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Non-equilibrium QCD dynamics in Heavy Ion Collisions
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1. 𝛕 ~ 0  fm/c : strong gauge fields (Glasma) 

2. 𝛕 ~ 0.1-2  fm/c  (if weak coupling) quasi-particles  (gluons) 

Hydrodynamization, isotropization, thermalization. Instabilities, Chaoticity, 
turbulence, etc.

3.  𝛕 ~ 2-10  fm/c  hydrodynamic evolution then feezout 

A � 1/g

A � 1/g



• Immediately after the collision the system is far from 
equilibrium. Anisotropic particle distribution in 
momentum space. 

• Chromo-Weibel Instabilities : Momentum anisotropy  
induces exponential growth of soft magnetic modes  
(early stage: as in abelian plasmas) which turns into a 
linear growth due to nonlinear interactions inherent to 
non-abelian plasmas 
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Turbulence in early stages of Heavy Ion Collisions
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• Hard-loop simulations (large scale separation between hard modes and 
soft excitations) : Nonlinear interactions develop a turbulent cascade in 
the UV with exponent  -2 

Turbulence in early stages of Heavy Ion Collisions

4

P.Arnold, G. D. Moore (2005) A. Ipp, A. Rebhan, M. Strickland (2011)

k�2

Courtesy of Arnold and Moore



Wave Turbulence ( I )

• Similarity with fluid turbulence: 
inviscid transport of conserved 
quantities from large to small scales 
through the so-called transparency 
window (or inertial range)
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• Some examples: 

Atmospheric  Rossby waves 

Water surface gravity and capillary waves 

Waves in plasmas 

Nonlinear Schrödinger equation (NL Optics, BEC)

• Out-of-equilibrium statistics of random non-linear waves



Wave Turbulence ( II )

• Waves are excited by external processes. Driven turbulence: Open 
system with source and sink  →  away from thermodynamical equilibrium 

• Steady states characterized by constant fluxes P and Q rather than 
temperature and thermodynamical potentials  

• Kolmogorov-Obukhov (KO41) theory relies on Locality of interactions: 
Only eddies (waves) with comparable sizes (wavelengths) interact. 
Steady state power spectra in momentum space depend on fluxes and not 
on the pumping and dissipation scales 

• Weak (Wave) Turbulence Theory: Kinetic description in the limit of weak 
nonlinearity 
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Wave Turbulence:  Classical Yang-Mills

• Some caveats (in this work):  

 Homogeneous and isotropic system of gluons  

 Forcing: Energy injection with constant rate      at                    : 
Dispersion relation  

Weak nonlinearities in the classical limit (high occupancy):                                                            
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�(k) � |k|

P kf � m

1 � n(k) � 1

g2g2 � 1 and 

• Can one understand the power spectrum           from first principles?

• From Arnold and Moore (2005): parametric argument:                              
diffusion   +    energy conservation  yield the exponent - 2 

• From Mueller, Shoshi, Wong (2006): diffusion conserves particle number and not 
energy  

                   Turbulence in QCD is nonlocal   ⇒                                                      n(k) � k�1

k�2



Elastic 2 to 2  process (4-waves interaction)

• Elastic gluon-gluon scattering  
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• Two constant of motion: particle number and energy  ⇒  Two fluxes
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Elastic 2 to 2  process (4-waves interactions)

• Elastic gluon-gluon scattering  
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• H-theorem  ⇒ Thermal fixed-point (vanishing fluxes)
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Kolmogorov-Zakharov (KZ) Spectra 
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P � Q � ṅ � n3 � n � P1/3 � Q1/3

• From collision integral the flux scales as the cube of the the occupation 
number: nonlinear 4-wave interactions

Direct energy 
cascade

Inverse particle 
cascade

kfk� k+

n(k)

k�4/3

k�5/3

P � kfQ

If no damping:  
condensation

• Dim. analysis + scale invariance (locality of interactions) ⇒ KZ spectra



Are KZ spectra in QCD physically relevant in 
non-Abelian plasmas?



• Dominant interaction: small angle scattering 

• Fokker-Planck equation — Diffusion and drag
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Steady state solutions
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• Thermal fixed point:

• Non-thermal fixed point (inverse particle 
cascade): 
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Forcing Damping 

• Parametrically                            : depends on the forcing ⇒ nonlocality 

• No KZ spectra. Warm cascade behavior: 

2-D Optical turbulence: S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov (1992)

Boltzmann equation: D. Proment, S. Nazarenko, P. Asinari, and M. Onorato (2011)
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Numerical simulation of FK equation with forcing

14

Q(k)

P(k)

• The occupation number (left) and, the energy and particle number 
fluxes (right) at late times. Above the forcing scale the spectrum 
vanishes asymptotically 

• Constant particle flux at  ω=0   ⇒  Bose-Einstein condensation

• Particle and energy fluxes 

A

�

T�
�

increasing time
source



Contribution from inelastic processes?
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Naively one would expect inelastic processes to be suppressed 
by powers of the coupling constant g 

In non-Abelian plasmas inelastic processes are enhanced due 
to collinear divergences and hence cannot be neglected 
compared to elastic processes 

Small angle approximation: 2 → 3  process reduces to an 
effective 1 → 2
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R. Baier, Y. Dokshitzer, A. H. Mueller, D. Schiff, D. T. Son  (2000)  
P. Arnold, G. D. Moore, L. G. Yaffe (2002)
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• Landau-Pomeranchuk-Migdal (LPM) regime: many scatterings can cause 
a gluon to branch with the rate

• Bethe-Heitler  regime for 
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Effective 3 waves interaction (1 to 2 scattering)



Effective 3 waves interaction (1 to 2 scatterings)
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• General form of the kinetic equation
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• 4 contributions to the 
time evolution of the 
occupation number n(k) 

• At thermal equilibrium 
F[n]=0 (detailed balance)

F(k, q) � nk+qnk + (nk+q � nk)nq � n2



Effective 3 waves interaction (1 to 2 scatterings)
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• Direct energy cascade  (if interactions were local!)
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• Kernel in the LPM regime:
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Non-locality of interactions in momentum space
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• Assume a power spectrum                             and require the energy 
flux to be independent of 

n � k�x

• We obtain the KZ exponent                   (in the BH regime we find            ) 

• The above integral diverges on the KZ spectrum  when z ⟶ 0 or z ⟶ 1

x = 7/4
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⇒  Effective 3 waves interaction is nonlocal in momentum space 

and the KZ spectrum cannot be realized 

x = 2
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Locality: z ~ 1/2

• The corresponding energy flux reads
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What is the physical steady state spectrum?
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Numerical simulation with forcing (BH regime)
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kf
increasing time

• Wave front moving towards 
the UV leaving in its wake 
the steady power spectrum 
~ k-2

wave front evolution (diffusion-like):
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Numerical simulation with forcing (LPM regime)
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wave front evolution (diffusion-like): ��(t) � t1/2
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Nonlocal energy cascade in the UV ( k ≫ kf   )

• In hard sector:                     we perform a gradient 
expansion around  

• We obtain a diffusion equation in “4-D”
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• with the inelastic diffusion coefficient (in the LPM regime) 
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• Same equation in the BH regime! 

 To the right of the source 

Approximation: strongly asymmetric splitting/merging
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• Recall that 3-D diffusion conserves number of particles: 

Its  fixed point (inverse particle cascade):                                  
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• 4-D diffusion conserves energy: 

Its  fixed point (direct energy cascade):                                  

Nonlocal energy cascade in the UV ( k ≫ kf   )
Approximation: strongly asymmetric splitting/merging
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Nonlocal energy cascade in the UV ( k ≫ kf   )
Approximation: strongly asymmetric splitting/merging

Parametric estimate: q̂ � k3
fn2

• wave front moves towards the UV leaving in its wake the nonlocal 
steady state spectrum: hard gluons in the inertial range interact  
dominantly with  gluons at the forcing scale (energy gain)

• The steady state spectrum 
depends on the forcing scale
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Nonlocal interactions of hard modes with the source



Thermalization of the soft sector ( k ≪ kf   )

• In soft sector:                    

• Nonlocality ⇒  The collision integral is 

dominated by strongly asymmetric branchings 
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Thermalization of the soft sector ( k ≪ kf   )
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• Relaxation to equilibrium:

• Relaxation time decreases with k (in the BH regime)

• The solution exhibits an essential singularity (instantaneous thermalization 
of the zero mode)
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• Below the forcing the system thermalizes rapidly   (no fluxes)
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Thermalization of the soft sector ( k ≪ kf   )
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The early times dynamics (Numerical simulation of the kinetic equation in the 
BH regime)

The thermal bath interacts mainly with the source:  
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Below                                
the system is in thermal 
equilibrium although it is 
constantly driven out of 
equilibrium   
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Interplay between elastic and inelastic processes ( I )
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• In the presence of elastic processes                  spectrum persists. 

P.Arnold, G. D. Moore (2005)
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Interplay between elastic and inelastic processes ( II )
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• Heuristic analysis: for a spectrum falling faster than 1/k  one can neglect 
the drag term in the elastic part. Then, the collision integral in the UV reads
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and

•  k -2  no longer a fixed point. One could expect that at late times the 
spectrums flattens toward  k -1 



Summary and outlook

 Wave turbulence in QCD is different from scalar theories. It is 
dominated by nonlocal interactions in momentum space: 
Kolmogorov-Zakharov spectra are not physically relevant  

 Inelastic processes dominates the dynamics with a direct energy 
cascade  

To the right of the forcing scale: we find a quasi steady state spectrum                 
(in the LPM and BH regimes) in agreement with Classical Yang-Mills 
simulations    

Outlook: mass corrections, anisotropic fluxes, strong turbulence in the 
presence of strong fields (on the lattice): different exponents?
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Backup



• Randomness in initial condition 
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V. E. Zakharov, V. S. L’vov, G. Falkovich (Springer- Verlag, 1992) 
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• Classical: non-linear wave equation (e.g. Nonlinear Schrödinger eq)

• Observable:  occupation number

• Weak turbulence:     (1) NonLinear/Linear << 1   (2) Random-Phase-
Approximation ⇒  Kinetic description    
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• Dispersion relation
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Wave Turbulence ( III ): example, NLS equation

�(k) = k2/2m



Dual cascade: Fjørthoft argument (1953)

• Q: Direction of fluxes? Injection of energy at       and dissipating at 
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k� � kf � k+

• Reductio ad absurdum: If energy was dissipating at 
low momenta then particles would dissipate faster   
than the pumping rate! ⟹ Direct energy cascade 
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If no damping:  
condensation
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Thermalization of the soft sector
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