Neutrino interactions moortance to nuclear physics

José Enrique Amaro

Universidad de <mark>Granada</mark>

UUIND

Neutrino scattering formalism

- Response functions
- Polarization observables
- Connection to electron scattering
- Scaling

Neutrino scattering formalism

- Nuclear and reaction mechanisms ingredients
 - Electro-weak current matrix elements
 - Long-range nuclear correlations (RPA)
 - Final-state interactions
 - Finite-size effects
 - Coulomb corrections
 - Relativistic effects

Neutrino scattering formalism

Nuclear and reaction mechanisms ingredi-

Resuls for different reaction channels

- Charge-changing quasi-elastic scattering
- Neutral-current quasielastic scattering
- Delta excitation
- Coherent pion production
- Relativistic effects

Neutrino scattering formalism

Nuclear and reaction mechanisms ingredi-

Resuls for different reaction channels

Kinematics

- Low energy
- Intermediate to high energy
- Conerent pion production

• Relativistic effects

Neutrino scattering formalism

Nuclear and reaction mechanisms ingredi-

Resuls for different reaction channels

Kinematics

Observables

- Inclusive cross sections
- Integrated cross sections
- Angular distributions
- Polarization observables

Neutrino scattering formalism

Nuclear and reaction mechanisms ingredi-

Resuls for different reaction channels

Kinematics

Observables

Nuclear models

- Local fermi gas
- Relativistic Fermi Gas
- Shell Model (SM)
- Relativistic Mean Field (RMF)
- Super-Scaling Analysis (SuSA)

Neutrino scattering formalism

Nuclear and reaction mechanisms ingredi-

Resuls for different reaction channels

Kinematics

Observables

Nuclear models

Special Topics

- Theoretical uncertainties
- Strangeness content of the nucleon
- Flux-averaged coherent pion production

Super-Scaling Analysis (SuSA)

Example: CC neutrino reaction

$$\nu + A \rightarrow l^- + B$$

Effective Hamiltonian

$$\mathcal{H}_{eff} = \frac{G\cos\theta_c}{\sqrt{2}} j^{\mu}(x) \hat{J}_{\mu}(x)$$

Couplig constant: $G = 1.1664 \times 10^{-5} \text{GeV}^{-2}$ Cabibbo angle: $\theta_c = 0.974$ Leptonic current ($\nu \rightarrow l$):

 $j^{\mu} = \overline{u}_l(\mathbf{k}')\gamma^{\mu}(1-\gamma_5)u_{\nu}(\mathbf{k})$

Hadronic current (single nucleon $n \rightarrow p$) is of the form V - A

$$\hat{J}_{\mu} = \overline{u}_{p}(\mathbf{p}') \left[F_{1}(Q^{2})\gamma_{\mu} + F_{2}(Q^{2})i\sigma_{\mu\nu}\frac{Q^{\nu}}{2m_{N}} - G_{A}(Q^{2})\gamma_{\mu}\gamma_{5} - G_{P}(Q^{2})\frac{Q_{\mu}}{2m_{N}}\gamma_{5} \right] u_{n}(\mathbf{p})$$

Momentum transfer

$$Q^{\mu} = K^{\mu} - K'^{\mu} = P'^{\mu} - P^{\mu}$$

Example: S-matrix element

Neutrino scattering with initial and final hadronic states $|i\rangle \rightarrow |f\rangle$ Transition matrix element to first order in the interaction

$$S_{fi} = -i \int d^4 \langle l, f | \mathcal{H}_{eff}(x) | \nu_l, i \rangle = \left[-2\pi i \delta (E_f - E_i - \omega) \frac{G \cos \theta_c}{\sqrt{2}} l^\mu J_\mu \right]$$

Lepton current matrix element

$$l^{\mu} = \left[\frac{m'}{V\epsilon'}\frac{m}{V\epsilon}\right]^{1/2} \overline{u}_l(\mathbf{k}')\gamma^{\mu}(1-\gamma_5)u_{\nu}(\mathbf{k})$$

Hadronic current matrix element

$$J_{\mu} = \langle f | \hat{J}_{\mu}(\mathbf{q}) | i \rangle$$

Example: cross Section

Inclusive: only the final lepton is detected

$$d\sigma = \frac{\overline{\sum}|S_{fi}|^2}{T} \frac{V}{v_{rel}} \frac{V d^3 k'}{(2\pi)^3}$$

Performing the lepton traces

 $s^{\mu\nu}$

$$\frac{d\sigma}{d\Omega' d\epsilon'} = \frac{G^2 \cos^2 \theta_c}{4\pi^2} \frac{k'}{\epsilon} \left(s_{\mu\nu} + ia_{\mu\nu}\right) W^{\mu\nu}$$

Hadronic tensor

$$W^{\mu\nu} = \overline{\sum_{fi}} \delta(E_f - E_i - \omega) \langle f | J^{\mu}(\mathbf{q}) | i \rangle^* \langle f | J^{\nu}(\mathbf{q}) | i \rangle$$

Leptonic tensors

$$s^{\mu\nu} = 2P^{\mu}P^{\nu} - \frac{1}{2}Q^{\mu}Q^{\nu} + \frac{Q^2 - m'^2}{2}g^{\mu\nu} \qquad P^{\mu} = \frac{K^{\mu} + K'^{\mu}}{2}$$
$$a^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta}Q_{\alpha}P_{\beta} \qquad Q^{\mu} = K^{\mu} - K'^{\mu}$$

JE Amaro - May 2009 – p. 7

(ν_l, l^-) formalism (II)

Nuclear structure information:

 $\mathcal{F}_{+}^{2} = \widehat{V}_{CC}R_{CC} + 2\widehat{V}_{CL}R_{CL} + \widehat{V}_{LL}R_{LL} + \widehat{V}_{T}R_{T} + 2\widehat{V}_{T'}R_{T'}$

NUINT

(ν_l, l^-) formalism (II)

Nuclear structure information:

$$\mathcal{F}_{+}^{2} = \widehat{V}_{CC}R_{CC} + 2\widehat{V}_{CL}R_{CL} + \widehat{V}_{LL}R_{LL} + \widehat{V}_{T}R_{T} + 2\widehat{V}_{T'}R_{T'}$$

kinematical factors \widehat{V}_K from the leptonic tensor

$$\widehat{V}_{CC} = 1 - \delta^2 \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{CL} = \frac{\omega}{q} + \frac{\delta^2}{\rho'} \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{LL} = \frac{\omega^2}{q^2} + \left(1 + \frac{2\omega}{q\rho'} + \rho\delta^2\right) \delta^2 \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_T = \tan^2 \frac{\widetilde{\theta}}{2} + \frac{\rho}{2} - \frac{\delta^2}{\rho'} \left(\frac{\omega}{q} + \frac{1}{2}\rho\rho'\delta^2\right) \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{T'} = \frac{1}{\rho'} \left(1 - \frac{\omega\rho'}{q}\delta^2\right) \tan^2 \frac{\widetilde{\theta}}{2}$$

(ν_l, l^-) formalism (II)

Nuclear structure information:

$$\mathcal{F}_{+}^{2} = \widehat{V}_{CC}R_{CC} + 2\widehat{V}_{CL}R_{CL} + \widehat{V}_{LL}R_{LL} + \widehat{V}_{T}R_{T} + 2\widehat{V}_{T'}R_{T'}$$
Adimensional variables:

kinematical factors \hat{V}_K from the leptonic tensor

$$\widehat{V}_{CC} = 1 - \delta^2 \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{CL} = \frac{\omega}{q} + \frac{\delta^2}{\rho'} \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{LL} = \frac{\omega^2}{q^2} + \left(1 + \frac{2\omega}{q\rho'} + \rho\delta^2\right) \delta^2 \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{T} = \tan^2 \frac{\widetilde{\theta}}{2} + \frac{\rho}{2} - \frac{\delta^2}{\rho'} \left(\frac{\omega}{q} + \frac{1}{2}\rho\rho'\delta^2\right) \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{T} = \tan^2 \frac{\widetilde{\theta}}{2} + \frac{\rho}{2} - \frac{\delta^2}{\rho'} \left(\frac{\omega}{q} + \frac{1}{2}\rho\rho'\delta^2\right) \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{T'} = \frac{1}{\rho'} \left(1 - \frac{\omega \rho'}{q} \delta^2 \right) \tan^2 \frac{\theta}{2}$$

m′

 $\frac{|Q^2|}{q^2}$

 $\overline{\epsilon + \epsilon'}$

is in δ

 $\sqrt{|Q^2|}$

 $\delta =$

(ν_l, l^-) formalism (III)

Weak response functions

 $R_{CC} = W^{00}$ $R_{CL} = -\frac{1}{2} \left(W^{03} + W^{30} \right)$ $R_{LL} = W^{33}$ $R_T = W^{11} + W^{22}$ $R_{T'} = -\frac{i}{2} \left(W^{12} - W^{21} \right)$

(ν_l, l^-) formalism (III)

$$R_{CC} = W^{00}$$

$$R_{CL} = -\frac{1}{2} (W^{03} + W^{30})$$

$$R_{LL} = W^{33}$$

$$R_{T} = W^{11} + W^{22}$$

$$R_{T'} = -\frac{i}{2} (W^{12} - W^{21})$$

Weak CC hadronic tensor:

response

Weak

functions

$$W^{\mu\nu}(q,\omega) = \sum_{fi} \delta(E_f - E_i - \omega) \langle f | J^{\mu}(Q) | i \rangle^* \langle f | J^{\nu}(Q) | i \rangle .$$

JE Amaro - May 2009 - p. 10

(ν_l, l^-) formalism (III)

$$R_{CC} = W^{00}$$

$$R_{CL} = -\frac{1}{2} (W^{03} + W^{30})$$

$$R_{LL} = W^{33}$$

$$R_{T} = W^{11} + W^{22}$$

$$R_{T'} = -\frac{i}{2} (W^{12} - W^{21})$$

Weak CC hadronic tensor:

response

Weak

functions

$$W^{\mu\nu}(q,\omega) = \overline{\sum_{fi}} \delta(E_f - E_i - \omega) \langle f | J^{\mu}(Q) | i \rangle^* \langle f | J^{\nu}(Q) | i \rangle .$$

 $J^{\mu}(\overline{Q})$: the hadronic CC current operator

Nuclear Weak responses

Expand into vector and axial-vector contributions

$$R_{CC} = R_{CC}^{VV} + R_{CC}^{AA} \qquad R_{CL} = R_{CL}^{VV} + R_{CL}^{AA}$$
$$R_{LL} = R_{LL}^{VV} + R_{LL}^{AA}$$
$$R_{T} = R_{T}^{VV} + R_{T}^{AA} \qquad R_{T'} = R_{T'}^{VA}$$

$$\begin{split} R_{CL}^{VV} &= -\frac{\omega}{q} R_{CC}^{VV} \qquad R_{LL}^{VV} = \frac{\omega^2}{q^2} R_{CC}^{VV} \stackrel{\text{Conserved vector current}}{\text{tor current}} \\ \widehat{V}_{CC} R_{CC}^{VV} + 2 \widehat{V}_{CL} R_{CL}^{VV} + \widehat{V}_{LL} R_{LL}^{VV} = \widehat{V}_L R_L^{VV} \equiv X_L^{VV} \stackrel{\text{traditional longitudinal contribution}}{\text{tor conserved vector current}} \\ \widehat{V}_{CC} R_{CC}^{AA} + 2 \widehat{V}_{CL} R_{CL}^{AA} + \widehat{V}_{LL} R_{LL}^{AA} \equiv X_{C/L}^{AA} \stackrel{\text{Collapse does}}{\text{collapse does}} \\ \widehat{V}_T \left[R_T^{VV} + R_T^{AA} \right] \equiv X_T \stackrel{\text{Transverse}}{\text{components}} \\ 2 \widehat{V}_{T'} R_{T'}^{VA} \equiv X_T \stackrel{\text{VA interference}}{\text{term}} \end{split}$$

Full response: $\mathcal{F}_{\chi}^2 = X_L^{VV} + X_{C/L}^{AA} + X_T + \chi X_{T'}$

Nuclear response functions for (ν_{μ}, μ^{-}) reactions

 $R_K = N\Lambda_0 U_K f_{RFG}(\psi), \quad K = CC, CL, LL, T, T',$

• N is the neutron number,

•
$$\Lambda_0 = \frac{\xi_F}{m_N \eta_F^3 \kappa}, \quad \eta_F = k_F/m_N, \quad \xi_F = \sqrt{1 + \eta_F^2} - 1.$$

- Scaling function $f_{RFG}(\psi) = \frac{3}{4}(1-\psi^2)\theta(1-\psi^2)$
- Scaling variable

$$\psi = \frac{1}{\sqrt{\xi_F}} \frac{\lambda - \tau}{\sqrt{(1 + \lambda)\tau + \kappa\sqrt{\tau(1 + \tau)}}}$$

• single-nucleon responses U_K

Single-nucleon responses, K = CC

$$U_{CC} = U_{CC}^{V} + (U_{CC}^{A})_{c.} + (U_{CC}^{A})_{n.c.}$$
$$U_{CC}^{V} = \frac{\kappa^{2}}{\tau} \left[(2G_{E}^{V})^{2} + \frac{(2G_{E}^{V})^{2} + \tau (2G_{M}^{V})^{2}}{1 + \tau} \Delta \right]$$

$$\Delta = \frac{\tau}{\kappa^2} \xi_F (1 - \psi^2) \left[\kappa \sqrt{1 + \frac{1}{\tau}} + \frac{\xi_F}{3} (1 - \psi^2) \right]$$

The axial-vector response is the sum of conserved (c.) plus non conserved (n.c.) parts,

$$\left(U_{CC}^{A}\right)_{\mathrm{c.}} = \frac{\kappa^{2}}{\tau}G_{A}^{2}\Delta$$
, $\left(U_{CC}^{A}\right)_{\mathrm{n.c.}} = \frac{\lambda^{2}}{\tau}G_{A}^{\prime}^{2}$

Single-nucleon responses, K = CL, LL

$$U_{CL} = U_{CL}^{V} + (U_{CL}^{A})_{c.} + (U_{CL}^{A})_{n.c.}$$
$$U_{LL} = U_{LL}^{V} + (U_{LL}^{A})_{c.} + (U_{LL}^{A})_{n.c.},$$

The vector and conserved axial-vector parts are determined by current conservation

Non-conserved n.c. parts:

$$\left(U_{CL}^{A}\right)_{\text{n.c.}} = -\frac{\lambda\kappa}{\tau}G_{A}^{\prime 2} \quad , \quad \left(U_{LL}^{A}\right)_{\text{n.c.}} = \frac{\kappa^{2}}{\tau}G_{A}^{\prime 2}$$

Single-nucleon responses, K = T, T'

$$U_{T} = U_{T}^{V} + U_{T}^{A}$$

$$U_{T}^{V} = 2\tau (2G_{M}^{V})^{2} + \frac{(2G_{E}^{V})^{2} + \tau (2G_{M}^{V})^{2}}{1 + \tau} \Delta$$

$$U_{T}^{A} = 2(1 + \tau)G_{A}^{2} + G_{A}^{2} \Delta$$

$$U_{T'} = 2G_{A}(2G_{M}^{V})\sqrt{\tau(1 + \tau)}[1 + \tilde{\Delta}]$$

with

$$\tilde{\Delta} = \sqrt{\frac{\tau}{1+\tau}} \frac{\xi_F (1-\psi^2)}{2\kappa}$$

5

Easy model to include many nuclear effects

- Local Density Approximation (LDA): use a local Fermi momentum $k_F(r) = (3\pi^2\rho(r))^{1/3}$ and average the responses over the nuclear interior weighted by $\rho(r)$ (integrating over r)
- RPA nuclear correlations
- Correct energy balance and Coulomb distortion effects
- FSI effects

ph-ph interaction of Landau-Migdal

 $V = c_0 \left[f_0(\rho) + f'_0(\rho)\vec{\tau}_1 \cdot \vec{\tau}_2 + g_0(\rho)\vec{\sigma}_1 \cdot \vec{\sigma}_2 + g'_0(\rho)\vec{\tau}_1 \cdot \vec{\tau}_2\vec{\sigma}_1 \cdot \vec{\sigma}_2 \right]$

- Parameters fitted to electromagnetic nuclear properties and transitions Speth et al.
- Includes Δ excitations in the medium, and ph- $\Delta h, \Delta h \Delta h$ effective interactions
- renormalization of the hadronic tensor (axial and vector) in the medium

Coulomb corrections

• Correct the energy balance by the minumum nuclear excitation energy gap $Q = M(X_f) - M(X_i)$ instead of the LFG value $Q_{LFG}(r) = E_F^p(r) - E_F^n(r)$ Replacing

$$\omega \longrightarrow \omega - [Q - Q_{LFG}(r)]$$

Self-energy (Coulomb potential) of the final lepton

$$\Sigma_C = 2\epsilon' V_C(r)$$

 $(V_C(r)$ is the nuclear Coulomb potential) Modification of the charged lepton propagator

$$\frac{1}{k^2 - m_l^2 - 2k_0 V_C(r) + i\epsilon}$$

— new local energy-momentum relation for the final lepton (Modified effective momentum approximation)

RPA predictions for LSND

NIEVES, AMARO, AND VALVERDE

FILTSICAL KEVIEW C 70, 055505 (2004)

FIG. 7. Predictions for the LSND measurement of the 12C $(\nu_{\mu}, \mu^{-})X$ reaction (left panels) and the ¹²C (ν_e, e^-)X reaction near threshold (right panels). Results have been obtained by using nonrelativistic kinematics for the nucleons and without FSI. Top: ν_{μ} and ν_e cross sections multiplied by the neutrino fluxes, as a function of the neutrino energy. In addition to the RPA calculation (solid line), we show results without RPA correlations and Coulomb corrections (dotted line), and also (dashed line) the low-density limit of Eq. (31). Middle: Differential muon and electron neutrino cross sections at $E_{\nu} = 179.5 \text{ MeV}$ (left) and $E_{\nu} = 46.2$ MeV (right), as a function of the energy transfer. Bottom: Neutrino spectra from Ref. [50] (left) and Eq. (65) (right).

· · · · · · · · · · · · · · · · · · ·	RPA predictions for LSND	
• • • • • •	Experimental and theoretical Flux averaged cross section	

TABLE II. Experimental and theoretical flux averaged ${}^{12}C(\nu_{\mu},\mu^{-})X$ and ${}^{12}C(\nu_{e},e^{-})X$ cross sections in 10^{-40} cm² units. We label our predictions as in Fig. 7. We also quote results from other calculations (see text for details).

	LDT	Pauli + Q	RPA	SM [15]	SM [27]	CRPA [18]	Exp.				
							LSND'95 [50]	LSND'97 [51]	LSND'02 [52]		
$\bar{\sigma}(\nu_{\mu},\mu^{-})$	66.1	20.7	11.9	13.2	15.2	19.2	$8.3 \pm 0.7 \pm 1.6$	$11.2 \pm 0.3 \pm 1.8$	$10.6 \pm 0.3 \pm 1.8$		
							KARMEN [53]	LSND [54]	LAMPF [55]		
$\bar{\sigma}(\nu_e,e^-)$	5.97	0.19	0.14	0.12	0.16	0.15	$0.15 \pm 0.01 \pm 0.01$	$0.15 \pm 0.01 \pm 0.01$	0.141±0.023		

^{••} Final State Interaction (FSI)

FIG. 4. W^+ self-energy diagram obtained from the first diagram epicted in Fig. 2 by dressing up the nucleon propagator of the urticle state in the ph excitation.

 Use a renormalized nucleon propagator in the medium

$$G_{FSI}(p) = \frac{1}{p^0 - E(\vec{p}) - \Sigma(p)}$$

- $\Sigma(p)$: Nucleon self-energy in the medium
- Aproximation: $\mathrm{Im}\Sigma_h \simeq 0$ for hole states
- Nucleon self energy taken from
 P. Fernadez de Cordoba and E. Oset,
 PRC 46 (1992)

FIG. 5. Insertion of the nucleon self-energy on the nucleon line the particle state.

FIG. 13. ν_e and $\overline{\nu}_e$ differential cross sections in ¹⁶O as a function of the excitation energy, for fixed values of the momentum transfer and $E_{\nu,\overline{\nu}}$ =400 MeV. Top: Results obtained from the full relativistic model without FSI, with (RPA) and without RPA and Coulomb corrections (Pauli+ $Q(\overline{Q})$). Bottom: Results obtained by using relativistic (long dashed line, REL) and nonrelativistic nucleon kinematics. In this latter case, we present results with (solid line, FSI) and without (short dashed line, NOREL) FSI effects. For the three cases, we also show the effect of taking into account RPA and Coulomb corrections (lower lines at the peak). The areas (in units of 10^{-40} cm²/MeV) below the curves are 1.02 (REL), 1.13 (NOREL), and 1.01 (FSI) when RPA and Coulomb corrections are not considered, and 0.79 (REL), 0.90 (NOREL), and 0.85 (FSI) when these nuclear effects are taken into account.

FSI on the LFG model

- The FSI is implemented on the non relativistic model
- The RPA correction is less important in presence of FSI

••••	••	• • • • • •) • •	• • • • • • • •	••	• • • •	•••		••		•••
Theoretical uncertainties											
Centra	al	values	an	d errors	of	the	m	odel	input	paramet	ers
Form Factors Nucleon Interaction											
M_D	=	0.843	±	0.042 Ge	V	$f_0^{\prime(in)}$	=	0.33	±	0.03	
λ_n	=	5.6	\pm	0.6		$f_0^{(\prime ex)}$	=	0.45	\pm	0.05	
M_A	=	1.05	\pm	0.14 GeV		f	=	1.00	±	0.10	
g_A	=	1.26	\pm	0.01		f^*	=	2.13	±	0.21	
						Λ_{π}	=	1200	±	120 MeV	
						$C_{ ho}$	=	2.0	±	0.2	
						$\Lambda_{ ho}$	=	2500	±	250 MeV	
						g'	=	0.63	±	0.06	
We ha	ave	also ir	nclu	ded 10% u	Inc	ertain	ties	in bo	th th	e real part	t of

the nucleon selfenergy and densities

•

The Montecarlo simulation

- Generate 2000 sets of input parameters
- Gaussian distributions
- Compute the different observables
- Obtain the distribution of the observable values
- Theoretical errors are obtained discarding the highest and lowest 16% of the obtained values
- Keep a 68% confidence level (CL) interval

M. Valverde, Amaro, J. Nieves, Phys. Lett. B 638 (2006)

Uncertainty bands

- Integrated inclusive
- QE cross section
- uncertainties
- for the full model,
- compared to the
- LFG without
- nuclear corrections
- •
- •
- •
- •
- •

- •
- •
- •
- •

Fig. 1. (Color online.) Electron and muon neutrino inclusive QE integrated cross sections from carbon, oxygen and argon, as a function of the neutrino energy. In all cases non-relativistic nucleon kinematics has been employed. Results denoted as "Full model" are obtained from the full model developed in Ref. [14], while those denoted as "Pauli" have been obtained without including RPA, Coulomb and nucleon self-energy effects. We also give the 68% CL band (red or solid lines). For oxygen, the error bars (denoted as "Nuclear") account for the uncertainties due to the imprecise knowledge of the nucleon densities and of the parameters entering in the model used (Ref. [14]) to compute nuclear effects (RPA and nucleon self-energy).
Uncertainties cancellations on ratios

- •
- •

u_{μ}/ν_{e} ratio

$\sigma(\mu)$ _	$\sigma(u_{\mu},\mu)$
$\overline{\sigma(e)}$ –	$\overline{\sigma(\nu_e,e)}$

- of interest for experiments on atmospheric neutrinos
- Theoretical errors partially cancel out

Polarization observables

Polarization in $(u_{ au}, au)$ reactions

- Of interest for $\nu_{\mu} \longrightarrow \nu_{\tau}$ oscillation experiments.
- τ decay particle distribution depend on the τ spin direction
- Theoretical information on the τ polarization will be valuable
- Also needed in $\nu_{\mu} \longrightarrow \nu_{e}$ oscillation experiments to disentangle (ν_{e}, e) events from background electron productions following the $\nu_{\mu} \longrightarrow \nu_{\tau}$ oscillation

Polarization vector and asymmetries

Polarized differential cross section in (ν_l, \vec{l}) reactions Final lepton polarization meassured in the direction \vec{s}

$$\Sigma(\vec{s}) \equiv \frac{d^2\sigma}{d\Omega' dE'_l} = \frac{1}{2} \Sigma_0 \left(1 + s_\mu P^\mu\right)$$

- Σ_0 : unpolarized cross section
- Lepton polarization vector components P_l (longitudinal), P_t (transverse)
- They can be obtained as asymmetries

$$s_{\mu}P_{\mu} = \frac{\Sigma(\vec{s}) - \Sigma(\vec{-s})}{\Sigma(\vec{s}) + \Sigma(\vec{-s})}$$

Polarization results

16

14

 \mathcal{P}_{t}

0

-0.5

-1

0

Dotted: LFG Dashed: RPA Solid: FSI

 $\theta=0^{\rm o}$

 $(\nu_{\tau}, \tau), E_{\nu} = 7 \text{ GeV}$

 $\theta = 2^{\circ}$

6

5

16

14

 $\theta = 4^{\rm o}$

Polarization results Total polarization and angle

JE Amaro - May 2009 - p. 30

$$\begin{array}{l} \textbf{4 Super-Scaling Analysis (SuSA)} \\ \textbf{Scaling in the RFG (Relativistic Fermi gas)} \\ \textbf{} \\ \textbf{}$$

۲

۲

•

۲

•

• •

Jac St

$$\psi = \frac{1}{\sqrt{\xi_F}} \frac{\lambda - \tau}{\sqrt{(1 + \lambda)\tau + \kappa\sqrt{\tau(1 + \tau)}}}$$

• • • •

• •

•

•

•

•

•

•

•

•

•

Experimental scaling function from
$$(e, e')$$

$$\begin{aligned}
&\int \left(\frac{d\sigma}{d\Omega' d\epsilon'}\right)_{exp} \\
&\int f(\psi') = \frac{\left(\frac{d\sigma}{d\Omega' d\epsilon'}\right)_{exp}}{\sigma_{Mott}(v_L G_L + v_T G_T)}
\end{aligned}$$
shifted $\longrightarrow \psi' = \frac{1}{\sqrt{\xi_F}} \frac{\lambda' - \tau'}{\sqrt{(1 + \lambda')\tau' + \kappa}\sqrt{\tau'(1 + \tau')}} \\
&\lambda' = (\omega - E_s)/2m_N, \quad \tau' = \kappa^2 - \lambda'^2
\end{aligned}$
 k_F y E_s are fitted to the data
$$f_L = \frac{R_L}{G_L} \text{Longitudinal} \quad f_T = \frac{R_T}{G_T} \text{Transverse}$$

• • •

Superscaling

- Plot the experimental $f(\psi')$ versus ψ' for different kinematics and nuclei
- Fit E_s and k_F to get scaling (one universal scaling function)

Scaling in the QE peak

Summary of past work by Donnelly & Sick PRC 60 (1999)

T. W. DONNELLY AND INGO SICK

PHYSICAL REVIEW C 60 065502

FIG. 2. (Color) Scaling function $f(\psi')$ as function of ψ' for all nuclei $A \ge 12$ and all kinematics. The values of A corresponding to different symbols are shown in the inset.

JE Amaro - May 2009 - p. 34

- Good 1st-kind scaling below the QE peak (scaling region)

- - · · NUINT ·

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)
- Scaling of the 2nd-kind works well in the scaling region

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)
- Scaling of the 2nd-kind works well in the scaling region
- The longitudinal response appears to superscale

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)
- Scaling of the 2nd-kind works well in the scaling region
- The longitudinal response appears to superscale
- Scaling violations reside in the transverse response,

Fit in the Quasi-elastic peak

JE Amaro - May 2009 - p. 36

SuSA (Super Scaling Analysis)

• Using the experimental (e, e') scaling function to predict neutrino cross sections

NUINT

SuSA (Super Scaling Analysis)

- Using the experimental (e, e') scaling function to predict neutrino cross sections
- Use the RFG equations to compute the (ν_l, l^-) response functions with the substitution $f_{RFG}(\psi) \longrightarrow f_{exp}(\psi)$

SuSA (Super Scaling Analysis)

- Using the experimental (e, e') scaling function to predict neutrino cross sections
- Use the RFG equations to compute the (ν_l, l^-) response functions with the substitution $f_{RFG}(\psi) \longrightarrow f_{exp}(\psi)$
- Needed to justify theoretically the validity of SuSA

The semirelativistic shell model	
 Study the scaling properties in realistic models 	
	• •

3.0

4

The semirelativistic shell model

- Study the scaling properties in realistic models
- Estimate the validity range of SuSA

The semirelativistic shell model

- Study the scaling properties in realistic models
- Estimate the validity range of SuSA
- Include relativistic effects in the model

The semirelativistic shell model

- Study the scaling properties in realistic models
- Estimate the validity range of SuSA
- Include relativistic effects in the model
- Compare with the experimental scaling function

The continuum shell-model (CSM)

- Closed-shell nuclei ¹²C, ¹⁶O and ⁴⁰Ca,
- Initial state $|i\rangle$: Slater determinant with all shells occupied.
- Impulse approximation: final states are particle-hole excitations coupled to total angular momentum

 $|f\rangle = |(ph^{-1})J\rangle$

- Single hole wave function $|h\rangle = |\epsilon_h l_h j_h\rangle$
- Single particle wave function $|p\rangle = |\epsilon_p l_p j_p\rangle$
- Obtained by solving the Schrödinger equation

Woods-Saxon potential

$$V(r) = -V_0 f(r, R_0, a_0) + \frac{V_{ls}}{m_{\pi}^2 r} \frac{df(r, R_0, a_0)}{dr} \mathbf{l} \cdot \boldsymbol{\sigma} + V_C(r)$$

$$f(r, R, a) = \frac{1}{1 + e^{(r-R)/a}}$$

$$V_C(r): \text{ Coulomb potential.}$$

$$\frac{V_0^p - V_{LS}^p - V_0^n - V_{LS}^n - r_0 - a_0}{{}^{12}\mathbf{C} - 62.0 - 3.20 - 60.00 - 3.15 - 1.25 - 0.57}$$

$${}^{16}\mathbf{O} - 52.5 - 7.00 - 52.50 - 6.54 - 1.27 - 0.53}$$

$${}^{40}\mathbf{Ca} - 57.5 - 11.11 - 55.00 - 8.50 - 1.20 - 0.53}$$

NUINT

The SR approach
A EXPAND THE RELATIVISTIC SINGLE-NUCLEON CURRENT

$$j^{\mu}(\vec{p'}, \vec{p}) = \vec{u}(\vec{p'})\Gamma^{\mu}(Q)u(\vec{p})$$

in powers of $\vec{\eta} = \vec{p}/m_N$. to first order $O(\eta)$
Not expand in $\vec{p'}/m_N$.
 $\Rightarrow q, \omega$ can be large

 The relativistic kinematics are taken into account by the substitution

$$\epsilon_p \to \epsilon_p (1 + \epsilon_p / 2m_N)$$

as the eigenvalue of the Schrödinger equation for the particle

$$J_V^0 = \xi_0 + i\xi'_0(\boldsymbol{\kappa} \times \boldsymbol{\eta}) \cdot \boldsymbol{\sigma}$$

$$\mathbf{J}_V^\perp = \xi_1 \boldsymbol{\eta}^\perp + i\xi'_1 \boldsymbol{\sigma} \times \boldsymbol{\kappa} ,$$

 (q,ω) -dependent factors:

$$\xi_0 = \frac{\kappa}{\sqrt{\tau}} 2G_E^V \quad , \quad \xi_0' = \frac{2G_M^V - G_E^V}{\sqrt{1 + \tau}}$$
$$\xi_1' = 2G_M^V \frac{\sqrt{\tau}}{\kappa} \quad , \quad \xi_1 = 2G_E^V \frac{\sqrt{\tau}}{\kappa}$$

provide the required relativistic behavior.

The longitudinal component is given from vector current conservation, $J_V^3 = \frac{\lambda}{\kappa} J_V^0$.

J_A^{\perp} = \zeta_1' \sigma^{\perp}, \quad \zeta_1' = \sqrt{1 + \tau} G_A.
 Transverse

 Neglect the terms of order
$$O(\eta)$$

$$J_A^0 = \zeta_0' \kappa \cdot \sigma + \zeta_0'' \eta^{\perp} \cdot \sigma$$
$$J_A^z = \zeta_3' \kappa \cdot \sigma + \zeta_3'' \eta^{\perp} \cdot \sigma,$$
 Time component

JE Amaro - May 2009 - p. 44

The SR axial-vector current

$$J_{A}^{\perp} = \zeta_{1}^{\prime} \sigma^{\perp}, \quad \zeta_{1}^{\prime} = \sqrt{1 + \tau} G_{A}.$$
Transverse
Neglect the terms of order $O(\eta)$

$$J_{A}^{0} = \zeta_{0}^{\prime} \kappa \cdot \sigma + \zeta_{0}^{\prime\prime} \eta^{\perp} \cdot \sigma$$

$$J_{A}^{z} = \zeta_{3}^{\prime} \kappa \cdot \sigma + \zeta_{3}^{\prime\prime} \eta^{\perp} \cdot \sigma,$$
Longitudinal component

$$\zeta_{0}^{\prime} = \frac{1}{\sqrt{\tau}} \overset{\lambda}{\kappa} G_{A}^{\prime}, \quad \zeta_{0}^{\prime\prime} = \frac{\kappa}{\sqrt{\tau}} \left[G_{A} - \frac{\lambda^{2}}{\kappa^{2} + \kappa \sqrt{\tau(\tau + 1)}} G_{A}^{\prime} \right]$$

$$\zeta_{3}^{\prime} = \frac{1}{\sqrt{\tau}} G_{A}^{\prime}, \quad \zeta_{3}^{\prime\prime} = \frac{\lambda}{\sqrt{\tau}} \left[G_{A} - \frac{\kappa}{\kappa + \sqrt{\tau(\tau + 1)}} G_{A}^{\prime} \right]$$

$$G_{A}^{\prime} = G_{A} - \tau G_{P} \text{ small due to cancellations}$$
The $O(\eta)$ term, proportional to $\vec{\eta}^{\perp} \cdot \vec{\sigma}$ is dominant

•

•

•

• • •

۲

• • • •

•

• • • •

9

(the

Scaling of the first ki

Curves for q = 0.5, 0.7, 1, 1.3, 1.5 GeV collapse into one

Scaling of the second kind

Curves for ¹²C, ¹⁶O and ⁴⁰Ca collapse into one

- collapse into one

NIDIA

q = 0.5 GeV/c0.8 0.6 f_L 0.40.2q = 0.7 GeV/c0.8 0.6 f_L 0.40.2q = 1 GeV/c0.80.6 f_L 0.40.2q = 1.3 GeV/c0.8 0.6 f_L 0.40.2q = 1.5 GeV/c0.8 0.6 f_L 0.40.2

-2 - 1.5 - 1 - 0.5 0 0.5 1 1.5 2

ψ

• Both the DEB potential $U_{DEB}(r, E)$ and Darwin term K(r, E) are energy-dependent

JE Amaro - May 2009 - p. 54

CC neutrino reactions

- SuSA reconstruction of the (ν_{μ},μ^{-}) cross section from the (e,e') one
- Test of the SuSA in the CSM
- The CSM electromagnetic scaling function is used to compute neutrino cross sections.
- Compare with the exact CSM result

Scaling violation for low q

- •
- •
- •

- •
- •
- •

- , ,

- NUINT

- - JE Amaro May 2009 p. 57

Scaling violation for low q

Scaling violation for low q

5 The Relativistic Mean Field (RMF)

- Solve the exact relativistic Dirac equation for the initial and final nucleons
- Use the exact relativistic V and A current operators
- Describe the bound nucleon states as self-consistent Dirac-Hartree solutions using a lagrangian containing σ , ω and ρ mesons
- Use the same relativistic Diract-Hartree potential for the final states (FSI)

(ν_{μ}, μ^{-}) results with the RMF

Neutrino scaling function Compared to the experimental scaling function

- RPWIA (solid),
- rROP (dashed)
- RMF (dot-dashed)
- Parameterization of data (dotted)

From Caballero, Amaro, Barbaro, Donnelly, Maieron, and Udias, PRL 95 (2005)

(ν_{μ}, μ^{-}) results with the RMF

Total integrated (ν_{μ}, μ) QE cross section for ¹²C as a function of the incident neutrino energy.

- RMF (squares),
- RFG (solid line)
- SuSA (dashed line),
- RPWIA (dot-dashed line)
- SRWS (circles)
- SRWS-tot (crosses).

From Amaro, Barbaro, Caballero, Donnelly Phys. Rev. Lett. 98 (2007)

6 Neutrino excitation of the \triangle peak

J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, Nucl. Phys. A 657 (1999) 161.

New scaling variable for the Δ peak :

$$\psi_{\Delta} \equiv \left[\frac{1}{\xi_{F}} \left(\kappa \sqrt{\rho_{\Delta}^{2} + 1/\tau} - \lambda \rho_{\Delta} - 1\right)\right]^{1/2} \times \begin{cases} +1 & \lambda \ge \lambda_{\Delta}^{0} \\ -1 & \lambda \le \lambda_{\Delta}^{0} \end{cases}$$
$$\lambda_{\Delta}^{0} = \frac{1}{2} \left[\sqrt{\mu_{\Delta}^{2} + 4\kappa^{2}} - 1\right], \qquad \mu_{\Delta} \equiv m_{\Delta}/m_{N}$$
$$\rho_{\Delta} \equiv 1 + \beta_{\Delta}/\tau \qquad \beta_{\Delta} \equiv \frac{1}{4} \left(\mu_{\Delta}^{2} - 1\right)$$

 ψ_{Δ} Vanishes at the Δ peak $\Longrightarrow \omega = \omega_{\Delta}^0 = \sqrt{m_{\Delta}^2 + q^2} - m_N$

Include a small energy shift $\omega \to \omega' \equiv \omega - E_{shift}$. yielding a shifted scaling variable ψ'_{Δ} .

RFG responses in the \triangle peak

ignoring terms of order η_F^2 :

$$R_L^{\Delta}(\kappa,\lambda)_0 = \frac{1}{2}\Lambda_0 \frac{\kappa^2}{\tau} \left[\left(1 + \tau \rho_{\Delta}^2 \right) w_2^{\Delta}(\tau) - w_1^{\Delta}(\tau) \right] \times f_{RFG}(\psi_{\Delta})$$

$$R_T^{\Delta}(\kappa,\lambda)_0 = \frac{1}{2}\Lambda_0 \left[2w_1^{\Delta}(\tau) \right] \times f_{RFG}(\psi_{\Delta}),$$

$$\Lambda_0 = \frac{\mathcal{N}}{2\kappa k_F}$$

One should add the contributions:

 $\mathcal{N} = Z$ and the $p \to \Delta^+$ structure functions $\mathcal{N} = N$ and the $n \to \Delta^0$ responses.

Experimental \triangle scaling function

- Substract from the total (e, e') experimental cross section the QE cross section recalculated using $f^{QE}(\psi'_{QE})$
- Divide by $S^{\Delta} \equiv \sigma_M \left[v_L G_L^{\Delta} + v_T G_T^{\Delta} \right]$

$$G_L^{\Delta} = \frac{\kappa}{2\tau k_F} \left[\mathcal{N} \left\{ \left(1 + \tau \rho_{\Delta}^2 \right) w_2^{\Delta}(\tau) - w_1^{\Delta}(\tau) \right\} \right] + \mathcal{O}(\eta_F^2)$$

$$G_T^{\Delta} = \frac{1}{\kappa k_F} \left[\mathcal{N} \left\{ w_1^{\Delta}(\tau) \right\} \right] + \mathcal{O}(\eta_F^2).$$

Scaling function in the \triangle peak

Scaling function in the \triangle peak

Scaling function in the \triangle peak

$N(\nu_{\mu}, \mu^{-})\Delta$ model

Elementary reactions

$$u_{\mu}p \rightarrow \mu^{-}\Delta^{++}$$
 (1)

$$\nu_{\mu}n \rightarrow \mu^{-}\Delta^{+}$$
 (2)

$$\bar{\nu}_{\mu}p \rightarrow \mu^{+}\Delta^{0}$$
 (3)

$$\bar{\nu}_{\mu}n \rightarrow \mu^{+}\Delta^{-}$$
 (4)

Associated currents [Alvarez-Ruso et al. (1998)]:

$$J^{\mu}(q) = \mathcal{T}\bar{u}^{(\Delta)}_{\alpha}(p',s')\Gamma^{\alpha\mu}u(p,s),$$
(5)

isospin factor: $\mathcal{T} = \sqrt{3}$ for Δ^{++} and Δ^{-} production and = 1 for Δ^{+} and Δ^{0} production, $u_{\alpha}^{(\Delta)}(p',s')$: Rarita-Schwinger spinor
$N(\nu_{\mu}, \mu^{-})\Delta$ model

Vertex tensor [Alvarez-Ruso (1998)]

$$\begin{split} &\Gamma^{\alpha\mu} = \\ &= \left[\frac{C_3^V}{m_N} \left(g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu} \right) + \frac{C_4^V}{m_N^2} \left(g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu} \right) + \frac{C_5^V}{m_N^2} \left(g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu} \right) \right] \gamma_5 \\ &+ \left[\frac{C_3^A}{m_N} \left(g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu} \right) + \frac{C_4^A}{m_N^2} \left(g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu} \right) + C_5^A g^{\alpha\mu} + \frac{C_6^A}{m_N^2} q^{\alpha} q^{\mu} \right] \end{split}$$

CVC implies $C_6^V = 0$ and PCAC yields $C_6^A = C_5^A (\mu_\pi^2 + 4\tau)^{-1}$, with $\mu_\pi = m_\pi/m_N$

Neutrino energy: $\epsilon = 1 \text{ GeV}$

$$\theta = 45^{\circ}$$

JE Amaro - May 2009 – p. 71

Neutrino energy: $\epsilon = 1 \text{ GeV}$

$$\theta = 45^{\circ}$$

JE Amaro - May 2009 – p. 71

Neutrino energy: $\epsilon = 1 \text{ GeV}$

 $\theta = 45^{\circ}$

 $\theta = 90^{\circ}$

Neutrino energy: $\epsilon = 1 \text{ GeV}$

 $\theta = 135^{\circ}$

 $\theta = 180^{\circ}$

JE Amaro - May 2009 - p. 72

Angular distribution At the tops of the QE and Δ peaks - $\epsilon = 1 \text{ GeV}$ QF. /MeV/c) 10^{-14} \mathcal{V} Įn, 'dΩdk' 10^{-15} 5 10^{-16} 50 100 150 θ (deg) (u_{μ},μ)

Angular distribution

At the tops of the QE and Δ peaks - $\epsilon = 1$ GeV

Good approximation in the RFG

- Extend the SuSA model to the neutral current u-channel
- Assume that $F^{(u)}(\psi) = F^{(t)}(\psi)$

 Use the phenomenological scaling function extracted from (e, e') data to predict NC ν -nucleus cross sections.

Proton knock-out from ¹²C

- •

- •
- •
- •

- •
- •
- •
- Blue: RFG
- Red: factorized RFG
- Green: Phenomenological SuSA model

Nucleon strangeness effects

- •
- •
- •
- •
- •

- •
- Blue: strangeness
- Red: no strangeness
- •
- •

Nucleon strangeness effects

- •
- •
- •
- •

- •

- •
- **~**
- Blue: strangeness
- Red: no strangeness
- •
- •
- ,
- • • • miteriteriteriteriter •

$$\nu_l(k) + X \longrightarrow l^-(k') + X + \pi^+(k_\pi)$$

$$\nu_l(k) + X \longrightarrow \nu_l^-(k') + X + \pi^0(k_\pi)$$

- Coherent pion production is sensitive to the nuclear form factor $F(\vec{q} \vec{k}_{\pi})$
- Maximum when \vec{q} and \vec{k}_{π} are parallel
- The vector contribution is purely transverse and vanishes
 ⇒ small for electromagnetic pion production
- The axial contribution does not vanishes for neutrinoinduced reactions

- Microscopic model for coherent CC and NC pion production Amaro, E. Hernandez, J. Nieves and M. Valverde, PRD 79 (2009)
- The model includes Δ production plus background terms
- Good description of neutrino-induced pion production off the nucleon Hernandez, Nieves and Valverde, PRD 76 (2007)]

8 Coherent pion production

The model provides accurate coherent pion production cross sections

- Takes into account the relevant nuclear effects
- Δ self-energy in the medium and Pauli-blocking effects in the width.
- Local density aproximation assuming initial and final nucleon momenta $\vec{p} = (\vec{k_{\pi}} \vec{q})/2 \ \vec{p'} = -(\vec{k_{\pi}} \vec{q})/2$

 Pion distortion effects solving the Klein-Gordon equation for the pion with optical potential

 $[-\nabla^2 + m_{\pi}^2 + 2E_{\pi}V_{\text{opt}}(\vec{r})]\varphi^*(\vec{r}) = E_{\pi}^2\varphi^*(\vec{r})$

π momentum distribution

FIG. 2 (color online). Pion momentum differential cross section in the LAB frame for different coherent pion production reactions. Short-dashed line (in blue) has been calculated using planes waves for the outgoing pion and without including any in-medium correction for the Δ . Results with Δ nuclear medium effects are shown in the upper-left panel by the long-dashed line (in green). Our full model calculation, including medium effects on the Δ and the distortion of the outgoing pion wave function, is shown by the solid line (in red). Finally, the effect of putting the nucleons at rest is shown in the upper-left panel by the dotted line (in magenta).

Coherent π predictions

THEORETICAL STUDY OF NEUTRINO-INDUCED ...

PHYSICAL REVIEW D 79, 013002 (2009)

TABLE II. NC/CC muon neutrino and antineutrino coherent pion production total cross sections for K2K, MiniBooNE and T2K experiments. In the case of CC K2K, the experimental threshold for the muon momentum $|\vec{k}'| > 450$ MeV is taken into account. To convert the cross section ratio given in [11] into a coherent cross section (K2K), we use the value of 1.07×10^{-38} cm²/nucleon for the total CC cross section, as quoted in [11]. For the MiniBooNE NC* entry, we present our results when an optical pion-nucleus potential with an imaginary part due to absorption and inelastic channels alone is used to compute the distortion of the outgoing pion (see text for more details). The absolute NC π^0 coherent cross section quoted in the PhD thesis of Ref. [77] should be taken with extreme caution, since in the published paper (Ref. [18]) it is not given. There, it is quoted the ratio of the sum of the NC coherent and diffractive modes over all exclusive NC π^0 production at MiniBooNE. Some details on the flux convolution are compiled in the last three columns.

Reaction	Experiment	$\bar{\sigma} \ [10^{-40} \ {\rm cm^2}]$	$\sigma_{\rm exp} \; [10^{-40} \; {\rm cm}^2]$	E^i_{\max} [GeV]	$\int_{E_{low}^{i}}^{E_{max}^{i}} dE \phi^{i}(E) \sigma(E) [10^{-40} \text{ cm}^{2}]$	$\int_{E_{\rm kov}^i}^{E_{\rm max}^i} dE \phi^i(E)$
$CC \nu_{\mu} + {}^{12}C$	K2K	4.68	<7.7 [11]	1.80	3.84	0.82
$CC \nu_{\mu} + {}^{12}C$	MiniBooNE	2.99		1.45	2.78	0.93
CC $\nu_{\mu} + {}^{12}C$	T2K	2.57		1.45	2.34	0.91
CC $\nu_{\mu} + {}^{16}O$	T2K	3.03		1.45	2.76	0.91
NC $\nu_{\mu} + {}^{12}C$	MiniBooNE	1.97	$7.7 \pm 1.6 \pm 3.6$ [77]	1.34	1.75	0.89
$NC^* \nu_{\mu} + {}^{12}C$	MiniBooNE	2.38*	$7.7 \pm 1.6 \pm 3.6$ [77]	1.34	2.12*	0.89
NC $\nu_{\mu} + {}^{12}C$	T2K	1.82		1.34	1.64	0.90
NC $\nu_{\mu} + {}^{16}O$	T2K	2.27		1.35	2.04	0.90
$CC \nu_{\mu} + {}^{12}C$	T2K	2.12		1.45	1.42	0.67
NC $\nu_{\mu} + {}^{12}C$	T2K	1.50		1.34	0.96	0.64

The analysis of MiniBooNE overstimates our results

Coherent π predictions

FIG. 9 (color online). CC (left) and NC (right) coherent pion production cross sections in carbon. We also show predictions multiplied by the T2K (left) and MiniBooNE (right) ν_{μ} neutrino energy spectra. In the region of neutrino energies around 0.6 GeV, the lower curves stand for the T2K and MiniBooNE ν_{μ} fluxes normalized to one.

Conclusions

Neutrino interactions importance for nuclear physics:

- We have illustrated with examples a selection of neutrino reactions on nuclei and their interplay with nuclear reaction models and structure
- Neutrino cross sections incorporate a richer information on nuclear structure and interactions than electrons.
- The availability of neutrino cross sections of different kinds will be valuable for the development of more precise nuclear models and nuclear interaction theories