Forced turbulence in non-Abelian plasmas

(In preparation)

Yacine Mehtar-Tani INT, University of Washington

The Big Bang and the little bangs August 26, 2016, CERN

Non-equilibrium QCD dynamics in Heavy Ion Collisions

- 1. $\tau \sim 0$ fm/c : strong gauge fields (Glasma) $A \sim 1/g$
- 2. $\tau \sim 0.1-2$ fm/c (if weak coupling) quasi-particles (gluons) $A \ll 1/g$

Hydrodynamization, isotropization, thermalization. Instabilities, Chaoticity, turbulence, etc.

3. $\tau \sim 2-10$ fm/c hydrodynamic evolution then feezout

Turbulence in early stages of Heavy Ion Collisions

- Immediately after the collision the system is far from equilibrium. Anisotropic particle distribution in momentum space.
- Chromo-Weibel Instabilities : Momentum anisotropy induces exponential growth of soft magnetic modes (early stage: as in abelian plasmas) which turns into a linear growth due to nonlinear interactions inherent to non-abelian plasmas

Turbulence in early stages of Heavy Ion Collisions

 Hard-loop simulations (large scale separation between hard modes and soft excitations) : Nonlinear interactions develop a turbulent cascade in the UV with exponent -2

Wave Turbulence (1)

- Out-of-equilibrium statistics of random non-linear waves
- Similarity with fluid turbulence:
 inviscid transport of conserved
 quantities from large to small scales
 through the so-called transparency
 window (or inertial range)
- Some examples:
 - Atmospheric Rossby waves
 - Water surface gravity and capillary waves
 - Waves in plasmas
 - Nonlinear Schrödinger equation (NL Optics, BEC)

Wave Turbulence (II)

- Waves are excited by external processes. Driven turbulence: Open system with source and sink → away from thermodynamical equilibrium
- Steady states characterized by constant fluxes P and Q rather than temperature and thermodynamical potentials
- Kolmogorov-Obukhov (KO41) theory relies on Locality of interactions: Only eddies (waves) with comparable sizes (wavelengths) interact.
 Steady state power spectra in momentum space depend on fluxes and not on the pumping and dissipation scales
- Weak (Wave) Turbulence Theory: Kinetic description in the limit of weak nonlinearity

V. E. Zakharov, V. S. L'vov, G. Falkovich (Springer- Verlag, 1992)

Wave Turbulence: Classical Yang-Mills

- Can one understand the power spectrum k^{-2} from first principles?
- From Arnold and Moore (2005): parametric argument:
 diffusion + energy conservation yield the exponent 2
- From Mueller, Shoshi, Wong (2006): diffusion conserves particle number and not energy

Turbulence in QCD is nonlocal \Rightarrow $n(k) \sim k^{-1}$

- Some caveats (in this work):
 - Homogeneous and isotropic system of gluons
 - Forcing: Energy injection with constant rate P at $k_f \gg m$:
 Dispersion relation $\omega(k) \equiv |k|$
 - □ Weak nonlinearities in the **classical limit** (high occupancy):

$$g^2 \ll 1$$
 and $1 \ll n(k) \ll rac{1}{g^2}$

Elastic 2 to 2 process (4-waves interaction)

• Elastic gluon-gluon scattering

$$\frac{\partial}{\partial t}\mathbf{n_k} = \frac{1}{2} \int_{k_1, k_2, k_3} \frac{1}{2\omega(k)} |\mathcal{M}_{12 \to 3k}|^2 \,\delta(\sum_i k_i) \delta(\sum_i \omega_i) \, F[\mathbf{n}]$$

 $\mathbf{F}[\mathbf{n}] \equiv [\mathbf{n}_{k_1}\mathbf{n}_{k_2}\mathbf{n}_k + \mathbf{n}_{k_1}\mathbf{n}_{k_2}\mathbf{n}_{k_3} - \mathbf{n}_{k_1}\mathbf{n}_{k_3}\mathbf{n}_k - \mathbf{n}_{k_2}\mathbf{n}_{k_3}\mathbf{n}_k] \sim \mathbf{n}^3$

■ Two constant of motion: particle number and energy ⇒ Two fluxes

$$\mathbf{Q}(\mathbf{k}) \equiv \dot{\mathbf{N}} = \int^{\mathbf{k}} d^{3}\mathbf{k}' \, \dot{\mathbf{n}}(\mathbf{k}') \qquad \mathbf{P}(\mathbf{k}) \equiv \dot{\mathbf{E}} = \int^{\mathbf{k}} d^{3}\mathbf{k}' \, |\mathbf{k}'| \, \dot{\mathbf{n}}(\mathbf{k}')$$

Elastic 2 to 2 process (4-waves interactions)

• Elastic gluon-gluon scattering

$$\frac{\partial}{\partial t}\mathbf{n_k} = \frac{1}{2} \int_{k_1, k_2, k_3} \frac{1}{2\omega(k)} |\mathcal{M}_{12 \to 3k}|^2 \,\delta(\sum_i k_i) \delta(\sum_i \omega_i) \, F[\mathbf{n}]$$

 $\mathbf{F}[\mathbf{n}] \equiv [\mathbf{n}_{k_1}\mathbf{n}_{k_2}\mathbf{n}_k + \mathbf{n}_{k_1}\mathbf{n}_{k_2}\mathbf{n}_{k_3} - \mathbf{n}_{k_1}\mathbf{n}_{k_3}\mathbf{n}_k - \mathbf{n}_{k_2}\mathbf{n}_{k_3}\mathbf{n}_k] \sim \mathbf{n}^3$

• H-theorem \Rightarrow Thermal fixed-point (vanishing fluxes) P = Q = 0

$$n_k = \frac{T}{\omega(k) - \mu}$$

(Rayleigh-Jeans distribution)

Kolmogorov-Zakharov (KZ) Spectra

• From collision integral the flux scales as the cube of the the occupation number: nonlinear 4-wave interactions

$$P \sim Q \sim \dot{n} \sim n^3 \quad \Rightarrow n \sim P^{1/3} \sim Q^{1/3}$$

• Dim. analysis + scale invariance (locality of interactions) \Rightarrow KZ spectra

Are KZ spectra in QCD physically relevant in non-Abelian plasmas?

Elastic scattering in the small angle approximation

• Coulomb interaction is singular at small momentum transfer $k \gg q \ge m$

- Dominant interaction: small angle scattering
- Fokker-Planck equation Diffusion and drag

$$\frac{\partial}{\partial t}n_{k} \equiv \frac{\hat{q}}{4k^{2}}\frac{\partial}{\partial k}k^{2}\left[\frac{\partial}{\partial k}n_{k} + \frac{n_{k}^{2}}{T_{*}}\right]$$

L. D. Landau (1937) B. Svetitski (1988) Blaizot, Liao, McLerran (2012)

Diffusion coefficient

Screening mass

Effective temperature

$$\hat{\mathbf{q}} \equiv \sim \alpha^2 \int d^3 k \, n_k^2$$

$$\mathbf{m}^2 \sim \alpha \int \frac{\mathrm{d}^3 \mathbf{k}}{|\mathbf{k}|} \, \mathbf{n}_{\mathbf{k}}$$

$$T_* \sim \frac{\widehat{q}}{\alpha m^2}$$

Steady state solutions

$$\begin{split} \frac{\partial}{\partial t}n_{k} &\equiv \frac{\hat{q}}{4k^{2}}\frac{\partial}{\partial k}k^{2} \left[\frac{\partial}{\partial k}n_{k} + \frac{n_{k}^{2}}{T_{*}}\right] + F - D \\ \int & & & \\ \text{Forcing} & & & \\ \text{Damping} \end{split}$$
Thermal fixed point: $\frac{T_{*}}{\omega - \mu}$ $& & \text{Forcing} & & \\ \text{Non-thermal fixed point (inverse particle} & & n(\omega) \sim \frac{A}{\omega} > \frac{T_{*}}{\omega} \quad (\omega = k) \\ \text{cascade}): \\ A &\equiv \frac{1}{2}T_{*} \left(1 + \sqrt{1 + \frac{16Q}{\hat{q}T_{*}}}\right) \end{split}$

• No KZ spectra. Warm cascade behavior:

2-D Optical turbulence: S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov (1992)

Boltzmann equation: D. Proment, S. Nazarenko, P. Asinari, and M. Onorato (2011)

• Parametrically $A \sim Q^{1/3} \omega_f^{-1/3}$: depends on the forcing \Rightarrow nonlocality

Numerical simulation of FK equation with forcing

- The occupation number (left) and, the energy and particle number fluxes (right) at late times. Above the forcing scale the spectrum vanishes asymptotically
- Constant particle flux at $\omega=0 \Rightarrow$ Bose-Einstein condensation

Contribution from inelastic processes?

- Naively one would expect inelastic processes to be suppressed by powers of the coupling constant g
- In non-Abelian plasmas inelastic processes are enhanced due to collinear divergences and hence cannot be neglected compared to elastic processes
- □ Small angle approximation: 2 → 3 process reduces to an effective 1 → 2

R. Baier, Y. Dokshitzer, A. H. Mueller, D. Schiff, D. T. Son (2000) P. Arnold, G. D. Moore, L. G. Yaffe (2002)

Effective 3 waves interaction (1 to 2 scattering)

 Landau-Pomeranchuk-Migdal (LPM) regime: many scatterings can cause a gluon to branch with the rate
 formation time:

$$k\frac{d\Gamma}{dk}\sim \frac{\alpha}{t_f(k)}\sim \alpha \sqrt{\frac{\hat{\textbf{q}}}{k}}$$

R. Baier, Y. Dokshitzer, A. H. Mueller, S. Peigné, D. Schiff (1995) V. Zakharov (1996)

• Bethe-Heitler regime for $t_f(k) < \ell_{mfp} \sim m^2/\hat{q}$

$$k \frac{d\Gamma}{dk} \sim \frac{\alpha}{\ell_{mfp}}$$

J. F. Gunion and G. Bertsch (1982)

Effective 3 waves interaction (1 to 2 scatterings)

• General form of the kinetic equation

F(k,q)

Effective 3 waves interaction (1 to 2 scatterings)

• General form of the kinetic equation

$$\frac{\partial}{\partial t}n_k \equiv \frac{1}{k^3} \left[\int_0^\infty dq K(k+q,q) F(k+q,q) - \int_0^k dq K(k,q) F(k,q) \right]$$

$$F(k,q) \equiv n_{k+q}n_k + (n_{k+q} - n_k)n_q \sim n^2$$

• Kernel in the LPM regime: $K(k,q) \equiv \alpha \sqrt{\hat{q}} \frac{(k+q)^{7/2}}{k^{1/2}q^{3/2}}$

R. Baier, Y. Dokshitzer, A. H. Mueller, D. Schiff, D. T. Son (2000) P. Arnold, G. D. Moore, L. G. Yaffe (2002)

• Direct energy cascade (if interactions were local!)

$$n_k \sim \frac{P^{1/2}}{\hat{q}^{1/4} \, k^{7/4}}$$

P. Arnold, G. D. Moore (2005)

Non-locality of interactions in momentum space

- Assume a power spectrum $n \sim k^{-x}$ and require the energy flux to be independent of k
- We obtain the KZ exponent x = 7/4 (in the BH regime we find x = 2)

- The above integral diverges on the KZ spectrum when $z \rightarrow 0$ or $z \rightarrow 1$
- ⇒ Effective 3 waves interaction is nonlocal in momentum space and the KZ spectrum cannot be realized

What is the physical steady state spectrum?

Numerical simulation with forcing (BH regime)

Numerical simulation with forcing (LPM regime)

Nonlocal energy cascade in the UV ($k \gg k_{\rm f}$)

Approximation: strongly asymmetric splitting/merging

- In hard sector: $k \gg k_f$ we perform a gradient expansion around $k \gg q$
- We obtain a diffusion equation in "4-D"

$$\frac{\partial}{\partial t}n(k) \simeq \frac{\hat{q}_{inel}}{4k^3} \frac{\partial}{\partial k} k^3 \frac{\partial}{\partial k} n(k)$$

To the right of the source

• with the inelastic diffusion coefficient (in the LPM regime)

$$\hat{\mathbf{q}}_{\text{inel}} = \alpha \sqrt{\hat{\mathbf{q}}} \int_0^\infty d\mathbf{q} \sqrt{\mathbf{q}} \, \mathbf{n}(\mathbf{q})$$

• Same equation in the BH regime!

Nonlocal energy cascade in the UV ($k\gg k_{f}$)

Approximation: strongly asymmetric splitting/merging

$$\frac{\partial}{\partial t}n(k) \simeq \frac{\hat{q}_{\text{inel}}}{4k^3} \frac{\partial}{\partial k} k^3 \frac{\partial}{\partial k} n(k)$$

- Recall that 3-D diffusion conserves number of particles: $N \sim \int dk k^2 n(k)$ Its fixed point (inverse particle cascade): $n(k) \sim \frac{1}{k}$
- 4-D diffusion conserves energy: $E \sim \left[\frac{dk k^3 n(k)}{dk k^3 n(k)} \right]$

Its fixed point (direct energy cascade):

$$n(k) \sim \frac{1}{k^2}$$

Nonlocal energy cascade in the UV ($k \gg k_{\rm f}$)

Approximation: strongly asymmetric splitting/merging

 wave front moves towards the UV leaving in its wake the nonlocal steady state spectrum: hard gluons in the inertial range interact dominantly with gluons at the forcing scale (energy gain)

Thermalization of the soft sector ($k \ll k_f$)

Thermalization of the soft sector ($k \ll k_f$)

- Relaxation to equilibrium: $n_{eq}(k) \equiv \frac{l_*}{k}$ $\frac{\partial}{\partial t}n(k) \simeq \frac{1}{\tau_{rel}(k)} [n_{eq}(k) - n(k)]$
- Relaxation time decreases with k (in the BH regime)

$$\tau_{\text{rel}}(k) \equiv \frac{k^2}{\hat{q}} \sim \frac{1}{\alpha^2 n_f^2 k_f} \left(\frac{k}{k_f}\right)^2$$

 The solution exhibits an essential singularity (instantaneous thermalization of the zero mode)

$$n(k) = n_{eq}(k) \left[1 - exp\left(-\frac{t}{\tau_{rel}} \right) \right] \quad \rightarrow \; \frac{T_*}{k} \; \text{ at late times}$$

n(k)

k_f

• Below the forcing the system thermalizes rapidly (no fluxes)

Thermalization of the soft sector ($k \ll k_f$)

The early times dynamics (Numerical simulation of the kinetic equation in the BH regime)

The thermal bath interacts mainly with the source:

$$\hat{\mathbf{q}} \sim \alpha^2 \, \omega_f^3 \, n^2(\omega_f)$$

Interplay between elastic and inelastic processes (1)

• In the presence of elastic processes ω^{-2} spectrum persists.

Interplay between elastic and inelastic processes (II)

• Heuristic analysis: for a spectrum falling faster than 1/k one can neglect the drag term in the elastic part. Then, the collision integral in the UV reads

$$\frac{\partial}{\partial t}n(k) \simeq \frac{\hat{q}_{inel}}{4k^3} \frac{\partial}{\partial k} k^3 \frac{\partial}{\partial k} n(k) + \frac{\hat{q}_{el}}{4k^2} \frac{\partial}{\partial k} k^2 \frac{\partial}{\partial k} n(k)$$
$$\equiv \frac{B}{4k^{3-\beta}} \frac{\partial}{\partial k} k^{3-\beta} \frac{\partial}{\partial k} n(k)$$

where $B = \hat{q}_{inel} + \hat{q}_{el}$ and $\beta = \frac{2}{1 + \hat{q}_{inel}/\hat{q}_{el}}$

- Steady state solution: $n(k) \sim \frac{1}{k^{2-\beta}}$ $0 < \beta < 1$
- k^{-2} no longer a fixed point. One could expect that at late times the spectrums flattens toward k^{-1}

- Wave turbulence in QCD is different from scalar theories. It is dominated by nonlocal interactions in momentum space: Kolmogorov-Zakharov spectra are not physically relevant
- Inelastic processes dominates the dynamics with a direct energy cascade
- To the right of the forcing scale: we find a quasi steady state spectrum ~ k⁻² (in the LPM and BH regimes) in agreement with Classical Yang-Mills simulations
- Outlook: mass corrections, anisotropic fluxes, strong turbulence in the presence of strong fields (on the lattice): different exponents?

Wave Turbulence (III): example, NLS equation

• **Classical:** non-linear wave equation (e.g. Nonlinear Schrödinger eq)

$$i\frac{\partial}{\partial t}\Psi = -\frac{\nabla_x^2}{2m}\Psi + \lambda|\Psi|^2\Psi$$

- Randomness in initial condition $\Psi(x, t = 0)$
- Observable: occupation number

 $\langle a^*(k)a(k')\rangle \equiv n(k)\,\delta(k-k')$

$$\omega(k) = k^2/2m$$

$$\frac{\partial}{\partial t} \mathbf{n}(\mathbf{k}) \equiv \mathbf{I}_{\text{coll}}[\mathbf{n}] \sim \mathbf{n}^{N-1}$$

V. E. Zakharov, V. S. L'vov, G. Falkovich (Springer- Verlag, 1992)

Dual cascade: Fjørthoft argument (1953)

• Q: Direction of fluxes? Injection of energy at k_f and dissipating at

 $k_- \ll k_f \ll k_+$

 Reductio ad absurdum: If energy was dissipating at low momenta then particles would dissipate faster than the pumping rate! ⇒ Direct energy cascade

 $Q_{-} \sim \frac{P}{k} \gg \frac{P}{k_{f}} \sim Q$

absurd

Thermalization of the soft sector

