N_{\rm CS} = \frac{3}{32\pi^2} \int_0^t dt \int dV F^{\mu\nu} \tilde{F}_{\mu\nu}$$

- Baryogenesis
- Rate in thermal equilibrium:

$$\Gamma = \lim_{V,t o \infty} rac{\langle (\Delta N_{
m CS}(t))^2
angle}{Vt}$$

- In the symmetric phase, $\Gamma \propto \alpha_W^5 T^4$ [Arnold, Son, Yaffe 97] or rather $\Gamma \propto \alpha_W^5 \log(1/\alpha_W) T^4$ [Bödeker 98]
- In the broken phase the rate is exponentially suppressed
- Turning off of the rate is important for some baryogenesis scenarios

Calculation of the sphaleron rate

Non-perturbative \Rightarrow real-time lattice simulations Several methods:

- Classical EOM [Ambjorn, Krasnitz 95; + many]
 - UV modes (HTL) make result lattice spacing depednent [Arnold 97]
- Classical + HTL effective theories [Moore, Hu, Muller 97; Bodeker, Moore, K.R 99]
 - More control over UV modes, no continuum limit
 - Used also in studies of plasma instabilities in HIC
- Bödeker method: [Bödeker 98], heat bath version [Moore 98]
 - Fully dissipative evolution of soft $(g^2 T)$ modes
 - \checkmark Exact to leading log order log(1/ g^2), \exists continuum limit, very simple to use
 - Same "action" and cont. limit as in 3D thermo simulation

 \exists lot of lattice results in pure gauge, few in broken EW phase. Here: physical Higgs mass

Evolution of $N_{\rm CS}$

22 / 25

Multicanonical evolution

- Deep in the broken phase the barrier between vacua is large:
- \Rightarrow Rate becomes very small
 - Too small to be measured with std. method
 - But still physically relevant!
 - Rate can me measured with **multicanonical** methods, which enables to overcome potential barriers in simulations
 - For broken phase sphaleron rate, methood developed by [Moore 99]

Result: sphaleron rate

Conclusions

- \bullet Standard Model equation of state solved to 1% level
- Pseudocritical temperature $T_c = 159.6 \pm 0.1 \pm 1.5$ GeV
- Cross-over weak but well defined
- Width of the cross-over region 2-3 GeV
- Baryon number freeze-out $T_* = 131.7 \pm 2.3$ GeV
- Symmetric phase sphaleron rate $\Gamma/T^4 = (18 \pm 3) \alpha_W^5$
- Broken phase rate can be parametrized as $\log \Gamma/T^4 = (0.83 \pm 0.01)T/\text{GeV} (147.7 \pm 1.9)$
- ... can be fed in to e.g. some leptogenesis scenarios